跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/11 01:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:杜偉君
研究生(外文):Wei-Chun, Tu
論文名稱:可食性海藻(縐紫菜、龍鬚菜與石蓴)中葉綠素類物質及其葉綠素酶生化特性的研究
論文名稱(外文):Studies on chlorophyll compounds and biochemical characteristics of chlorophyllase in edible seaweeds Porphyra crispata, Gracilaria tenuistipitata and Ulva lactuca
指導教授:黃登福黃登福引用關係
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:111
中文關鍵詞:可食性海藻縐紫菜龍鬚菜石蓴葉綠素葉綠素酶
外文關鍵詞:edible seaweedsPorphyra crispataGracilaria tenuistipitataUlva lactucachlorophyllchlorophyllase
相關次數:
  • 被引用被引用:1
  • 點閱點閱:729
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
中文摘要

台灣曾發生因食用海苔產生光過敏的罕見案例,本實驗室分析得知致毒物質為葉綠素衍生物焦脫鎂葉綠酸鹽(pyropheophorbide a)。為知可食性海藻之食用安全性,故探討台灣常見的三種可食性藻類紫菜、龍鬚菜與石蓴經儲藏及乾濕熱加工後對葉綠素類物質之影響,其次粗萃葉綠素酶並探討生化特性,最後分析市售海藻類乾製品葉綠素類物質(chlorophyll a compounds)含量與色澤。
經檢測三種生鮮藻類chlorophyll a含量隨儲藏天數增加而下降,在3℃溫度下平均下降70.67﹪,而在25℃下則下降95.74﹪。在20℃~100℃的乾燥後發現,在20℃下乾燥,三種藻類chlorophyll a降解緩慢且降解產物含量低。縐紫菜於60℃下乾燥,其chlorophyll a降解快,降解產物在各溫度下含量均未超過1400 ppm。龍鬚菜chlorophyll a於60℃下乾燥2小時後降至總量的28﹪。石蓴pheophytin a含量於40℃下乾燥16小時升高至2105 ppm。市售復水紫菜於20℃下乾燥16小時後並無檢測到pyropheophorbide a,但40℃下乾燥2小時使pyropheophorbide a含量達658 ppm。另外,進行溼熱加工後三者pyropheophorbide a於10分鐘後均無法測得。
縐紫菜與龍鬚菜葉綠素酶的最適作用溫度為50℃,石蓴者為40℃。縐紫菜葉綠素酶最適作用pH值為 8.0,龍鬚菜為pH 9.0,石蓴為pH 7.0。縐紫菜與龍鬚菜葉綠素酶在20~50℃之間可持續保留完整活性;石蓴chlorophyllase活性在20~40℃保持完整。三者葉綠素酶均對chlorophyll a有較高的催化活性。
檢測台北、基隆、台中與高雄地區之市售海藻類乾製品中葉綠素類物質含量,由結果得知,高雄地區之乾紫菜與海苔片檢體在pyropheophorbide a含量上高於台北地區者;各地區乾紫菜與海苔片之產品種類在葉綠素類物質含量上無明顯差異。在Hunter Lab值方面,台北地區乾紫菜檢體之a值與其海苔檢體者呈現顯著差異;高雄地區乾紫菜與其海苔檢體在彩度與色相角上呈現顯著差異。市售海藻類乾製品中L值只在台北地區和基隆地區之海苔片檢體中有地域性差異。
Abstract

An infrequent photosensitization case due to ingesting dried laver flakes had happened in Northern Taiwan. Our previous research suggested that the causative substances were chlorophyll a derivatives, pheophorbide a and pyropheophorbide a. The research is to study the temperature effects of storage and heat process on the content of pheophorbide a and pyropheophorbide a in three kinds of fresh edible seaweeds, Porphyra crispata, Gracilaria tenuistipitata and Ulva lactuca and one kind of market semi-processed laver, and then we invesgated the characteristics of chlorophyllase in the fresh edible seaweeds. Moreover, we will also investigate the levels of chlorophyll a derivatives and Hunter Lab values in market dried laver products.
The chlorophyll a contents of fresh seaweeds caused 70.67﹪and 95.74﹪losses during the storage process in 3℃ and 25℃, respectively. After dry heating at 20℃, the losses of chlorophyll a in seaweed samples were much slower and the degradative derivatives were less. When P. crispata heating at 60℃, the levels of chlorophyll a decreased faster than other heating temperature, and the levels of degradative derivatives were lower than 1400 ppm. The levels of chlorophyll a of G. tenuistipitata decreased to 28﹪after heating at 60℃for 2 hr. The pheophytin a contents of U. lactuca increased to 2105 ppm after heating at 40℃ for 16 hr. And the levels of pyropheophorbide a of market semi-processed laver were non-detectable after heating at 20℃ for 16 hr, but did cause its increase to 658 ppm when heating at 40℃ for 2 hr. In the study of the effect of blanching on the chlorophyll a compounds of three kinds of fresh seaweeds in boiling water, the levels of pyropheophorbide a were not detected after dipping in boiling water for 10 min.
The temperatures of maximum enzymatic activity of chlorophyllase were 50℃ for P. crispata and G. tenuistipitata, and 40℃ for U. lactuca. The optimum pH for P. crispata, G. tenuistipitata and U. lactuca were pH 8.0, 9.0 and 7.0, respectively. The chlorophyllase showed a considerable resistence to thermal treatment. The enzyme was stable for incubating at 50℃ for 30 min. And the activity was higher with substrate chlorophyll a than with pheophytin a.
Finally, we analyzed 40 samples of commercial seaweed products (dried lavers and dried laver flakes) sold in markets of Taipei, Keelung, Taichung and Kaohsiung. The results indicated the levels of pyropheophobide a of both dried lavers and dried laver flakes in Kaohsiung were higher than those in Taipei. In the aspect of Hunter Lab values between dried lavers and dried laver flakes, the a value was significantly different in Taipei’s samples, but the chroma and the hue angle were noted in Kaohsiung’s samples. Meanwhile, the L value of dried laver flakes collected from Taipei and Keelung was significantly varied.
目 錄

中文摘要 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧1
英文摘要 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧3

第一章 研究背景與目的 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧5
壹、研究背景‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧6
貳、研究目的‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧8

第二章 文獻回顧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧10
壹、海藻的定義與重要性‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧11
貳、紫菜的種類與加工利用‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧15
參、葉綠素簡介‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧17
肆、葉綠素於光合性生物中的降解‧‧‧‧‧‧‧‧‧‧‧‧‧‧18
伍、葉綠素於加工過程中的降解‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧20
陸、葉綠素酶的分布及催化反應‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧22
柒、葉綠素酶的生化特性‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧24

第三章 研究內容‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧26
壹、縐紫菜、龍鬚菜與石蓴經乾熱、溼熱加工及儲藏程序後葉綠素
及衍生物之變化‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧27
一、前言‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧27
二、實驗材料與藥品‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧27
(一)實驗材料‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧27
(二)實驗試藥‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧28
三、實驗方法‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧28
(一)儲藏試驗‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧28
(二)乾熱加工及濕熱加工‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧28
(三)葉綠素類物質之萃取‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧29
(四) HPLC分析方法‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧29
(五)標準品之檢量線製作‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧30
四、結果‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧32
(一)儲藏溫度對三種生鮮海藻中葉綠素降解之影響‧‧‧‧32
(二)乾熱加工對三種生鮮海藻中葉綠素降解之影響‧‧‧‧33
(三)濕熱加工對三種生鮮海藻中葉綠素降解之影響‧‧‧‧35
五、討論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧36
(一)藻類葉綠素及其降解產物之萃取與分析‧‧‧‧‧‧‧36
(二)葉綠素在儲藏期間的降解及衍生物的生成‧‧‧‧‧‧37
(三)葉綠素在乾熱加工過程中的降解及衍生物的生成‧‧‧38
(四)葉綠素在濕熱加工過程中的降解及衍生物的生成‧‧‧41
圖表‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧42

貳、縐紫菜、龍鬚菜與石蓴葉綠素酶特性分析‧‧‧‧‧‧‧‧‧53
一、前言‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧53
二、實驗材料與藥品‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧53
(一)實驗材料‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧53
(二)實驗試藥‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧53
三、實驗方法‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧54
(一)萃取催化受質chlorophyll a ‧‧‧‧‧‧‧‧‧‧‧‧54
(二)純化催化受質chlorophyll a ‧‧‧‧‧‧‧‧‧‧‧‧55
(三)製備葉綠素酶丙酮粉‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧56
(四)製備葉綠素酶粗酵素液‧‧‧‧‧‧‧‧‧‧‧‧‧‧56
(五)葉綠素酶蛋白質濃度測定‧‧‧‧‧‧‧‧‧‧‧‧‧57
(六)葉綠素酶活性測定‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧57
(七)最適pH值的測定‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧58
(八)最適溫度的測定‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧59
(九)酵素之高溫耐受性的測定‧‧‧‧‧‧‧‧‧‧‧‧‧59
(十)酵素對受質chlorophyll a與pheophytin a之
比活性與親和性‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧59
四、結果‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧60
(一)葉綠素酶催化受質chlorophyll a的製備‧‧‧‧‧‧‧60
(二)縐紫菜、龍鬚菜及石蓴葉綠素酶之最適溫度‧‧‧‧‧60
(三)縐紫菜、龍鬚菜及石蓴葉綠素酶之最適pH值‧‧‧‧61
(四)縐紫菜、龍鬚菜及石蓴葉綠素酶之高溫耐受性‧‧‧‧62
(五)縐紫菜、龍鬚菜及石蓴葉綠素酶對chlorophyll a
與pheophytin a的親和性與比活性‧‧‧‧‧‧‧‧‧62
五、討論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧63
(一)縐紫菜、龍鬚菜及石蓴葉綠素酶之最適溫度‧‧‧‧‧ 63
(二)縐紫菜、龍鬚菜及石蓴葉綠素酶之最適pH值‧‧‧‧63
(三)縐紫菜、龍鬚菜及石蓴葉綠素酶之高溫耐受性‧‧‧‧64
(四)縐紫菜、龍鬚菜及石蓴葉綠素酶之基質親和性‧‧‧‧64
圖表‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧66



參、市售海藻類乾製品中葉綠素類物質之調查‧‧‧‧‧‧‧‧‧70
一、前言‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧70
二、實驗材料與藥品‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧70
(一)實驗材料‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧70
(二)實驗試藥‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧70
三、實驗方法‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧71
(一)量測市售海藻類乾製品之Hunter Lab值‧‧‧‧‧‧‧71
(二)萃取市售海藻類乾製品中的葉綠素類物質‧‧‧‧‧‧71
(三)統計分析‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧71
四、結果‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧72
(一)市售海藻類乾製品中葉綠素類物質的含量‧‧‧‧‧‧72
(二)市售海藻類乾製品之色澤測定‧‧‧‧‧‧‧‧‧‧‧72
五、討論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧74
(一)市售海藻類乾製品中葉綠素類物質的含量‧‧‧‧‧‧74
(二)綠色度的量測‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧75
(三)市售海藻類乾製品之色澤與葉綠素類物質含量
的相關性‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧75
圖表‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧77

參考文獻‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧88
附錄‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧101
謝誌‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧106
References
王仁瓊。(1976)。臺灣紫菜的研究。國立臺灣大學海洋研究所碩士學位論文。台北。
周薏帆。(2001)。青花菜葉綠素酶複基因族之選殖、表現及生化特性分析。國立臺灣海洋大學水產生物技術研究所碩士學位論文。基隆。
高谷幸。(1981)。光過敏症-發生防止。New Food Industry。23:46-50。
翁家瑞。(1997)。食品衛生與安全。匯華圖書出版社。台北。pp. 159-160。
陳衍昌。(2003)。藻類網址:http://ind.ntou.edu.tw/~b0232/por-cul.htm。
陳再發,薛月娥,蔡萬生。(1984)。海藻加工試驗海菜片、紫菜片及混和片製造。Bulletin of Taiwan Fisheries Research Institute。36:189-199。
黃淑芳。(1997)。臺灣的海藻資源及其利用。臺灣博物。15:76-87。
黃淑芳。(2000)。臺灣東北角海藻圖錄。臺灣博物館。台北。pp. 23-209。
黃穰,廖婉如。(2003)。海藻,來自海洋的保健藥草。科學發展。364:30-37。
蔡玉霞。(2002)。海苔(紫菜加工品)中過敏物質的研究。國立臺灣海洋大學食品科學系碩士學位論文。基隆。
劉曉雯,黃卓治。(1994)。綠藻中葉綠素及其酵素水解衍生物之分析。食品科學。21:197-206。
衛生署。(2001)。食用藻類衛生標準。衛署食字第0900080664號。衛生署。臺北。
環保署。(1996)。水中葉綠素a檢測方法-丙酮萃取法。環署檢字第59203號。環保署。臺北。
賴春福。(1979)。臺灣紫菜養殖。中國水產。323: 23-24。
瞿志傑。(2002)。青花菜葉綠素酶之活性中心及在Pichia pastoris表達之重組葉綠素酶之生化特性。國立臺灣海洋大學水產生物技術研究所碩士學位論文。基隆。
Ahmed, J., Shivhare, U. S. and Raghavan, G. S. V. (2000). Rheological characteristics and kinetics of colour degradation of green chilli puree. Journal of Food Engineering, 44: 239-244.
Almela, L. Fernández-López, J. A. and Roca, M. (2000). High-performance liquid chromatographic screening of chlorophyll derivatives produced during fruit storage. Journal of Chromatography A, 870: 483-489.
AOAC (Association of Official Analytical Chmist). (1995). Chlorophyll in plants. In: Official Methods of the Association of Official Analytical Chmist 15th Edn (Ed. by Horwitz, W.), AOAC, Washington, D. C., pp. 26-28.
Bacon, M. F. and Holden, M. (1970). Chlorophyllase of sugar-beet leaves. Phytochemistry, 9: 115-125.
Beale, S. (1999). Enzymes of chlorophyll biosyhthesis. Photosynthesis Research, 60: 43-73.
Benedetti, C. E. and Arruda, P. (2002). Altering the expression of the chlorophyllase gene ATHCOR1 in transgenic arabidopsis caused changes in the chlorophyll-to-chlorophyllide ratio. Plant Physiology, 128: 1255-1263.
Böger, P. (1965). Chlorophyllase of Chlorella vulgaris beijerinck. Phytochemistry, 4:435-443.
Canjura, F. L. and Schwartz, S. J. (1991). Separation of chlorophyll compounds and their polar derivatives by high-performance liquid chromatography. Journal of Agricultural and Food Chemistry, 39: 1102-1105.
Carreño, J., Martínez, A., Almela, L., and Fernández-López, J. A. (1995). Proposal of an index for the objective evaluation of the colour of red table grapes. Food Research International, 28: 373-377.
Chao, P. Y. J. and Yang, C. M. (1996). Effect of heating pattern on pigment degradation of green vegetable leaf. Tawania, 41: 339-345.
Concon, J. M. (1988). Food Toxicology, Part A: Principles and Concepts. Maecel Dekker, Inc., New York, pp. 30-33.
Doi, M., Inage, T. and Shioi, Y. (2001). Chlorophyll degradation in a Chlamydomonas reinhardtii mutant: An accumulation of pyropheophorbide a by anaerobiosis. Plant and Cell Physiology, 42: 469-474.
Endo, H., Hosoya, H. and Koyana, T. (1982). Isolation of 10-hydroxypheophorbide a as a photosensitizing pigment from alcohol-treated Chlorella cells. Agricultural and Biochemical Chemistry, 46: 2183-2193.
Fernández-López, J. A., Almela, L., Almansa, M. S. and López-Roca, J. M. (1992). Partial purification and properties of chlorophyllase from chlorotic Citrus limon leaves. Phytochemistry, 31: 447-449.
Ferruzzi, M. G. and Schwartz, S. J. (2002). Overview of chlorophylls in foods. In: Current Protocols in Food Analytical Chemistry Online Copyright, Unit F4.1, John Wiley and Sons, Inc. London, pp. 1-82.
Fiedor, L., Rosenbach-Belkin, V. and Scherz, A. (1992). The stereospecific interaction between chlorophylls and chlorophyllase. The Journal of Biological Chemistry, 267: 22043-22047.
Fleurence, J. (1999). Seaweed proteins: Biochemical, nutritional aspects and potential uses. Trends in Food Sciences and Technology, 10: 25-28.
Funamoto, Y., Yamauci, N., Shigenaga, T. amd Shigyo, M. (2002). Effects of heat treatment on chlorophyll degrading enzymes in stored broccoli (Brassica oleracea L.). Postharvest Biology and Technology, 24: 163-170.
Gaffar, R., Kermasha, S. and Bisakowski, B. (1999). Biocatalysis of immobilized chlorophyllase in a ternary micellar system. Journal of Biotechnology, 75: 45-55.
Galasso, F., Altamura, V., and Sbano, E. (1996). Effects of topical testosterone propionate on the positive nickel patch test. Journal of Dermatological Science, 13: 76-82.
García-Esteban, M., Ansorena, D., Gimeno, O. and Astiasarán, I. (2003). Optimization of instrumental colour analysis in dry-cured ham. Meat Science, 63: 287-292.
Gauthier-Jaques, A., Bortlik, K., Hau J. and Fay, L. B. (2001). Improved method to track chlorophyll degradation. Journal of Agricultural and Food Chemistry, 49: 1117-1112.
Gossauer, A. and Engel, N. (1996). Chlorophyll catabolism-structures, mechanisms, conversions. Journal of Photochemistry and Photobiology B: Biology, 32: 141-151.
Gupte, S. M., El-Bisi, H. M. and Francis, F. J. (1964). Kinetics of thermal degradation of chlorophyll in spinach puree. Journal of Food Science, 29: 379-382.
Guzmán, G. R., Dorantes, A. L., Hernández, U. H., Hernández, S. H., Ortiz, A. and Mora, E. R. (2002). Effect of zinc and copper chloride on the color of avocado puree heated with microwave. Innovative Food Science and Emerging Technologies, 3: 47-53.
Hashimoto, Y. and Tsutsumi, J. (1961). Isolation of a photodynamic agent from the liver of abalone, Haliotis discus Hannai. Bulletin of the Japanese Society of Scientific Fisheries, 27: 859-866.
Heaton, J. W. and Marangoni, A. G. (1996). Chlorophyll degradation in processed foods and senescent plant tissues. Trends in Food Science and Technology, 7: 8-15.
Hirata, K., Hirokado, M., Uematsu, Y., Sadamasu, Y., Yasuda, K., Kazama, M. and Suzuki, S. (1997). Determination of chlorophyll degradation products in chlorophyll color preparations. Journal of Food Hygienic Society of Japan, 38: 155-160.
Hornero-Méndez, D. and Mínquez-Mosquera, M. I. (2002). Chlorophyll disappearance and chlorophyllase activity during ripening of Capsicum annuum L fruits. Journal of the Science of Food and Agriculture, 82: 1564-1570.
Hörtensteiner, S. (1999). Chlorophyll breakdown in higher plants and algae. Cellular and Molecular Life Science, 56: 330-347.
Humphrey, A. M. (1980). Chlorophyll. Food Chemistry, 5: 57-65.
Ihl, M., Monsalves, M. and Bifani, V. (1998). Chlorophyllase inactivation as a measure of blanching efficacy and colour retention of artichokes (Cynara scolymus L.) Lebensmittel Wissenschaft. Und -Technologie, 31: 50-56.
Inyang, U. E. and Ike, C. I. (1998). Effect of blanching, dehydration method temperature on the ascorbic acid, colour, sliminess and other constituents of okra fruit. International Journal of Food Science and Nutrition, 49: 125-130.
Isobe, A. and Kimura, S. (1976a). Appearance of hypersensitiveness in different species. Journal of Japanase Society of Nutrition and Food Science, 29: 225-227.
Isobe, A. and Kimura, S. (1976b). Influence of vascular permeability, hemolytic test, serotonin quantity, serum enzymes and nutrient. Journal of Japanase Society of Nutrition and Food Science, 29: 497-500.
Jacob-Wilk, D., Holland, D., Goldschmidt, E. E., Riov, J. and Eyal, Y. (1999). Chlorophyll breakdown by chlorophyllase: isolation and functional expression of the Chlase 1 gene from ethylene treated Citrus fruit and its regulation during development. The Plant Journal, 20: 653-661.
Jeffrey, S. W. (1997). Preparation of chlorophyll standards. In: Phytoplankton Pigments in Oceanography (Ed. by Jeffrey S. W., Mantoura, R.F.C. and Wright, S. W.), UNESCO Monographs on Oceanographic Methodology, no. 10, UNESCO, Paris, pp. 207-238.
Jeffrey, S. W. and Vesk, M. (1997). Introduction to marine phytoplankton and their pigment signatures. In: Phytoplankton Pigments in Oceanography (Ed. by Jeffrey S. W., Mantoura, R.F.C. and Wright, S. W.), UNESCO Monographs on Oceanographic Methodology, no. 10, UNESCO, Paris, pp. 39-76.
Jones, I. D., White, R. C. and Gibbs, E. (1963). Influence of blanching or brining treatments on the formation of chlorophyllides,pheophytins and pheoporbides in green plant tissue. Journal of Food Science, 28: 437-439.
Kermasha, S., Khalyfa, A., Marsot, P., Alli, I. and Fournier, R. (1992). Biomass production, purification, and characterization of chlorophyllase from alga (Phaeodactylum tricornutum). Biotechnology and Applied Biochemistry, 15: 142-159.
Khamessan, A., Kermasha, S., Marsot, P. and Ismail, A. A. (1994). Biocatalysis of chlorophyllase from Phaeodactylum tricornutum in a biphasic organic system. Journal of Chemical Technology and Biotechnology, 60: 73-81.
Khamessan, A., Kermasha, S. and Marsot, P. (1995). Biocatalysis of chlorophyllase from Phaeodactylum tricornutum in organic solvent system. Process Biochemistry, 30: 159-168.
Khamessan, A. and Kermasha, S. (1996). Biocatalysis of chlorophyllase from Phaeodactylum tricornutum in micellar ternary system containing spans. Journal of Biotechnology and Biotechnology, 45: 253-264.
Khalyfa, A., Kermasha, S., Khamessan, A., Marsot, P. and Alli, I. (1993). Purification and characterization of chlorophyllase from algae (Phaeodactylum tricornutum) by preparative isoelectric focusing. Bioscience, Biotechnology and Biochemistry, 57: 433-437.
Khalyfa, A., Kermasha, S., Marsot, P. and Goetghebeur, M. (1995). Purification and characterization of chlorophyllase from alga (Phaeodactylum tricornutum) by preparative native electrophoresis. Applied Biochemistry and Biotechnology, 53: 11-27.
Kuroki, M., Shioi, Y. and Sasa, T. (1981). Purification and properties of soluble chlorophyllase from tea leaf sprouts. Plant and Cell Physiology, 22: 717-725.
Lajolo, F. M. and Marquez, U. M. L. (1982). Chlorophyll degradation in a spinach system at low and intermediate water activaties. Journal of Food Science, 47: 1995-1998.
Lau, M. H., Tang, J. and Swanson, B. G. (2000). Kinetics of textural and color changes in green asparagus during thermal treatment. Journal of Food Engineering, 45: 231-236.
Lichtenthaler, H. K. (1987). Chlorophylla and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148: 350-356.
Liu, H. W. and Huang, T. C. (1995). Reconsideration of the methodology for total pheophorbide a quantification for cholella products. Food Science, 22: 161-171。
Loong, M. N. and Goh, H. K. (2004). Colour degradation of acidified vegetable juice. International Journal of Food Science and Technology, 39: 437-441.
Lu, Y. L. and Chang, P. Y. (2000). Prevention of discoloration of cooked vegetables during storage. Taiwanese Journal of Agricultural Chemistry and Food Science, 38: 490-497.
Lurie, S. (1998). Postharvest heat treatments. Postharvest Biology and Technology, 14: 257-269.
Ma, L. and Dolphin, D. (1999). The metabolites of dietary chlorophylls. Phytochemistry, 50: 195-202.
Maharaj, V. and Sankat, C. K. (1996). Quality changes in dehydrated dasheen leaves: effects of blanching pre-treatments and drying condition. Food Research International, 29: 563-568.
Martinez, G. A., Civello, P. M., Chaves, A. R. and Añón, C. (1995). Partial characterization of chlorophyllase from strawberry fruit (Fragaria ananassa, Duch.). Journal of Food Biochemistry, 18: 213-226.
Martins, R. C. and Silva, C. L. M. (2002). Modelling colour and chlorophyll losses of frozen green beans (Phaseolus vulgaris, L.). International Journal of Refrigeration, 25: 966-974.
Matsuura, E., Fukimbara, T., Kawahara, H. and Ito, H. (1988). Studies on photodynamic action of chlorophyll derivatives phototoxicity of pheophorbide a on rats. The Kitasato Archives of Experimental Medicine, 61: 201-213.
Mcfeeters, R. F., Chichester, C. O. and Whitaker, J. R. (1971). Purification and properties of chlorophyllase from Ailanthus altissima. Plant Physiology, 47: 609-618.
Mínguez-Mosquera, M. I., Gandul-Rojas, B., and Gallardo-Guerrero, L., (1993). De-esterification of chlorophylls in olives by activation of chlorophyllase. Journal of Agricultural and Food Chemistry, 41: 2254-2258.
Moberg, L., Karlberg, B., Blomqvist, S. and Larsson, U. (2000). Comparison between a new application of multivariate regression and current spectroscopy methods for the determination of chlorophylls and their corresponding pheopigments. Analytica Chemica Acta, 411: 137-143.
Murcia, M. A., López-Ayerra, B., Martínez-Tomé, M. and García-Carmona, F. (2000). Effect of industrial processing on chlorophyll content of broccoli. Journal of the Science of Food and Agriculture, 80: 1447-1451.
Nishiyama, Y., Kitamura, M., Tamura, S. and Watanade, T. (1994). Purification and substrate specificity of chlorophyllase from Chlorella regularis. Chemistry Letters, 1: 69-72.
Okai, Y., Higashi-Okai, K., Nakamura, S., Yano, Y. and Otani, S. (1996). Identification of antimutagenic substances in an extract of edible red alga, Porphyra tenera (asadusa-nori). Cancer Letters, 100: 235-240.
Oster, U. and Rüdiger, W. (1997). The G4 gene of Arabidopsis thaliana encodes a chlorophyll synthase of etiolated plants. Journal of the German Botanical Society, 110: 420-423.
Pennington, F. C., Strain, H. H., Svec, W. A. and Katz, J. J. (1963). Preparation and properties of pyrochlorophyll a, methyl pyrochlorophyllide a, pyropheophytin a and methyl pyropheophorbide a derived from chlorophyll by decarbomethoxylation. Journal of the American Chemistry, 86: 1418-1426.
Potty, V. H. (1969). Determination of protein in the presence of phenols and pectins. Analytical Biochemistry, 29: 535-539.
Roca, M. and Mínguez-Mosquera, M. I. (2003). Involvement of chlorophyllase in chlorophyll metabolism in olive varieties with high and low chlorophyll content. Physiologia Plantarum, 117: 459-466.
Samaha, H. and Kermasha, S. (1997). Biocatalysis of chlorophyllase in a ternary micellar system containing Span 85 using purified and oxidized pheophytins as substrate. Journal of Biotechnology, 55: 181-191.
Schoch, S., Rüdiger, W., Lüthy, B. and Matile, P. (1984). 132-Hydroxychlorophyll a, the first product of the reaction of chlorophyll oxidase. Journal of Plant Physiology, 115: 85-89.
Schoefs, B., Bertrand, M. and Lemoine, Y. (1995). Separation of photosynthetic pigments and their precursors by reverse-phase high-performance liquid chromatography using a photodiode array detector. Journal of Chromatography A, 692: 239-245.
Schwartz, S. J. and Lorenzo, T. V. (1990). Chlorophylls in foods. Critical Reviews in Food Science and Nutrition, 29: 1-17.
Schwartz, S. J. and Von Elbe, J. H. (1983). Kinetics of chlorophyll degradation to pyropheophytin in vegetables. Journal of Food Science, 48: 1303-1306.
Schwartz, S. J. and Lorenzo, T. V. (1991). Chlorophyll stability during continuous aseptic processing and storage. Journal of Food Science, 56: 1059-1062.
Shimokawa, K. (1982). Hydrophobic chromatographic purification of ethylene-enhanced chlorophyllase from Citrus unshiu fruits. Phytochemistry, 21: 543-545.
Shioi, Y., Tamai, H. and Sasa, T. (1980). A simple purification method for the preparation of solubilized chlorophyllase in liposomes. Analytical Biochemistry, 105: 74-79.
Suzuki, Y. and Shioi, Y. (2003). Identification of chlorophylls and carotenoids in major teas by high performance liquid chromatography with photodiode array detection. Journal of Agricultural and Food Chemistry, 51: 5307-5314.
Suzuki, J. K., Bollivar, D. W. and Bauer, C. E. (1997). Genetic analysis of chlorophyll biosynthesis. Annual Review of Genetics, 31: 61-89.
Sze, P. (1997). A Biology of the Algae. McGraw-Hill Companies, Inc., U.S.A., pp. 225-250.
Takamiya, K. I., Tsuchiya, T. and Ohta, H. (2000). Degradation pathway(s) of chlorophyll: What has gene cloning revealed? Trends in Plant Science, 5: 426-431.
Takeda, Y., Toyoda, M. and Saito, Y. (1986). Rapid determination of hydrocarbons in edible oil as an index for lipid peroxidation and its application to determination of the effect of chlorophyll derivatives on light-induced hydrocarbon formation in edible oil. Journal of Food Higienic Society of Japan, 27: 635-640.
Tamai, H., Shioi, Y. and Sasa, T. (1979). Studies on chlorophyllase of Phaeodactylum tricornutum. IV. Some properties of the purified enzyme. Plant and Cell Physiology, 20: 1141-1145.
Tanaka, K., Kakuno, T., Yamashita, J. and Horio, T. (1982). Purification and properties of ethylene-enhanced chlorophyllase from Citrus unshiu fruits. Journal of Biochemistry, 92: 1763-1773.
Teng, S. S. and Chen, B. H. (1999). Formation of pyrochlorophylls and their derivatives in spinach leaves during heating. Food Chemistry, 65: 367-373.
Terpstra, W. and Lambers, J. W. J. (1983). Interactions between chlorophyllase, chlorophyll a, plant lipid and Mg2+. Biochimica et Biophysica Acta, 746: 23-31.
Tsuchiya, T. Suzuki, T. Yamada, T. Shimada, H. Masuda, T. Ohta, H. and Takamiya, K. I. (2003). Chlorophyllase as a serine hydrolase: Identification of a putative catalytic triad. Plant and Cell Physiology, 44: 96-101.
van Breemen, R. B., Canjura, F. L. and Schwartz, S. J. (1991a). Identification of chlorophyll derivatives by mass spectrometry. Journal of Agriculture and Food Chemistry, 39: 1452-1456.
Venning, J. A., Burns, D. J. W., Hoskin, K. M., Nguyen, T. and Stee, M.G.H. (1989). Factors influencing the stability of frozen kiwifruit pulp. Journal of Food Science, 54: 396-400.
Wu, J. H. and Chang, S. T. (1998). Structure and classification of chlorophylls. Journal of Experimental Forest of National Taiwan University, 12: 59-68.
Yamauchi, N., Akiyama, Y., Kako, S. and Hashinaga, F. (1997a). Chlorophyll degradation in Wase Satsuma mandarin (Citrus unshiu Marc.) fruit with on-tree maturation and ethylene treatment. Scientica Horticulturae, 71: 35-42.
Yamauchi, N., Harada, K. and Watada, A. E. (1997b). In vitro chlorophyll degradation in stored brocolli (Brassica oleracea L. var. italica Plen.) florets. Postharvest Biology and Technology, 12: 239-245.
Zhuang, H., Hildebrand, D. F. and Barth, M. M. (1997). Temperature influenced lipid peroxidation and deterioration in broccoli buds during postharvest storage. Postharvest Biology and Technology, 10: 49-58.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top