跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/03/16 15:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許啟南
研究生(外文):Chi-Nan Shiu
論文名稱:細菌纖維素之生產條件與物理性質
論文名稱(外文):The production conditions and physical properties of the bacterial cellulose
指導教授:陳榮輝陳榮輝引用關係蕭泉源蕭泉源引用關係
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:85
中文關鍵詞:細菌纖維素
外文關鍵詞:bacterial cellulose
相關次數:
  • 被引用被引用:4
  • 點閱點閱:2460
  • 評分評分:
  • 下載下載:310
  • 收藏至我的研究室書目清單書目收藏:1
本研究目的主要是探討Gluconacetobacter xylinum生成細菌纖維素之生產條件與細菌纖維素之物理性質,以作為生物醫學材料可行性之評估。物理性質的探討包含了細菌纖維素的復水性、拉張力、透光度、水解度、蛋白質沈積性、水氣透過率與氧氣透過率。
當培養液初始pH為6.0時細菌纖維素的產生速度最快,所以可知產生細菌纖維素的最適初始pH值為6.0左右。靜置培養前期產生細菌纖維素的速度比震盪培養快,但以總生產量來說,震盪培養產生之細菌纖維素量會多於靜置培養。面積越大的培養液生成的細菌纖維素會越多,但會造成細菌纖維素薄膜的表面較不平滑、粗糙。
細菌纖維素的保水力約為200 %左右,其復水能力為冷凍乾燥(170 %)>30 ℃通風乾燥(130 %)>通風乾燥70 ℃(110 %);蛋白質吸附量會因結構越緊密吸附量越多;細菌纖維素在14天重量損失約2.8 %,具有良好的水解穩定度;孔隙越大的細菌纖維素則水氣透過率與氧氣通透率越高;隨著細菌纖維素薄膜的厚度增加,其透光度會下降;當細菌纖維素水含量越高時,其拉張強度越小;乾燥的細菌纖維素具有相當高的拉張強度,當水含量上升時,細菌纖維素的拉張強度會有下降的現象,而氧氣通透率卻上升,反之,當水含量下降時,兩者有相反之結果。
細菌纖維素必須保存於中性水溶液之下,才能維持其細緻的網狀結構。
中文摘要……………………………………………………….……..I
英文摘要………………………………………………………..……II
一、前言……………………………………………………………...1
二、文獻整理………………………………………………………..4
1. 細菌纖維素…..……………………………………………...4
1.1. 細菌纖維素生合成之代謝途徑………………………..4
1.2. 細菌纖維素之形成……………………………………..5
2. 醋酸菌 Acetobater xylinum…………………………………9
2.1. A. xylinum之型態………………………………...……..9
2.2. A. xylinum生產細菌纖維素之培養特性……...............10
2.3. A. xylinum生產細菌纖維素之調節作用…...................10
2.4. 影響生成細菌纖維素醋酸菌生長之因子……………11
2.4.1. pH值…...………………………………………...11
2.4.2. 溫度……………………………………...………11
2.4.3. 溶氧量…………………………………………...15
2.4.4. 振盪與靜置培養……………………………...…15
2.5. A. xylinum菌種保存方法……………...………………15
3. 細菌纖維素的化學成分及其物理性質…...…………...….16
3.1. 細菌纖維素的化學成分…...…………...…………......16
3.2. 細菌纖維素之微組織結構…...…………...…………..16
3.3. 細菌纖維素之一般特性及與植物纖維之差異………16
3.4. 細菌纖維素的性質……………………………………17
3.5. 細菌纖維素品質上的修飾……………………………18
4. 細菌纖維素之特殊性質…………………………………...18
4.1. 超微細網狀結構(Ultrafine network structure)…….18
4.2. 親水能力(Hydrophilicity)………………………….19
4.3. 透明度(Transparency)………………………………19
5. 細菌纖維素的應用………………………………………...19
6. 水膠(Hydrogel)之定義、種類與應用方法……………25
6.1. 水膠的定義及分類……………………………………25
6.2. 生醫上的應用…………………………………………25
6.3. 水在水膠中所扮演的角色……………………………26
6.4. 含水量…………………………………………………28
6.5. 抗蛋白沈積……………………………………………29
6.6. 機械強度………………………………………………29
6.7. 水解穩定度……………………………………………30
三、材料與方法…………………………………………………….31
1. 實驗流程…………………………………………………...31
2. 實驗材料與儀器…………………………………………...32
2.1. 實驗使用菌株…………………………………………32
2.2. 菌株培養基……………………………………………32
2.3. 化學藥品………………………………………………33
2.4. 儀器設備………………………………………………33
3. 實驗方法…………………………………………………...34
3.1. 菌種活化………………………………………………34
3.2. 菌種培養………………………………………………35
3.2.1. 不同pH值………………………………………35
3.2.2. 靜置培養與震盪培養…………………………...35
3.2.3. 不同表面積……………………………………...35
3.3. 細菌纖維素薄膜保存…………………………………35
3.4. 厚度測定………………………………………………36
3.5. 機械性質測試…………………………………………36
3.6. 水含量測定……………………………………………36
3.7. 水氣透過測定…………………………………………37
3.8. 抗蛋白質沈積試驗……………………………………37
3.9. 水解穩定度測試………………………………………38
3.10. 氧氣通透性測試……………………………………..38
3.11. 透光度之測定………………………………………..40
3.12. 掃瞄式電子顯微鏡(SEM)之型態觀察…………..41
四、結果與討論……………………………………………………42
五、結論……………………………………………………………48
六、參考文獻...…………………………………………………….50
圖……………...…………………………………………………….55
表……………...…………………………………………………….72
劉碧雲。1996。紅茶菇之微生物品質及其製備過程中成份變化之研究。國立中興大學食品科學研究所碩士論文。
蕭蘊華。1982。離子交換性水膠之成分及物性。國立清華大學高分子研究所碩士論文。
何佳倫。1996。以醋酸菌發酵柑桔果汁生產細菌纖維素之研究。國立台灣大學園藝學研究所碩士論文。
張建成。1999。含親水基聚矽氧水膠薄膜之製備研究。雲林科技大學工業化學與災害防治研究所碩士論文。
陳志平。1999。製備隱形眼鏡材料用之甲基丙烯酸2-羥基乙酯與乙烯醇共聚合物。逢甲大學化學工程學系研究所碩士論文。
村山篤子、市川陽子、川端晶子。1995。-的性質。日本調理科學會誌。28:2-7。
曾乙仁。1995。利用醋酸菌醱酵(Acetobacter xylinum)鳳梨汁生產細菌纖維素之研究。東海大學食品科學系碩士論文。
Arashida, T., Ishino, T., Kai, Hatanka, K., Akaike, T., Matsuzaki, K., Kaneko, Y. and Mimura, T. 1933. Biosybthesis of cellulose from culture media containing 13C-labeled glucoses as a carbon source. Journal of Carbohydrate Chemistry. 12:641-649.
Asako H. and Fumitaka H. 1999. Cellulose assemblies produced by acetobacter xylinum. ICR Annual Report. 6:28-29.
Blanc, P. J. 1996. Characterization of the tea fungus metabolites. Biotechnology Letters. 18:139-142.
Brown, R. M. Jr., Willison, J. H. M. and Richardaon, C. L. 1976. Cellulose biosynthesis in Acetobacter xylinum:Visualization of the site of synthesis and direct measurement of the in vivo process. Proceedings of the National Academy of Sciences of the United States of America. 73:4565-4569.
Cannon, R. E. and Anderson, S. M. 1991. Biogenesis of bacterial cellulose. Critical Review Microbiology. 17:415-447.
Compan˜, V., Lo´ pez, MA. L., Andrio, A., Lo´ pez-alemany, A. and Refojo, M. F. 1999. Determination of the oxygen transmissibility and permeability of hydrogel contact lenses. Journal of Applied Polymer Science. 72:321-327.
Coucheron, D. H. 1991. An acetobacter xylinum insertion sequence element associated with inactivation of cellulose production. Journal of Bacteriology. 173:5723-5731.
Deinema, M. H. and Zevenhuizen, L. P. T. M. 1971. Formation of cellulose fibrils by Gram-negative bacteria and their role in bacterial flocculation. Archives of Microbiology. 78:42-57.
Embuscado, M. E., Marks. J. S. and Bemiller, J. N. 1994a. Bacterial cellulose I. Factors affecting the production of cellulose by Acetobacter xylinum. Food Hydrocolloids. 8:407-418.
Embuscado, M. E., Marks. J. S. and Bemiller, J. N. 1994b. Bacterial cellulose П. Optimization of cellulose production by Acetobacter xylinum through response surface methodology. Food Hydrocolloids. 8:419-430.
Embuscado, M. E., Bemiller, J. N. and Marks. J. S. 1996. Isolation and partial characterization of cellulose produced by Acetobacter xylinum. Food Hydrocolloids. 10:75-82.
Everson, R. G. and Colvin, J. R. 1966. Rearrangement of glucose molecules during synthesis of bacterial cellulose. Journal of Biochemical Toxicology. 44:1567-1569.
Fernado, M. R. S. and Rillo, B. O. 1984. Development of an acceptable nata from papaya. UP-Home-Economics-Journal. 12:23-24.
Fontana J. D., Dedouza, A. M., Fontana, C. K., Torriani, I. L., Moreschi, J. C., Galloti, B. J., Desouza, S. J., Narcisco, G. P., Bichara, J. A. and Farah, L. F. X. 1990. Acetobacter cellulose pellicle as a temporary shin substitute. Applied Biochemistry and Biotechnology. 24:253.
Gromet, Z., Schramm, M. and Hestrin, S. 1957. Synthesis of cellulose by Acetobacter xylinum. I. Micromethod for the determination of cellulose. Biochemical Journal. 67:679-689.
Hestrin, S. and Satoshi, M. 1954. Synthesis of cellulose biosynthesis by Acetobacter xylinum. I. Micromethod for the determination of cellulose. Biochemical Journal. 56:2259-2262.
Jonas, R. and Farah, L. F. 1998. Production and application of microbial cellulose. Polymer Degradation and Stability. 59:101-106.
Kamide, K., Matsuda, Y., Lijima, H. and Okajima, K. 1990. Effect of culture conditions of acetic acid bacteria on cellulose biosynthesis. British Polymer Journal. 22:167-171.
Klemm, D., Schumann, D., Udhardt, U. and Marsch, S. 2001. Bacterial synthesized cellulose – artificial blood vessels for microsurgery. Progress Polymer Science. 26:1561-1603.
Lai, Yu-chi. 1991. Hydrolystic stabilities of some polyurethane hydrogels. Journal of Applied Polymer Science. 42:2883.
Lapuz, M.M., Gallardo, E. G. and Palo, M. A. 1967. The nata organism-cultural requirements, characteristics, and identity. Philips Journal of Science. 92:91-109.
Laszkiewicz, B. 1998. Solubility of Bacterial Cellulose and Its Structural Properties. Journal of Applied Polymer Science. 67:1871-1876.
Loncar, E. S., Petrovic, S. E., Malbasa, R. V. and Verac, R. M. 2000. Biosynthesis of glucuronic acid by means of tea fungus. Nahrung-Food. 44:138-139.
Moonmangmee, S., Kawabata, A., Toyama, H., Adachi, Osao., Matsuhita, K. and Tanaka, S. 2001. A novel polysaccharide involved in the pellicle formation of Acetobacter aceti. Journal of Bioscience and Bioengineering. 93:192-200.
Ohmori, S., Masai, H. Arima, K. and Beppu, T. 1980. Isolation and identification of acetic acid bacteria for submerged acetic acid fermentation at high temperature. Agricultural and Biological Chemistry. 44:2901-2906.
Okiyama, A., Shirae, H., Kano, H. and Yamanaka, S. 1992a. Bacterial cellulose I. Two-stage fermentation process for cellulose production by Acetobacter aceti. Food Hydrocolloids. 6:471-477.
Okiyama, A., Motoki, M. and Yamanaka, S. 1992b. Bacterial cellulose II. Processing of the gelatinous cellulose for food materials. Food Hydrocoll. 6:479-487.
Okiyama, A., Motoki, M. and Yamanaka, S. 1993a. Bacterial cellulo Ⅲ. Development of a new form of cellulose. Food Hydrocolloids. 6:493-501.
Okiyama, A., Motoki, M. and Yamanaka, S. 1993bBacterial cellulos Ⅳ. Application to processed foods. Food Hydrocolloids. 6:503-511.
Ou, S. H., Ishida, H. and Lando, J. B. 1991. Investigation of ethylene-vinyl alcohol copolymers for surface modification of contact lenses. Journal of Polymer Science. 42:2883.
Paul, J. W., John, M. H., Hans-Joachim, G.. J. and Ronald, D. H. 2000. Fermentation of a bacterial cellulose/xylan composite by mixed ruminal microflora:Implications for the role of polysaccharide matrix interactions in plant cell wall biodegradability. Journal of Agricultural and Food Chemistry. 48:1727-1733.
Peppas, N. A. 1996. Hydrogels. In: Biomaterials Science. Ed. Ratner, B. D. Hoffman, A. S. Schoen, F. J. and Lemons, J. E. Academic Press, San Diego, pp. 60- 64.
Ratner, B. D. and Hoffman, A. S. 1976. Synthetic hydropgels for Biomedical application in hydropgels for medical and related applications. Journal of Applied Polymer Science. 11:130.
Refojo, M. F. and Yasuda, H. 1965. Hydrogel from 2-hydroxyethyl methacrylate and propylene glycol monoacrylate. Journal of Applied Polymer Science. 9:2425.
Ute, R. 2002. Molecular biology of cellulose production in bacteria. Research in Microbiology. 15:205-212.
Willcox, M. D. P. Harmis, N. Cowell, B. A., Williams, T. and Holden B. A. 2001. Bacterial interactions with contact lenses;effects of lens material, lens wear and microbial physiology. Biomaterial. 22:3235-3247.
Vandamme, E. J., Baets, S. D., Vanbaelen, A., Joris, K. and Wulf, P. D. 1998. Improved production of bacterial cellulose and its application potential. Polymer Degradation and Stability. 59:93-99.
Yamanaka, S., Watanabe, K. Application of bacterial cellulose. 1994. In: Gilbert RD, editor. Cellulose polymers, blends and composites, München:Hansen Verlag. P.207-215.
Yasuda, H., Gochin, M. and Stone, W. 1966. Hydrogels of poly (hydropxyethyl methacrylate)and hydroxyethyl methacrylate-glycerol monomethacrylate copolymer. Journal of Polymer Science. 4:2913.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊