跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/04 00:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳威全
研究生(外文):Wei Chuan Chen
論文名稱:養殖鰻魚品質指標與簡易判定方法之探討
論文名稱(外文):Studies on quality indicator of cultured eel and their simple detection methods
指導教授:蕭泉源蕭泉源引用關係
指導教授(外文):Shiau Chyuan-Yuan Ph. D.
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:122
中文關鍵詞:肌肽肌肽分解酶組胺酸近紅外光光譜儀電磁掃描儀
外文關鍵詞:ccarnosinecarnosinasehistidinemear infrared reflectance spectroscopyelectromagentic scanning
相關次數:
  • 被引用被引用:4
  • 點閱點閱:421
  • 評分評分:
  • 下載下載:87
  • 收藏至我的研究室書目清單書目收藏:1
活鰻 (Anguilla japonica) 採自外銷鰻魚包裝場,依業者認定分為優質鰻、色差鰻與病鰻,分別使用近紅外光光譜儀 (NIRS)、色差儀及電磁掃描儀 (EM-SCAN) 等非破壞性儀器進行分析,並配合一般化學方法評估鰻魚品質與化學組成分。
優質、色差與病鰻中,病鰻之肥滿度最低、而肝體比則最高,且優質鰻肝臟顏色較病鰻深紅;優質鰻、色差鰻與病鰻體重不符規範大小者 (3.6~6.5 fish/Kg) 之比例分別為15.4、51.8與39.0%。一般成分方面,優質鰻與色差鰻差異不大,而病鰻水分含量較高,蛋白質與灰分則較低。統計分析顯示脂肪含量與魚體重相關性小,而優質鰻脂肪與水分則呈負相關性 (R2=0.7672),可利用較易檢測之水分含量推估優質鰻之脂肪含量 (脂肪=-0.9952×水分+79.4352)。
優質鰻肉之游離胺基酸 (FAA) 含量為三種鰻魚中最高,肌肽 (Carnosine, Car) 含量亦是以優質鰻為較高,組胺酸 (Histidine, His) 皆僅含微量,血清與肝臟中則未檢測出Car與His,僅優質鰻肝臟中含有微量His;Ans則在三種鰻魚皆未檢測出。在肌肽酶活性方面,不管是血清或是組織部位,皆以優質鰻為較大,而組織部位之活性大小依序為肝臟、鰓、脊椎與肌肉,三種鰻魚肌肉皆檢測不出其活性。
在顏色方面,病鰻有較高之亮度 (L值),而色差鰻黃色度 (b值)則顯著較高,b值+7.00處可作為區分優質鰻與色差鰻顏色之客觀判定界線,大於7.00可歸為色差鰻。
電磁掃描儀 (EM-SCAN) 所測得之導電度 (TOBEC),以色差鰻最高,病鰻次之,優質鰻最小,導電度與總水分含量具相關性。近紅外光光譜儀 (NIRS) 掃瞄光譜經Vision Analysis System 分析,水分 (R2 = 0.7870) 與脂肪 (R2 = 0.8828) 預測與實測值之相關性較高,蛋白質 (R2 = 0.3305) 與灰分 (R2 =0.1827) 則較不顯著,而預測鰻魚外觀顏色方面,則以“a”值 (R2 = 0.7477) 較佳;3D分佈圖顯示三種鰻魚之光譜分佈為三區塊且具有顯著差異,因此NIRS不僅可預測鰻魚水分與脂肪含量,且可區分其品質。
Live eels (Anguilla japonica) were purchased from the package plant, which were preliminarily divided into three grades (good, off-color and sick eel) by packagers. The non-destructive instruments including near-infrared reflectance spectroscopy (NIRS), color difference meter and electromagnetic scanning (EM-Scan) meter were used to evaluate the quality of eels. In addition, chemical compositions of three kinds of eels were also detected.
Sick eels had the lower condition factor and higher hepatosomatic index than good and off-color eels. In addition, the liver color of good eel was darker than that of sick eel. The percentage not meeting the size criteria (4-6 fish/kg) for good, off-color and sick eels was 15.4, 51.8 and 39.0%, respectively. The difference in proximate composition of good and sick eels was not apparent, but sick eels had a higher level of moisture and lower levels of protein and ash. The fat content showed no good correlation with body weight; however, it had a negative correlation (R2=0.7672) with moisture. Moisture could be used to predict the fat content (Fat=-0.9952 x Moisture + 79.4352).
Good eel meat had higher levels of free amino acid among three kinds of eels. Good eel meat also had higher levels of carnosine (Car) and lower levels of histidine (His). Car was not detected in the plasma and liver, and a small amount of histidine was found only in the liver of good eel. Anserine (Ans), however, was not detected in any tissues and plasma of three kinds of eels. Good eel had higher carnosinase activities in plasma and tissues than off-color and sick eel. The activity in order as liver>gill>vertebra>meat. The activity was not found in the meat of three kinds of eels.
Sick eels had a higher L value, but off-color eels had a higher b value. The b value “+7.00” was an objective color discriminator between good and off-color eels. If the b value was greater than +7.00, the eel was assigned to the group of off-color eel.
Off-color eel had higher total body electrical conductivity (TOBEC) values than good and sick eel measured by EM-Scan meter. The correlation between TOBEC value and the total moisture content was found. The correlation of proximate composition of eel meat using NIRS spectrum through Vision Analysis System was also investigated. The results indicated that either moisture (R2 = 0.7870) or fat (R2 = 0.8828) had a good correlation between predicted and measured values, but protein (R2 = 0.3305) and ash (R2 = 0.1827) showed no good correlation. In addition, the a value (R2 = 0.7477) also had a good correlation. NIRS spectrum of good, off-color and sick eels showed a significant distribution in 3D diagram via statistical analysis. NIRS could be used not only to predict the fat and moisture content of eel, but to discriminate the quality of eels.
目 錄
頁次
中文摘要 Ⅰ
英文摘要 Ⅲ
目錄 Ⅴ
表目錄 Ⅸ
圖目錄 Ⅹ
壹、前言 1
貳、文獻整理 3
一、鰻魚之分類及生態 .3
二、臺灣鰻魚養殖及其加工產業概況 4
三、鰻魚魚體化學與營養組成之影響因子 5
四、動物組織中肌之分佈 6
五、肌之生理功能 8
(一) 抗氧化性質 8
(二) 緩衝能力 8
(三) 抗醣化反應 9
(四) 調節酵素活性 10
六、肌分解酶 (carnosinase) 11
七、Carnosinemia 12
八、近紅外光光譜 (Near infrared reflectance spectroscopy,NIRS) 在肉品上之應用 13
九、電磁掃描儀 (EM-SCAN) 在肉品上之應用 14
參、材料與方法 16
一、實驗材料與儀器 16
(一) 原料魚 16
(二) 化學試藥 16
(三) 使用儀器 16
二、樣品製備 17
(一) 鰻魚的取樣與麻醉 17
(二) 血清及各部位組織取樣 17
(三) 血清及各部位組織TCA萃取液之製備 18
(四) 組織粗酵素液之製備 18
(五) 血清粗酵素液之製備 18
三、分析方法 19
(一) 肥滿度 (Condition factor, K) 19
(二) 肝體比 19
(三) 一般成分 19
(四) 近紅外光光譜儀 (NIRS) 之測定 20
1. 光譜處理 20
2. 樣品分組 21
3. 光譜分析分式 21
(五) 電磁掃描儀 (EM-SCAN) 之測定 22
(六) 顏色L, a, b值之測定 22
(七) HPLC測定組胺酸與肌 23
1. 分析條件 23
2. 鰻肉與組織部位組胺酸及肌之測定 23
(八) 游離胺基酸與雙胜之測定 23
(九) 鰻魚血清肌分解酶活性測定 23
(十) 鰻魚組織肌分解酶活性測定 24
四、統計分析 24
肆、結果與討論 25
一、肥滿度、肝體比與大小規格比例 25
(一) 體長、體重肥滿度與肝體比 25
(二) 大小規格比例 26
二、一般成分 26
三、游離胺基酸與雙胜 27

四、肌酶活性 29
五、顏色L, a, b值 30
六、近紅外光光譜儀預測鰻魚一般成分及區分品質 30
(一) 鰻魚光譜圖 30
(二) 分析結果 31
1. 一般成分 31
2. L, a, b值 33
(三) 實驗值與預測值之相關性 33
1. 一般成分 33
2. L, a, b值 33
(四) 區分鰻魚品質 34
七、電磁掃描儀檢測鰻魚一般成分 35
(一) 導電度之測定 35
(二) 導電度與一般成分之相關性 36
伍、結論 37
陸、參考文獻 38
柒、表 56
捌、圖 72


表 目 錄
表一、活鰻包裝場優質、色差與病鰻之平均體長、體重、肥滿度、肝重及肝體比 56
表二、活鰻包裝場優質、包差與病鰻之大小規格比例 57
表三、活鰻包裝場優質、色差及病鰻之一般成分 58
表四、優質、色差與病鰻肉游離胺基酸與雙胜之含量 59
表五、優質、色差與病鰻血清與各部位組織之肌含量 60
表六、優質、色差與病鰻血清與各部位組織之組胺酸含量 61
表七、優質、色差與病鰻血清與各部位組織之肌酶活性 62
表八、優質、色差與病鰻之L, a, b平均值 63
表九、檢量組與預測組鰻肉一般成分之統計資料 64
表十、檢量組鰻肉一般成分之部份最小平方迴歸分析結果 65
表十一、預測組鰻肉一般成分之部份最小平方迴歸分析結果 66
表十二、以Vision分析系統分析鰻肉一般成分之標準校正誤差值與標準預測誤差值 67
表十三、檢量組鰻魚外觀顏色 (L, a, b值) 之部份最小平方迴歸分析結果 68
表十四、預測組鰻魚外觀顏色 (L, a, b值) 之部份最小平方迴歸分析結果 69
表十五、以Vision分析系統分析鰻魚外觀顏色 () 之標準校正誤差值與標準預測誤差值 70
表十六、優質、色差與病鰻之導電度 71




圖 目 錄
圖一、優質、色差與病鰻間肥滿度之差異 72
圖二、優質鰻體重與肥滿度間之關係 73
圖三、色差鰻體重與肥滿度間之關係 74
圖四、病鰻體重與肥滿度間之關係 75
圖五、鰻魚體重與肥滿度間之關係 76
圖六、優質鰻水分與脂肪含量間之關係 77
圖七、色差鰻水分與脂肪含量間之關係 78
圖八、病鰻水分與脂肪含量間之關係 79
圖九、鰻魚水分與脂肪含量間之關係 80
圖十、優質鰻體重與脂肪含量間之關係 81
圖十一、色差鰻體重與脂肪含量間之關係 82
圖十二、病鰻體重與脂肪含量間之關係 83
圖十三、優質、色差與病鰻間L值之差異 84
圖十四、優質、色差與病鰻間a值之差異 85
圖十五、優質、色差與病鰻間b值之差異 86
圖十六、優質鰻NIRS光譜圖 87
圖十七、二次微分之優質鰻NIRS光譜圖 88
圖十八、檢量組中化學分析與NIRS預測鰻肉水分含量之相關性 89
圖十九、檢量組中化學分析與NIRS預測鰻肉脂肪含量之相關性 90
圖二十、檢量組中化學分析與NIRS預測鰻肉蛋白質含量之相關性 91
圖二十一、檢量組殿化學分析與NIRS預測鰻肉灰分含量之相關性 92
圖二十二、預測組中化學分析與NIRS預測鰻肉水分含量之相關性 93
圖二十三、預測組中化學分析與NIRS預測鰻肉脂肪含量之相關性 94
圖二十四、預測組中化學分析與NIRS預測鰻肉蛋白質含量之相關性 95
圖二十五、預測組中化學分析與NIRS預測鰻肉灰分含量之相關性 96
圖二十六、檢量組中實際量測與NIRS預測鰻魚L值之相關性 97
圖二十七、檢量組中實際量測與NIRS預測鰻魚a值之相關性 98
圖二十八、檢量組中實際量測與NIRS預測鰻魚b值之相關性 99
圖二十九、預測組中實際量測與NIRS預測鰻魚L值之相關性 100
圖三十、預測組中實際量測與NIRS預測鰻魚a值之相關性 101
圖三十一、預測組中實際量測與NIRS預測鰻魚b值之相關性 102
圖三十二、優質、色差與病鰻之NIRS光譜3 D分佈圖 103
圖三十三、優質、色差與病間導電度之差異 104
圖三十四、鰻魚體重與導電度之相關性 105
圖三十五、鰻魚體長與導電度之相關性 106
圖三十六、鰻魚水分含量與導電度之相關性 107
圖三十七、鰻魚粗脂肪含量與導電度之相關性 108
圖三十八、鰻魚蛋白質含量與導電度之相關性 109
圖三十九、鰻魚灰分含量與導電度之相關性 110
陸、參考文獻

Abe, H. 1981. Determination of L-histidine-related
compounds in fish muscles using high-performance liquid
chromatography. Bull. Jap. Soc. Sci. Fish. 47(1):139.
Abe, H. 1983. Distribution of free L-histidine and its
related compounds in marine flishes. Bull. Jap. Soc. Sci.
Fish. 49: 1683-1687.
Abe, H. 1991. Interorgan transport and catabolism of
carnosine and anserine in rainbow trout. Comp. Biochem.
Physiol. 100B(4):717-722.
Abe, H. 1995. Histidine-related dipeptides: distribution,
metabolism, and physiological function. In “Biochemistry
and Molecular Biology of Fishes”, Vol. 4. Hochachka P.W.
and Mommsen T.P. (Ed.), pp. 309-333, Elsevier, Amsterdam.
Abe, H., Dobson, G. P., Hoeger, U. and Parkhouse, W. S.
1985. Role of histidine-related compounds to
intracellular buffering in fish skeletal muscle. Am. J.
Physiol. 249:R449-454.
Abeni, F. and Bergoglio, G. 2001. Characterization of
different strains of broiler chicken by carcass
measurements, chemical and physical parameters and NIRS
on breast muscle. Meat Sci. 57:133-137.
Alomar, D., Gallo, C., Castaneda, M. and Fuchslocher, R.
2003. Chemical and discriminant analysis of bovine meat
by near infrared reflectance spectroscopy (NIRS). Meat
Sci. 63:441-450.
Ambrose, J. A., Crimm, A., Burton, J., Paullin, K. and
Ross, C. 1996. Fluorometric determination of histidine.
Clin. Chem. 15:361-366.
AOAC. 1995. Official Methods of Analysis, 14th ed.
Association of Official Analytical Chemists, Arlington,
VA.
Aruoma, O., Laughton, M. and Halliwell, B. 1989. Carnosine,
homocarnosine and anserine: could they act as
antioxidants in vivo? Biochem. J. 264:863-869.
Barziza, D. E. and Gatlin Ⅲ, D. M. 2000. An evaluation of
total body electrical conductivity to estimate body
composition of largemouth bass, Micropterus salmoides.
Aquat. Living Resour. 13:439-447.
Bogardus, S. L. and Gilbert, A. 2000. Carosine inhibits
in vitro low-density lipoprotein oxidation. Nutr. Rev.
20:967-976.
Boldyrev, A. A., Dupin, A. M., Bunin, A. Y., Babizhaev, M.
A. and Severin, S. E. 1987. The antioxidative properties
of carnosine, a natural histidine containing dipeptide.
Biochem. Int. 15:1105-1113.
Boldyrev, A., Dupin, A., Pindel, E. and Severin, S. 1988.
Antioxidative properties of histidine-containing
dipeptides from skeletal muscles of vertebrates. Comp.
Biochem. Physiol. 89B:245-250.
Boldyrev, A. A., Dupin, A. M., Batrukova, M. A., Bavykina,
N. I., Korshunova, G. A. and Shvachkin, Y. P. 1989. A
comparative study of synthetic carnosine analogs as
antioxidants. Comp. Biochem. Physiol. 94B:237-240.
Boldyrev, A. A. and Severin, S. E. 1989. The histidine-
containing dipeptides. Carnosine and anserine:
distribution, properties and biological significance.
Advan. Enzyme Regul. 30:175-194.
Boldyrev, A. A. 1990. Retrospectives and perspectives on
the biological activity of histidine-containing
dipeptides. Int. J. Biochem. 22:129-132.
Boldyrev, A. A. 1993. Does carnosine possess direct
antioxidant activity? Int. J. Biochem. 25:1101-1107.
Boldyrev, A. A., Formazyuls, V. E. and Sergienko, V. I.
1994. Biological significance of histidine-containing
dipeptides with special reference to carnosine:
chemistry, distribution, metabolism and medical
application. Physicochem. Biol. 13:1-60.
Boldyrev, A. A., Abe, H., Stvolinsky, S. and Tyulina, O.
1995. Effect of carnosine and related compounds on
generation of free oxygen species: a comparative study.
Comp. Biochem. Physiol. 112B:481-485.
Boldyrev, A. A., Stvolinsky, S. L., Tyulina, O. V.,
Koshelev, V. B., Hori, N. and Carpenter, D. O. 1997.
Biochemical and physiological evidence that carnosine is
an endogenous neuroprotector against free radicals. Cell.
Mol. Neurobiol. 17:259-271.
Brownson, C. and Hipkiss, A. R. 2000. Carnosine reacts with
a glycated protein. Free Radical Biol. Med. 28(10):1564-
1570.
Burton, R. F. 1978. Intracellular buffering. Respir.
Physiol. 33:51-58.
Byrne, C. E., Downey, G., Troy, D. J. and Buckley, D. J.
1998. Non-destructive prediction of selected quality
attributes of beef by near-infrared reflectance
spectroscopy between 750 and 1098nm. Meat Sci. 49:399-409.
Calcagni, A., Ciattini, P. G., Stefano, A. D., Dupre, S.,
Luisi, G., Pinnen, F., Rossi, D. and Spirito, A. 1999.Ψ
(SO2NH) transition state isosteres of peptides.
Synthesis and bioactivity of sulfonamido pseudopeptides
related to carnosine. IL Farmaco 54:637-677.
Carnegie, P. R., Collins, M. Z. and Ilic, M. Z. 1984. Use
of histidine dipeptides to estimate the proportion of pig
meat in processed meats. Meat Sci. 10: 145-154.
Carnegie, P. R., Ilic, M. Z., Etheridge, M. O. and Collins,
M. G. 1983. Improved high-performance liquid
chromatographic method for analysis of histidine
dipeptides anserine, carnosine and balenine present in
fresh meat. J. Chromatogr. 261:153.
Castle, D. H. J. and Williamson, G. R. 1974. On validity of
the freshwater eel species, Anguilla ancestralis, form
Celebes. Copeia. 2:569-570.
Chan, W. K. M., Decker, E. A. and Means, W. J. 1993.
Extraction and activity of carnosine, a naturally
occurring antioxidant in beef muscle. J. Food Sci. 58:1-4.
Chan, W. K. M. and Decker, E. A. 1994. Endogenous skeletal
muscle antioxidants. Crit. Rev. Food Sci. Nutr. 34:403-
426.
Chan, W. K. M., Decker, E. A., Lee, J. B. and Butterfield,
D. A. 1994. EPR spin-trapping studies of the hydroxyl
radical scavenging activity of carnosine and related
dipeptides. J. Agric. Food Chem. 42:1407-1410.
Chan, W. K. M., Decker, E. A., Chow, C. K. and
Boissonneanlt, G. A. 1994. Effect of dietary carnosine on
plasma and tissue antioxidant concentrations and on lipid
oxidation in rat skeletal muscle. Lipid 29:461-466.
Choi, J. H., Thim, C. H., Choi, Y. J., Byun, D. S., Kim, C.
M. and Oh, S. K. 1986. Comparative study on protein and
amino acid composition of wild and cultured eel. Bull.
Korean Fish. Soc. 19:60-66.
Choi, S. Y., Kwon, H. Y., Kwon, O. B. and Kang, J. H. 2000.
Hydrogen peroxide-mediated Cu, Zn-superoxide dismutase
fragmentation: protection by carnosine, homocarnosine and
anserine. Biochem. Biophys. Acta. 1472:651-657.
Cloos, P. A. C. and Christgau, S. 2002. Non-enzymatic
covalent modifications of protein: mechanisms,
physiological consequences and clinical applications.
Matrix Biol. 21:39-52.
Crush, K. G. 1970. Carnosine and related substances in
animal tissues. Comp. Biochem. Physiol. 34:3-30.
Dahl, T. A., Midden, R. W. and Hartman, P. E. 1988. Some
prevalent biomolecules as defenses against singlet oxygen
damage. Photochem. Photobiol. 47:357-362.
Davey, C. L. 1960. The effects of carnosine and anserine on
glycolytic reactions in skeletal muscle. Arch. Biochem.
Biophy. 89:296-302.
De Leo, G. A. and Gatto, M. 1995. A size and age-structured
model of the European eel (Anguilla anguilla L.). Can. J.
Fish. Aqua. Sci. 52:1351-1367.
Decker, E. A. 1995. The role of phenolics, conjugated
linoleic acid, carnosine, and pyrroloquinoline quinone as
nonessential dietary antioxidants. Nutr. Rev. 53:49-58.
Decker, E. A., Crum, A. D. and Calvert, J. 1992.
Differences in the antioxidant mechanism of carnosine in
the presence of copper and iron. J. Agric. Food Chem.
40:756-759.
Decker, E. A. and Faraji, H. 1990. Inhibition of lipid
oxidation by carnosine. JAOCS. 67:650-652.
Decker, E. A., Ivanov, V., Zhu, B. Z., Rrei, B. 2001.
Inhibition of low density lipoprotein oxidation by
carnosine and histidine. J. Agric. Food Chem. 49(1): 511-
516.
Degani, G. 1986. Dietary effects of lipid source, lipid
level and temperature on growth of glass eel (Anguilla
anguilla). Aquaculture 56: 207-214.
Degani, G., Hahamu, H. and Levanon, D. 1986a. The
relationship of eel Anguilla anguilla body size, lipid,
protein, glucose, ash, moisture composition and enzyme
activity (aldolase). Comp. Biochem. Physiol. 84A:739-746.
Degani, G., Viola, S. and Levanon, D. 1986b. Effects of
dietary carbohydrate source on growth and body
composition of the European eel. Aquaculture 52: 97-104.
Dickinson, K., North, T. J., Telford, G., Smith, S.,
Brammer, R., Jones, R. B. and Heal, D. J. 2001.
Determination of body composition in conscious adult
female Wistar utilizing total electrical conductivity.
Physiol. Behav. 74:425-433.
Fuller, A. T., Neuberger, A. and Webster, T. A. 1947.
Histidine deficiency in the rat and its effect on the
carnosine and anserine content of muscle. Biochem. J.
41:11-14.
Gallego, M. G., Bazoco, J., Akharbach, H., Suarez, M. D.
and Sanz, A. 1994. Utilization of different carbohydrates
by the European eel (Anguilla anguilla). Aquaculture
124:99-108.
Gerrard, J. A., Brown. P. K. and Fayle, S. E. 2002.
Maillard crosslinking of food proteins Ι: the reaction
of glutaraldehyde, formaldehyde and glyceraldehyde with
ribonuclease. Food Chem. 79:343-349.
Gill, I., Lopez-Fandino, R., Jorba, X. and Vulfson, E. N.
1996. Biologically active peptides and enzymatic
approaches to their production. Enzyme Microb. Technol.
18:162-183.
González, M. I., González, P. C., Méndez, H. J., García,
N. A. 2003. Determination of fatty acids in the
subcutaneous fat of Iberian breed swine by near infrared
spectroscopy (NIRS) with a fibre-optic probe. Meat Sci.
65:713-719.
Harms, W. S. and Winnick, T. 1954. Further studies of the
biosynthesis of carnosine and anserine in vertebrates.
Biochem. Biophys. Acta. 15:480-484.
Harris, R. C., Marlin, D. J., Dunnett, M., Snow, D. H. and
Hultman, E. 1990. Muscle buffering capacity and dipeptide
content in the thoroughbred horse, greyhound dog and man.
Comp. Biochem. Physiol. 97A:249-251.
Hatae, K., Nakai, H., Shimada, A., Murakami, T., Takada,
K., Shirojo, Y. and Watabe, S. 1995. Abalone (Hariltis
discus):seasonal variation in chemical composition and
textural properties. J. Food Sci. 60(1):32-35.
Heeswijk, P. J., Trijbels, J. M. F., Schretlen, A. M.,
Munster, P. J. and Monnens, L. A. H. 1969. A patient with
a deficiency of serum-carnosinase activity. Acta.
Paediat. Sand. 58:584-592.
Hipkiss, A. R., Brownson, C. and Carrier, M. J. 2001.
Carnosine, the anti-ageing, anti-oxidant dipeptide, may
react with protein carbonyl groups. Mechanisms Ageing
Develop. 122:1431-1445.
Hipkiss, A.R., Michaelis, J. and Syrris, P. 1995. Non-
enzymic glycosylation of the dipeptide L-carnosine. A
potential anti-protein-cross-linking agent. FEBS Lett.
371:81-85.
Hipkiss, A. R., Worthington, V. C., Himsworth, D. T. J. and
Herwig, W. 1998. Protective effects of carnosine against
protein modification mediated by malondialdehyde and
hypochlorite. Biochem. Biophys. Acta. 1380:46-54.
Hipkiss, A. R. and Chana, H. 1998. Carnosine protects
protein against methylglyoxal-mediated modifications.
Biochem. and Biophysic. Res. Commu. 248:28-32.
Hwang, D. F., Liang, W. P., Shiau, C. Y., Chai, T. J. and
Jeng, S. S. 1996. Seasonal variations of free amino acids
in the muscle and viscera of small abalone Haliotis
diversicolor. Fish Sci. 63(4):625-629.
Ikeda, T., Kimura, K., Hama, T. and Tamaki, N. 1980.
Activation of rabbit muscle fructose 1,6-bisphosphatase
by histidine and carnosine. J. Biochem. 87:179-185.
Isaksson, T., Nilsen, B. N., Tøgersen, G., Hammond, R. P.
and Hildrum, K. I. 1996. On-line, proximate analysis of
ground beef directly at a meat grinder outlet. Meat Sci.
43:245-253.
Jackson, M. C., Kucera, C.M. and Lenney, F. F. 1991.
Purification and properties of human serum carnosinase.
Clin Chim Acta. 196: 193-205.
Johnson, P. and Hammer, J. L. 1989. Effects of L-1-methyl-L-
histidine and the muscle dipeptides carnosine and
anserine on the activities of muscle calpains. Comp.
Biochem. Physiol. 94B:45-48.
Kansci, G., Genot, C., Meynier, A. and Gandemer, G. 1997.
The antioxidant activity of carnosine and its
consequences on the volatile profiles of liposomes during
iron/ascorbate induced phospholipid oxidation. Food Chem.
60:165-175.
Kawashima, K. and Yamanaka, H. 1996. Free amino acid
responsible for the browning of cooked scallop adductor
muscle. Fish. Sci. 62:293-296.
Kish, S. J., Perry, T. L. and Hansen, S. 1979. Regional
stribution of homocarnosine, homocarnosine-carnosine
nthetase and homocarnosinase in human brain. J.
urochem. 32:1629-1636.
Kohen, R., Yamamoto, Y., Cundy, K. and Ames, B. 1988.
Antioxidant activity of carnosine, homocarnosine, and
anserine present in muscle and brain. Proc. Natl. Acad.
Sci. USA 85:3175-3179.
Komata, Y. Umami taste of seafood. Food Rev. Intl. 6:457-
487.
Konosu, S., Watanabe, K. and Shimizu, T. 1974. Distribution
of nitrogenous constituents in the muscle extracts of
eight species of fish. Bull. Jap. Soc. Sci. Fish. 40: 909-
914.
Kora, H., Fujio, M., Osato, S., Doi, T., Misima, T.,
Tachibana, K. and Tsuchimoto, M. 1990. Relationship
between thickness coefficient and body fat on cultured
red sea bream. Bull. Jap. Soc. Sci. Fish. 56:1279-1284.
Kroeze, J. H. A., Wijngaards, G., Padding, P., Linschoten,
M. R. I. and Theelen, U. B. 2000. Training for more
accurate visual fat estimation in meat. Meat Sci. 54:319-
324.
Lanza, E. 1983. Determination of moisture, protein, fat and
calories in raw pork and beef by near infrared
spectroscopy. J. Food Sci. 48:471-474.
Laurence, F. L., Beatrice, L. G. and Carole, B. 2002.
Prediction of body composition in rabbit females using
total body electrical conductivity (TOBEC). Livest. Prod.
Sci. 78:133-142.
Lee, B. J. and Hendrick, D. G. 1997. Antioxidant effects of
L-carnosine on liposomes and beef homogenates. J. Food
Sci. 62:931-934.
Lee, B. J., Hendricks, D. G. and Cornforth, D. P. 1998.
Antioxidant effects of carnosine and phytic acid in a
model beef system. J. Food Sci. 63:394-398.
Lenney, J. F. 1976. Specificity and distribution of
mammalian carnosinase. Biochim. Biophys. Acta. 429:214-
219.
Lenney, J. F., Peppers, S. C., Kucera-Orallo, C. M. and
George, R. P. 1985. Characterization of human tissue
carnosinase. Biochem J. 228: 653-660.
Lenny, J. F. 1990. Separation and characterization of two
carnosine splitting cytosolic dipeptidase from hog kidney
(carnosinase and non-specific dipeptidase). Biol. Chem.
371: 433-440.
Lenny, J. F., George, R. P., Weiss, A. M., Kucera, C. M.,
Paul, W. H. Chan, P. W. H. and Gary, S. R. 1982. Human
serum carnosinase: Characterization, distinction from
cellular carnosinase, and activation by cadmium. Clin.
Clim. Acta. 123:221-231.
Lie, O., Hemre, G. I. and Lambertsen, G. 1990. A comparison
of the composition of cultured and wild caught European
eel (Anguilla anguilla) particularly regarding lipids.
Fiskeridir. Skr., Ser. Ernaering. 3:3-11.
MacFarlane, N., McMurray, J., O’Dowd, J., Dargie, H. J.
and Miller, D. J. 1991. Synergism of histidyl dipeptides
as antioxidants. J. Mol. Cell Cardiol. 23:1205-1207.
Margolis, F. 1974. Carnosine in the primary olfactory
pathway. Science 184:909-911.
Margolis, F. L. and Grillo, M. 1984. Carnosine,
homocarnosine and anserine in vertebrate retinas.
Neurochem. Int. 6:207-209.
Matsumiya, M. and Mochizuki, A. 1996. Seasonal variation of
proximate composition for horse mackerel (Trachurus
japonicus). Bull. Coll. Agric. Vet. Med. Nihon. Univ.
53:56-61.
Mitsumoto, M. Maeda, S., Mitsuhashi, T. and Ozawa, S. 1991.
Near-infrared spectroscopy determination of physical and
chemical characteristics in beef cuts. J. Food Sci.
56:1493-1496.
Miyata, T., Inagi, R., Asahi, K., Yamada, Y., Horie, K.,
Sakai, H. and Kurokawa, K. 1998. Generation of protein
carboxyls by glycoxidation and lipoxidation reactions
with autoxidation products of ascorbic acid and
polyunsaturated fatty acids. FEBS Lett. 437:24-28.
Murphey, W. H., Lindmark, D. G., Patchen, L. I., Housler,
M. E., Harrod, K. and Mosovich, L. L. 1973. Serum
carnosinase deficiency concomitant with retardation.
Pediat. Res. 7:601-606.
Nagai, K. and Suda, T. 1988. Realization of spontaneous
healing function of carnosine. Meth. Find. Exp. Clin.
Pharmacol. 10:497-507.
Okuma, E. and Abe, H. 1992. Major buffering constituents in
animal muscle. Comp. Biochem. Physiol. 102A:37-41.
Otwell, W. S. and Rickards, W. L. 1981. Cultured and wild
American eels Anguilla rostrata fat content and fatty
acid composition. Aquaculture 26:67-76.
Pegova, A., Abe, H. and Boldrev, A. 2000. Hydrolysis of
carnosine and related compounds by mammalian carnosinase.
Comp. Biochem. Physiol. 127B:443-446.
Perry, T. L., Hansen, S., Tischler, B., Bunting, R. and
Berry, K. 1967. Carnosinemia: metabolic disorder with
neurologic disease and metal decfec. New Eng. J. Med.
277:1219-1227.
Perry, T. L., Hansen, S. and Love, D. 1968. Serum-
carnosinase deficiency in carnosinemia. Lancet I:1229-
1230.
Quinn, P. J., Boldyrev, A. A. and Formazuyk, V. E. 1992.
Carnosine: its properties, functions and potential
therapeutic applications. Mol. Aspects Med. 13:379-444.
Robin, J. P., Heitz, A., Maho, Y. L. and Lignon, J. 2002.
Physical limitations of the TOBEC method accuracy and
long-term stability. Physiol. Behav. 75:105-118.
Sato, B., Sasaki, Y. and Abe, S. 1978. Developing
technology of utilization of small pelagic fish.
Fisheries Agency. Japan. pp. 105-115.
Schmitz, O., Greuel, E. and Pfeffer, E. 1984. Digestibility
of crude protein and organic matter of potential sources
of dietary protein for eels (Anguilla anguilla).
Aquaculture 41:21-30.
Seidler, N. W. and Seibel, I. 2000. Glycation of aspartate
aminotransferase and conformational flexibility. Biochem.
and Biophysic. Res. Commu. 277:47-50.
Seidler, N. W. and Yeargans, G. S. 2002. Effects of thermal
denaturation on protein glycation. Life Sci. 70:1789-1799.
Sharonov, B. P., Govorova, N. J. and Lyziova, S. N. 1990.
Carnosine as a potential scavenger of oxidants generated
by stimulated neutrgphils. Biochem. Int. 21:61-68.
Snyder, S. H. 1980. Brain peptides as neurotransmitters.
Science 209:976-983.
Somero, G. N. 1981. pH-temperature interactions on
proteins: principles of optimal pH and buffer system
design. Mar. Biol. Lett. 2:163-178.
Stansby, M. E. 1963. Industrial fishery technology.
Reinhold Publishing. New York.
Stenger, J. and Bielajew, C. 1995. Comparison of TOBEC-
derived total body fat with fat pad weights. Physiol.
Behav. 57:319-323.
Suyama, M., Suzuki, T., Maruyama, M. and Satio, K. 1970.
Determination of carnosine, anserine, and balenine in the
muscle of animal. Bull. Jap. Soc. Sci. Fish. 36:1048-1053.
Suyama, M. and Shimizu, T. 1982. Buffering capacity and
taste of carnosine and its methylated compounds. Bull.
Jap. Soc. Sci. Fish. 48:89-95.
Suyama, M., Hirano, T. and Suzuki, T. 1986. Buffering
capacity of free histidine and its related dipeptides in
white and dark muscles of yellowfin tuna. Nippon Suisan
Gakkaishi 52:2171-2175.
Suyama, M., Hirono, T. and Suzuki, T. 1988. Nitrogenous
constituents in water extracts of snapping turtle. Bull.
Jpn. Soc. Sci. Fish. 54(3):505~509.
Swearengin, T. A., Seidler, N. W. and Fitzgerald, C. 1999.
Carnosine prevents glyceraldehydes 3-phosphate-mediated
inhibition of aspartase aminotransferase. Arch. of
Toxico. 73:307-309.
Tamaki, N., Funatsuka, A., Fujimoto, S. and Hama, T. 1984.
The utilization of carnosine in rats fed on a histidine-
free diet and its effect on the levels of tissue
histidine and carnosine. J. Nutr. Sci. Vitaminol. 30:541-
544.
Teahon, K. and Rideout, J. M. 1992. A sensitive and
specific high performance liquid chromatographic assay
for imidazole dipeptides and 3-methylhistidine in human
muscle biopsies, serum and urine. Biomed. Chromatogr.
6:16-22.
Trocki, O., Baer, D. J. and Castonguay, T. W. 1995. An
evaluation of the use of the total body electrical
conductivity for the estimation of body composition in
adult rats: effect of dietary obesity and adrenalectomy.
Physiol. Behav. 57:765-772.
Tzeng, W. N. 1993. Current studies on the biology of the
Japanese eel (Anguilla japonica) Temminck and Schlegeli.
In “Eel Production and Marketing”. pp. 42-54.
TØgersen, G., Arnesen, J. F., Nilsen, B. N. and Hildrum,
K. I. 2003. On-line prediction of chemical composition of
semi-frozen ground beef by non-invasive NIR spectroscopy.
Meat Sci. 63:515-523.
TØgersen, G., Isaksson, T., Nilsen , B. N., Bakker, E. A.
and Hildrum, K. I. 1999. On-line NIR analysis of fat,
water and protein in industrial scale ground meat
batches. Meat Sci. 51:97-102.
Uchida, K. and Kawakishi, S. 1990. Formation of the 2-
imidazolone structure within a peptide mediated by a
copper(II)/ascorbate system. J. Agric. Food Chem. 38:1896-
1899.
Van Wanade, A. 1988. Biochemistry of non-protein
nitrogenous compounds in fish including the use of amino
acids for anaerobic energy production. Comp. Biochem.
Physiol. 91B(2):207-228.
Vinson, J. A. and Howard Ⅲ, T. B. 1996. Inhibition of
protein glycation and advanced glycation end products by
ascorbic acid and other vitamins and nutrients. J. Nutr.
Biochem. 7:659-663.
Wade, A. M. and Tucker, H. N. 1998. Antioxidant
characteristics of L-histidine. J. Nutr. Biochem. 9:308-
315.
Willi, S. M., Zhang, Y., Hill, J. B., Phelan, M. C.,
Michalis, R. C. and Holden, K. R. 1997. A deletion in the
long arm of chromosome 18 in a child with serum
carnosinase deficiency. Pedia. Res. 41: 210-213.
Wood, M. R. G. and Johnson, P. 1981. Purification of
carnosine synthetase from avian muscle by affinity
chromatography and determination of its subunit
structure. Biochim. Biophys. Acta. 662:138
Yaylayan, V. A. 1997. Classification of the Maillard
reaction:A conceptual approach. Trends Food Sci. Technol.
8:13-18.
任曉晶,2002。養殖鰻及其加工品之魚種基因鑑定法探討,國立臺灣海洋大學食品科系碩士論文,基隆。
林容如,2001。新興養殖魚類化學組成及不同養殖鰻魚生化學特性之探性,國立臺灣海洋大學食品科學系碩士論文,基隆。
吳清熊,1982。鰻魚燻製品之加工研究,中國水產,365: 3-12。
吳清熊、邱思魁 (譯著),1996。水產食品學,國立編譯館,臺北。
吳宏哲、陳兆宗、陳輝俊、吳清熊,1990。臺灣水產加工現況,pp.29-33。
凃汝祝,2003。日本鰻與歐洲鰻肌肽分解之差異及其對鰻肉抗氧化性之影響,國立臺灣海洋大學食品科學系碩士論文,基隆。
胡興華,2003。鰻魚王國的起落,漁業推廣月刊,196:14-37。
徐崇仁,1997。自動化超集約鰻魚養殖管理,養魚世界,238:20-26。
許俊堯,1998。重組鰻魚生長激素之表現、純化與生物活性測定,國立臺灣海洋大學水產養殖學系碩士論文,基隆。
郭河,1994。鰻魚基本生物學,養鰻透視 (郭河編),水產出版社,pp. 25-26,臺北。
陳世銘、張文宏、謝廣文,1998。果汁糖度檢測模式之研究,農業機械學刊,7(3):41-60。
陳孟杰,1997。臺灣日本鰻與美洲鰻養殖之生產經濟分析,國立臺灣海洋大學漁業經濟研究所碩士論文,基隆。
曾萬年,1986。臺灣沿岸鰻線資源及生態,中國水產,404:19-24。
曾萬年,1994。歐洲鰻與美洲鰻資源量的變化,中國水產,504:63-69。
曾萬年,1997。臺灣的鰻魚資源及產業,生物產業,8:49-52。
黃永森,2000。魚類生殖研究的新發展以鰻魚為例,養魚世界,277 (3):46-50。
須山三千三、鴻巢章二,1978。水產食品學,恆星社厚生閣,東京,日本。
廖國璋,1999。歐洲鰻產卵場及其降河生殖洄游,養魚世界,263:35-41。
劉朝鑫、劉雅方、郭宗甫,1995。養鰻池細菌抗藥性之研究,魚病研究專輯,農委會漁業特刊,53 (16):61-65。
謝忠明,1999。歐洲鰻鱺飼養技術,中國農業出版社,北京,pp.1-17。
鍾忠明,1996。冷凍食品之原理與加工,食品工業月刊社,新竹。
饒家麟、柯文慶,2000。鯖魚蒸煮液蛋白質水解物之抗氧化特性,臺灣農業化學與食品科學,39(5):363-369。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top