跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/16 19:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張錦龍
研究生(外文):Chin-Lung Chang
論文名稱:山藥酸乳酪添加奈米鈣對鈣質生物利用率之研究
論文名稱(外文):Studies on the Calcium Bioavailability of Yam Yogurt Added with Calcium Nanoparticles
指導教授:龔瑞林龔瑞林引用關係
指導教授(外文):Zwe-Ling Kong
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:137
中文關鍵詞:山藥酸乳酪奈米鈣生物利用率
外文關鍵詞:Yam YogurtCalcium NanoparticlesBioavailability
相關次數:
  • 被引用被引用:6
  • 點閱點閱:867
  • 評分評分:
  • 下載下載:181
  • 收藏至我的研究室書目清單書目收藏:1
骨質流失是一種無症候的生理現象,在眾多預防與治療骨質疏鬆症方法中,以增加食物中鈣質攝取量是最常被建議使用的方式。本研究的主要目的在於探討乳酸菌發校山藥酸乳酪添加奈米鈣是否能進一步促進鈣質吸收?並比較與碳酸鈣的生物利用之差異,本實驗之設計與方法是依照衛生署公告的「健康食品之改善骨質疏鬆功能評估方法」中人體試驗的「鈣質生物利用率測定」。以20位健康之大學生自願者為受試者(男10人,女10人),受試者隨機分成三組,試驗組(A)為添加乳酸鈣山藥酸乳酪(LCa-YY),試驗組(B)為添加奈米鈣山藥酸乳酪(NCa-YY),控制組(C)為碳酸鈣(CaCO3);每個人分三次交叉進行受試食品和控制飲食,採自體比較的方式,交叉試驗之間相隔1週,受試者服用測試樣品前禁食12小時,於服用後0、2、4和6小時抽血及收集其尿液,測量服用後0、2、4和6小時之血清鈣濃度、0和4小時之血清副甲狀腺激素(PTH)濃度以及0、2、4和6小時之尿液鈣/尿肌酸酐比率。試驗結果顯示LCa-YY與NCa-YY組的血鈣值在補充後2小時即顯著上升,且其上升量明顯高於碳酸鈣組(p < 0.01);而於補充後4小時其血清鈣質濃度下降,但血清鈣質濃度仍明顯高於碳酸鈣組(p < 0.05);補充後6小時其血清鈣質濃度亦有高於碳酸鈣組的趨勢(p < 0.10),此結果顯示山藥經發酵後添加乳酸鈣或奈米鈣,其所含的鈣質之生物利用率均明顯高於碳酸鈣。LCa-YY組與NCa-YY組的PTH濃度改變量(濃度下降)在補充後4小時均顯著大於碳酸鈣組(p < 0.01),此結果指出NCa-YY與LCa-YY的鈣質生物利用率均明顯高於碳酸鈣。LCa-YY組與NCa-YY組的尿鈣/肌酸酐比值於補充後2小時顯著高於碳酸鈣組(p < 0.01),且NCa-YY組的尿鈣/肌酸酐比值又有略高於LCa-YY組的現象(p < 0.10),這顯示LCa-YY組與NCa-YY組中的鈣質被吸收進入體內的量確實顯著高於碳酸鈣。本試驗所使用的添加乳酸鈣山藥酸乳酪與添加奈米鈣山藥酸乳酪之鈣質生物利用率(Bioavailability)均明顯高於碳酸鈣,表示NCa-YY組與LCa-YY組中的鈣質可以明顯的比CaCO3容易被吸收,因此山藥經發酵製成酸乳酪後添加奈米鈣,此種組成配方,應具有開發成為促進鈣質吸收的健康食品潛力。
Loss of bone density is often asymptom and attack unconsciously. Among various preventions and cures for osteoporosis, to take more rich-calcium food is a common recommendation. The aim of the study was to assess the absorbable effect of calcium after taking yam yogurt added with calcium nanoparticles and to compare the bioavailability with calcium carbonate. The study obeyed the law published by the Department of Health, Taiwan. There were twenty healthy voluntaries, including ten male and ten female, in this study. Three groups were divided: group A was yam yogurt added with calcium lactate(LCa-YY), group B was yam yogurt added with calcium nanoparticles(NCa-YY)and group C was calcium carbonate (CaCO3). Everyone received test by study food and controlled food every one week alternately. Fasting 12 hours before test was given. Other, blood and urine specimen was taken before test for 0, 2, 4, and 6 hours after meal. Serum calcium were measured at 0, 2, 4, and 6 hours after meal; Serum parathyroid hormone(PTH) at 0 and 4 hours after meal, and urine calcium to urine creatinine ratio at 0, 2, 4, and 6 hours after meal. The results showed that subjects’ serum calcium concentration increased significantly 2 hours after LCa-YY or NCa-YY consumption, and the increments were significantly higher than CaCO3 (p < 0.01). Although the subjects’ serum calcium concentration dropped down 4 hours after LCa-YY or NCa-YY consumption, they remained significantly higher than CaCO3(p < 0.05). In addion, serum calcium concentration with LCa-YY or NCa-YY consumption remained slightly higher than CaCO3 at 6 hours after meal(p < 0.10). It meant that the bioavailability that the yam yogurt added with calcium lactate and calcium nanoparticles was higher than calcium carbonate. Four hours after consuming LCa-YY or NCa-YY, subjects’ PTH concentration were significantly higher than those with CaCO3 consumption(p < 0.01). This indicated that bioavailabilities of NCa-YY and LCa-YY were significantly higher than that of CaCO3. Two hours after consuming LCa-YY or NCa-YY, subjects’ urine calcium to creatinine ratios were significantly higher than those with CaCO3 (p < 0.01), and subjects’ urine calcium to creatinine ratios with NCa-YY consumption was slightly higher than those with LCa-YY consumption(p < 0.10). It meant that the absorption of calcium in group LCa-YY and group NCa-YY was better than in group CaCO3. The bioavailability in group LCa-YY and group NCa-YY was significantly higher than in group CaCO3. In general speaking, yam yogurt added with calcium nanoparticles should be a potential production in the future.
目 錄
中文摘要………………………………………………………………………1
英文摘要………………………………………………………………………3
壹、前言………………………………………………………………………5
貳、文獻整理…………………………………………………………………7
一、鈣在人體內的作用……………………………………………………7
1.生理功能……………………………………………………………… 7
2.鈣質之吸收利用與代謝………………………………………………7
3.影響鈣吸收的因子……………………………………………………9
4.不同性別及年齡骨礦物質含量………………………………………9
5.不同鈣源之生物利用率……………………………………………10
二、鈣與骨質疏鬆症的關連……………………………………………12
1.骨質疏鬆症之定義………………………………………………… 12
2.骨質疏鬆症的分類………………………………………………… 12
3.預防骨質疏鬆症之評估方法………………………………………14
三、山藥的生理活性功能……………………………………………15
1.臺灣山藥之栽培………………………………………………… 15
2.山藥之成份與營養價值.……………………………………………16
3.歷代醫療價值記載…………………………………………………16
4.抗氧化功能……………………………………………………… 17
5.促進脂質代謝…………………………………………………… 18
6.免疫調節………………………………………………………… 19
7.調節女性荷爾蒙………………………………………………… 19
8.腸道生理功能改善……………………………………………… 20
四、乳酸菌簡介…………………………………………………………… 21
1. 乳酸菌之定義………………………………………………………21
2. 乳酸菌做為益生菌之特性……………………………………………21
3. 乳酸菌之生理功能……………………………………………………21
(1) 在免疫調節上的功效……………………………………………21
(2) 乳酸菌抑菌的表現………………………………………………22
(3) 附著腸道的能力…………………………………………………23
(4) 胞外粘性物質(EAS) ……………………………………………23
五、山藥酸乳酪的生理活性………………………………………………23
1. 免疫調節………………………………………………………………23
2. 脂質代謝與腸道生理的影響…………………………...……………23
3. 對於淋巴癌細胞株K562之致死能力……………………………24
4. 抗氧化能力…………………………………………………………24
六、奈米技術簡介…………………………………………………24
參、材料與方法………………………………………………………… 27
一、實驗大綱………………………………………………………… 27
二、人體試驗流程圖………………………………………………… 28
三、實驗材料與藥品………………………………………………… 31
1.試驗菌株………………………………………………………… 31
2.培養基…………………………………………………………… 31
3.山藥來源.…………………………………………………………31
4.山藥酸乳酪製備之材料…………………………………………32
5.奈米鈣和碳酸鈣…………………………………………………32
6.抽血及收集尿液之用品…………………………………………32
7.儀器設備…………………………………………………………32
四、實驗方法…………………………………………………………33
1.山藥凍乾粉末之製備…………………………………………………33
2.奈米珍珠鈣之製備…………………………………………………34
3.山藥酸乳酪添加奈米鈣發酵之製備……………………………34
4.人體試驗部份-對鈣質生物利用率之測定……………………35
五、統計方法…………………………………………………………38
肆、結果與討論…………………………………………………………47
一、奈米鈣粒徑大小之測定…………………………………………47
二、攝食添加乳酸鈣山藥酸乳酪(LCa-YY)、添加奈米鈣
山藥酸乳酪(NCa-YY)及碳酸鈣(CaCO3)其鈣質生物利
用率之探討…………………………………………………47
1.以變異數統計分析(ANOVA)來探討…………………48
2.以統計推論檢定來探討………………………………… 53
3.以無母數符號檢定來探討………………………………55
三、增加鈣質吸收因素之探討………………………………59
伍、結論…………………………………………………………63
陸、參考文獻……………………………………………………65
柒、附錄………………………………………………………………………104


表 目 錄
表一、不同鈣源對血清鈣、副甲狀腺濃度、尿中鈣對肌酸酐
比值與尿鈣濃度之影響…………………………………………………79
表二、F-statistics ……………………………………………………………………… 83
表三、t-test ………………………………………………………………………………87
表四、Wilcoxon Sign-Ranks test 檢定正號次數表……………………………91
表五、Wilcoxon Sign-Ranks test Z值表…………………………………………92
表六、Mann-Whitney U 檢定………………………………………………………96
表七、Kruskal-Wallis 檢定…………………………………………………………100





圖 目 錄
圖一、奈米珍珠粉微粒檢測……………………………………………78
圖二、攝取LCa-YY、NCa-YY或CaCO3後血清中鈣質濃度增加…80
圖三、攝取LCa-YY、NCa-YY或CaCO3後血清中副甲狀腺激素
(PTH)濃度改變量……………………………………………81
圖四、攝取LCa-YY、NCa-YY或CaCO3後尿液中鈣/肌酸酐
(Ca/Creatinine) 改變量比值…………………………………82
圖五、攝取LCa-YY、NCa-YY和CaCO3 血清鈣的F統計檢定
之變異數………………………………………………………84
圖六、攝取LCa-YY、NCa-YY和CaCO3血清中PTH的F統計
檢定之變異數………………………………………………85
圖七、攝取LCa-YY、NCa-YY和CaCO3尿液中Ca/Cre的F統計
檢定之變異數………………………………………………86
圖八、攝取LCa-YY、NCa-YY和CaCO3血清鈣的t
統計檢定………………………………………………………88
圖九、攝取LCa-YY、NCa-YY和CaCO3血清PTH的t
統計檢定………………………………………………………89
圖十、攝取LCa-YY、NCa-YY和CaCO3尿液中Ca/Cre的t
統計檢定………………………………………………………90
圖十一、攝取LCa-YY、NCa-YY和CaCO3血清鈣的
Wilcoxon Sign-Ranks test統計檢定之正號次
數分配表……………………………………………………93
圖十二、攝取LCa-YY、NCa-YY和CaCO3血清
PTH的Wilcoxon Sign-Ranks test統計檢定之正號
次數分配表……………………………………………………94
圖十三、攝取LCa-YY、NCa-YY和CaCO3尿液中Ca/Cre的Wilcoxon Sign-Ranks test統計檢定之正號次
數分配表………………………………………………………95
圖十四、攝取LCa-YY、NCa-YY和CaCO3血清鈣的Mann-Whitney 統計檢定之Z值表………………………………………………97
圖十五、攝取LCa-YY、NCa-YY和CaCO3血清PTH的
Mann-Whitney 統計檢定之Z值表…………………………98
圖十六、攝取LCa-YY 、NCa-YY和CaCO3尿液中Ca/Cre的
Mann-Whitney 統計檢定之Z值表………………………………99
圖十七、攝取LCa-YY、NCa-YY和CaCO3血清鈣的
Kruskal-Wallis 統計檢定之卡方表………………………101
圖十八、攝取LCa-YY、 NCa-YY和CaCO3血清PTH的
Kruskal-Wallis 統計檢定之卡方表…………………………102
圖十九、攝取LCa-YY、NCa-YY和CaCO3尿液中Ca/Cre的
Kruskal-Wallis 統計檢定之卡方表…………………………103

附錄目錄
附錄一、評估食品樣本是否具有預防骨質疏鬆之測定方法………105
附錄二、申請保健食品臨床試驗同意書……………………………108
附錄三、人體試驗同意書……………………………………………110
附錄四、人體試驗流程單……………………………………………111
表八、攝取山藥酸乳酪添加乳酸鈣後之血清鈣濃度變化紀錄表…113
表九、攝取山藥酸乳酪添加奈米鈣之血清鈣濃度變化紀錄表……114
表十、攝取碳酸鈣之血清鈣濃度變化紀錄表………………………115
表十一、攝取山藥酸乳酪添加乳酸鈣、奈米鈣與碳酸鈣之
血清PTH濃度變化紀錄表………………………………116
表十二、攝取山藥酸乳酪添加乳酸鈣之尿Ca/Cre比值變化
紀錄表……………………………………………………117
表十三、攝取山藥酸乳酪添加奈米鈣之尿Ca/Cre比值變化
紀錄表……………………………………………………118
表十四、攝取碳酸鈣之尿Ca/Cre比值變化紀錄表…………………119
表十五、攝取山藥酸乳酪添加乳酸鈣之尿肌酸酐濃度變化
紀錄表……………………………………………………120
表十六、攝取山藥酸乳酪添加奈米鈣之尿肌酸酐濃度變化
紀錄表……………………………………………………121
表十七、攝取碳酸鈣之尿肌酸酐濃度變化紀錄表…………………122
表十八、攝取山藥酸乳酪添加乳酸鈣之尿鈣濃度變化紀錄表……123
表十九、攝取山藥酸乳酪添加奈米鈣之尿鈣濃度變化紀錄表……124
表二十、攝取碳酸鈣之尿鈣濃度變化紀錄表……………………… 125
方銘志。2002。山藥多醣體之免疫機能探討。國立臺灣海洋大學食品科學系碩士學位論文。基隆。
方世榮。1997。統計學導論。華泰出版社(第二版)。台北。
王祖興 ,劉新裕 ,梁世傑。2002。山藥萃取物保護DNA不受H2O2-Cu(Ⅱ)造成之傷害。臺灣保健食品學會第二屆第二次年會。2002年2月23日。臺北。
李樹英。1992。五種山藥對小鼠免疫功能影響的比較研究。河南中醫。12:23-24。
吳幸娟,章雅惠,張新儀,潘文涵。2001。臺灣地區成人攝入礦物質(鈣、磷、鐵、鈉)之食物來源-1993-1996國民營養健康狀況變遷調查結果。中華營誌26:142-158。
吳文惠,鐘晨日,黃惠明,王翠芬。2002。山藥之攝取對停經婦女血脂、抗氧化能力與性激素的影響。臺灣保健食品學會第二屆第二次年會。2002年2月23日。臺北。
施浤彰。1995。骨質疏鬆症的生化標記檢查。中華民國醫檢會報10:30-32。
施康潔。2000。生產胞外黏性物質(EAS)乳酸菌應用於吳郭魚肉漿發酵食品可行性之探討。國立臺灣海洋大學食品科學系碩士學位論文。基隆。
苗明三。1996。懷山藥多醣對免疫功能的影響。河南中醫。16:349-350。
邱雪惠。2000。植物來源乳酸菌之特性評估及抑制沙門氏菌於腸道侵入性與激活巨噬細胞之能力分析。國立中興大學食品科學系碩士學位論文。臺中。
沈嘉琪。2003。山藥乳酸發酵液之抗氧化性和抗致突變性及對動物細胞生理活性之影響。國立臺灣海洋大學食品科學系碩士學位論文。基隆。
姚維仁,吳重慶。1999。骨密度測量方法的最新進展。秀傳醫學雜誌1:179-185。
許惠恆。1995。骨質疏鬆症。國防醫學20:363-367。
陳冠福。2002。利用山藥與Lactobacillus plantarum CCRC10069及12250發酵之優酪乳對高油脂飲食的大白鼠脂質代謝與腸道生理的影響。國立臺灣海洋大學食品科學系碩士學位論文。基隆。
陳曉鈴,林慧如。2002。本土山藥塊莖水萃取物之脂質及腸道生理功能評估。九十一年度保健食品研究成果發表。2002年12月4日。臺中。
陳炘長。2000。加熱與乾燥對基隆山藥之機能性影響-對大白鼠醣代謝及脂質代謝的影響。國立臺灣海洋大學食品科學研究所碩士學位論文。基隆。
陳詩詩。2001。以免疫調節及細胞再生觀點探討山藥生物活性之研究。國立陽明大學生物藥學研究所碩士學位論文。臺北。
徐成金。2002。山藥對於小白鼠腸胃道菌叢及消化酵素的影響。九十一年度保健食品研究成果發表。2002年12月4日。臺中。
黃永彥。1997。骨質疏鬆症-基礎與臨床。合記圖書出版社。臺北。
黃永彥。1998a。骨質疏鬆症-病態與預防對策。合記圖書出版社。臺北。
黃伯超,游素玲。1996。營養學精要。健康文化事業股份有限公司。臺北市。
黃堅。1998b。太平經惠方中抗衰延壽方藥研究。貴陽中醫學院學報。20 : 7-8。
黃德歡。2002。改變世界的納米技術。瀛舟出版社。pp. 79-86。臺北。
葉天士(清)。1997。本草經解。五洲出版社。臺北。
程大器。2002。統計學理論與應用(下)。智勝文化事業有限公司。臺北。
楊榮森編譯。1997。骨質疏鬆症-病因、診斷、治療。合記圖書出版社。臺北市。
楊登傑,呂廷璋,孫璐西。2001。山藥中薯蕷皂配基之萃取與分析。中華民國食品科技學會第三十一次年會。臺北。
劉新裕、張同吳、林義恭、王昭月。2000。優良保健植物山藥之開發與利用。行政院農業委員會農業試驗所編印。臺中。
劉凱崴。2002。山藥酸乳酪之發酵技術與抗氧化性及抗致突變性之探討。國立臺灣海洋大學食品科學系碩士學位論文。基隆。
賴愛姬。1996。鰻骨粉與碳酸鈣為鈣源對老鼠鈣利用效果之比較。中華民國營養學會誌21:121-131。
廖啟成。1998。乳酸菌之分類及應用。食品工業月刊。30 : 1-10。
謝明哲,廖芳瑄,林士祥,陳金發,許重輝,鐘美玉和簡怡雯。2003。碳酸鈣與乳酸鈣補充劑之鈣質生物利用效性。營養學會雜誌。28:33-40。
聶桂華。1993。山藥的研究概況。中草藥。24 : 158-160。
衛生署網站:http://www.doh.gov.tw健康食品之改善骨質疏鬆功能評估方法(2003)。
行政院衛生署,RDNA (2002)。
齊藤 安弘。1993。CPP 吸收。New Food Industry.
35:1-8.
Alander, M., Smet, I. D., Nollet, L., Verstraete, W., Wright, A. V. and Mattia-Sandholm, T. 1999 The effect of probiotic strains on the microbiota of the simulator of the human intestinal microbial ecosystem (SHIME). Int. J. Food. Microbiol. 46 : 71-79.
Annika, M. M., Manninen, M. and Gylienbery, H. 1983 The adherence of lactic acid bacteria to the columnar epithelial cells of pigs and calves. J. Appl. Bacteriol. 55 : 241-245.
Araghiniknam, M., Chung, S., Nelson-White, T., Eskelson, C., and Watson, R. R. 1996. Antioxidant activity of dioscorea and dehydroephiandrosterone (DHEA) in older humans. Life Sci. 59 : 147-157.
Avioli, L. V. 1998. Calcium and phosphorus. In: Modern Nutrition in Health and Disease, 7th ed. (Shils, M. E. and Young, V. R. eds.): pp. 142-158. Philadelphia: Lea and Febiger.
Avioli, L. V. 2000. The Osteoporotic Syndrome. Academic Press. San Diego. USA.
Bronner, F. and Pansu, D. 1999. Nutritional aspect of calcium absorption. J. Nutr. 129 : 9-12.
Brouns, F. and Vermeer, C. 2000. Functional food ingredients for reducing the risks of osteoporosis. Trends Food Sci. & Technol. 11:22-33.
Brule, G., Roger, L., Fauguant, J. and Piot. M. 1982. Phosphopeptides from casein-based material. U.S. Patent. 4, 358, 361, 465, 587.
Charles, P. 1992. Calcium absorption and calcium bioavailability. J. Int. Med. 231 : 161-168.
Chen, A. H. 1985. Applied studies on the saponins of Dioscorea I. Studies on the saponins of Dioscorea in Taiwan. Chin. Chem. Soc. J. 43 : 79-85.
Chen, Y. and Wu, Y. 1994. Progress in research and manufacturing of steroidal sapogenins in China. J. Herb Spic. Med. Plant. 2 : 59-70.
Coconnier, M. H., Lievin, V., Camard, M. F. B., Hudalt, S. and Servin, A. L. 1997. Antibacterial effect of the adhering human Lactobacillus acidophilus strain LB. Antimicrob. Agents Chemothe. 5 : 1046-1052.
Cunningham, R. S., Ahrne, S., Bengmark, S., Johann L. R., Marshall, F., Metakis, L., Califano, C., Grassey, C., Hind, G., and Cervia, J. 2000. Probiotics and immune response. Am. J. Gastroenterol. 95 : 22-25.
Dawson-Hughes, B., Dallal, G. E., Krall, E. A., Sadowski, L., Sahyoun, N. and Tannenbaum, S. 1990. A controlled trial of the effect of calcium supplementation on bone density in postmenopausal women. N. Engl. J. Med. 323 : 878-883.
Devine, A., Dick, I. M. and Heal, S. J. 1997. A 4-year follow-up study of the effects of calcium supplementation on bone density in elderly postmenopausal women. Osteoporosis Int. 7 : 23-28.
Fairweather-Tait, S. and Hurrell, R. F. 1996. Mineral and trace element bioavailability. Nutr. Res. Rev. 9 : 297-311.
Farombi, E. O., Britton, G. and Emerole, G. O. 2000. Evaluation of the antioxidant activity and partial characterization of extracts from browned yam flour diet. Food Res. Int. 33 : 493-499.
Favus, M. J. 1995. Osteoporosis and the aging athlete. J. Back Musculokel. Rehabil. 5 : 19-26.
Fuller, R. and Brooker, B. E. 1974. Lactobacilli which attach to the crop epithelium of the fowl. Am. J. Clin. Nutr. 27 : 1305-1312.
Garcia-Lopez, S. and Miller, G. D. 1991. Bioavailability of calcium from four different sources. Nutr. Res. 11 : 1187-1196.
Gonneli, S., Cepollaro, C., Camporeale, A., Nardi, P., Rossi, S. and Gennari, C. 1995. Acute biochemical variations induced by two different calcium salts in healthy perimenopausal women. Calc. Tissue Int. 57 : 175-177.
Guyton, A. C. 1991. Guyton Human Physiology and Mechanism of Disease. 5th ed. pp. 590-612. W.B. Saunders Co, P, USA.
Heller, H. J., Greer, L. G., Haynes, S. D., Poindexter, J. R. and Charles, Y. C. P. 2000. Pharmacokinetic and pharmacodynamic comparison of two calcium supplements in postmenopausal women. J. Clin. Pharmacol. 40 : 1237-1244.
Ireland, P. and Fordtran, J. S. 1973. Effect of dietary calcium and age on jejunal calcium absorption in humans studied by intestinal perfusion. J. Clin. Invest. 52 : 2672-2681.
Isamah, G. K., Asagba, S. O. and Thomas, A. E. 2000. Lipid peroxidation, o-diphenolase, superoxide dismutase and catalase profile along the three physiological regions of Dioscrea rotundata Poir cv Omi. Food Chem. 69 : 1-4.
Johansson, M. L., Molin, G., Jeppson, B., Nobeak, S., Ahrne, S. and Bengmark, S. 1993. Administration of different Lactobacillus strains in fermented oatmeal soup: In vivo colonization of human intestinal mucosa and effect on the undigenous flora. Appl. Environ. Microbiol. 59 : 15-20.
Juarez, M. A., Juan, C., Diaz, Z., Jospeph, L., and Rabi, N. 1987. In vivo and in vitro studies of hypocholesterolemic effects of diosgenin in rats. Int. J. Biochem. 19 : 679-683.
Kanis, J.A. 2002. Diagnosis of osteoporosis and assessment of fracture risk. The Lancet 359 : 1929-1936.
Kato, I., Tanaka, K., and Yokokura, T. 1999. Lactic acid bacterium potently induces the production of interleukin-12 and interferon-α by mouse splenocytes. Int. J. Immunopharm. 21 : 121-131.
Kiyohisa, U., Haruto, T., Yasuharu, N., Keniichi, T., Nozomu, T., and Yoshio, I. 1984. Changes in biliary and fecal bile acids in mice after treatments with diosgenin and α-sitosterol. J. Lipid Res. 25 : 236-245.
Komeasroff, P. A., Black, C. V., Cable, V. and Sudhir, K. 2001. Effect of wild yam extract on menopausal symptoms, lipids and sex hormones in healthy menopausal women. Climacteric 4 : 144-150.
Lacour, B., Tardivel, S. and Drueke, T. 1997. Stimulation by citric acid of calcium and phosphorus bioavailability in rats fed a calcium-rich diet. Miner. Electrol. Metab. 23 : 79-87.
Luigi, A., Margarita, P., Nancy, S., and Cecilia, S. K. 1998. Effects of diosgenin, a plant-derived steroid, on bile secretion and hepatocellular cholestasis induced by estrogens in the rat. Hepatology 28 : 129-140.
Mahan, L. K. and Escott-Stump, S. 1996. Krause's food, nutrition, and diet therapy. W.B. Saunders Company.
Maki, K. C., Dicklin, M. R., Cryowski, M. S., Umporowicz, D. M. Nagata, Y., Moon, G., Forusz, S. and Davidson, M. H. 2002. Improved calcium absorption from a newly formulated beverage compared with a calcium carbonate table. Nutr. Res. 22 : 1163-1176.
Matsuzaki, T. 1998. Immunomodulation by treatment with Lactobacillus casei strain Shirota. Int. J. Food Microbiol. 41 : 133-140.
Mohsen, A., Sangbun, C., Tresa, N. W., Cleamond, E., and Ronald, R. W. 1996. Antioxidant activity of dioscorea and dehydroepiandrosterone in older humans. Life Sci. 59 : 147-157.
Nicar, M. J. and Pak, C. Y. C. 1985. Calcium bioavailability from calcium carbonate and calcium citrate. J. Clin. Edocrinaol. Metab. 61 : 391-393.
Nordin, B. E. C. 1990. Calcium homeostasis. Clin. Biochem. 23 : 3-10.
Nordin, B. E. C. 1997. Calcium and Osteoporosis. Nutrition 13 : 664-686.
Nuti, R. and Martini, G. 1993. Effects of age and menopause on bone density of entire skeleton in healthy and osteoporotic women. Osteoporosis Int. 3 : 59-65.
Nuti, R., Martini, G. and Gennari, C. 1995. Age-related changes of whole skeleton and body composition in healthy men. Calcif. Tissue Int. 57 : 336-339.
Parfitt, A. M. 1988. Bone remodeling: Relationship to the amount and structure of bone and the pathogenesis and prevention of fractures. In: Osteoporosis: Etiology, Diagnosis and Management. (Riggs B and Melton L eds.), pp. 45-93. Raven Press, NY, USA.
Perdigon, G., Alvarez, S., Rachid, M., Aguero, G. and Gobbato, N. 1995. Immune system sitmulation by probiotics. J. Dairy Sci. 78 : 1597-1606.
Recker, R. R. 1981. Continuous treatment of osteoporosis: Current status. Ortho. Clin. Nutr. Am. 12 : 611-627.
Recker, R., Lappe, J. and Kimmel, D. 1996. Correcting calcium nutritional deficiency prevents spine fractures in elderly women. J. Bone and Mineral Res. 11 : 1961-1966.
Reid, I. R., Ames, R. W., Evans, M. C., Gamble, G. D. and Sharp, S. J. 1993. Effect of calcium supplementation on bone loss in postmenopausal women. N. Engl. J. Med. 328 : 460-464.
Riggs, B. L. and Melton, L. J. Ⅲ 1982. Evidence for two distinct syndromes of involutional osteoporosis. Am. J. Med. 73 : 899-901.
Riggs, B. L.and Melton, L. J. Ⅲ 1986. Involutional osteoporosis. N. Engl. J. Med. 314 : 1676-1686.
Rolfes, S. R., DeBruyne, L. K. and Whitney, E. N. 1998. Life Span Nutrition, Conception Through Life. 2nd ed., pp. 385-413. West/Wadsworth Publishing Co. Calif., USA.
Rosenberg, R. S., Jenkins, D. J. and Diamandis, E. P. 2001. Effects of natural products and nutracenticals on steroid hormone-regulated gene expression. Clinica Chimica Acta 312 : 213-219.
Rosser, A. 1985. The day of the yam. Nursing Times 81 : 47-54.
Rubio, G., Ferez, X., Mora, A., Galvez, J., Chicano, A. and Garcia, P. P. 2002. Beta 1 integrin triggering affect leukemic cell lin sensitivity to natural killer cells. Cancer Immunol. Immunother. 51 : 130-138.
Salminen, S., Isolauri, E. and Salminen, E. 1996. Clinical uses of probiotics for stabilizing the gut mucosal barrier: Successful strains and future challenges. Antonie van Leeuwenhoek 70 : 347-358.
Savage, D. C. 1983. Roles of Lactobacillus in the intestinal tract. J. Food. Prot. 42 : 259-262.
Schaafsma, G. 1997. Bioavailability of calcium and magnesium. European J. Clin. Nutr. 51 : 13-16.
Schiffrin, E. J., Brassart, D., Servin, A. L., Rochat, F. and Donnet-Hughes, A. 1997. Immune modulation of blood leukocytes in humans by lactic acid bacteria: Criteria for strain seclection. Am. J. Clin. Nutr. 66: 515-520.
Sheikh, M. S., Santa-Ana, C. A., Nicar, M. J., Schiller, L. R. and Fordtran,
J. S. 1987. Gastrointestinal absorption of calcium from milk and
calcium salts. N. Engl. J. Med. 317:532-536.
Sreekumar, O. and Hosono, A. 1998. The antimutagenic properties of a polysaccharide produced by Bifidobacterium longum and its cultured milk against some heterocyclic amines. Can. J. Microbiol. 44 : 1029-1036.
Tejada, M. V., Ustunol, Z., and Pestka, J. J. 1999. Ex vivo effect of Lactobacilli, Streptococci, and Bifidobacteria ingestion on cytokine and nitric oxide production in a marine model. J. Food Protect. 62 : 162-169.
Thinidad, P., Thomas, M. S. and Thompson, L. V. 1999. Effects of calcium concentration, acetate, and propionate on calcium absorption in the human distal colon. Nutrition 15 : 529-533.
Toit, M., Franz, C. M. A. P., Disks, L. M. T., Schillinger, U., Haberer, P., Warlies, N., Ahrens, F. and Holzafel, W. H. 1998. Characterization and selection of probiotic lactobacilli for a preliminary minipig feeding trial and their effect on serum cholesterol levels, feces pH and feces moisture content. Int. J. Food. Microbiol. 40 : 93-104.
Tsugawa, N., Okano, T., Higashino, R., Kimura, T., Oshio, Y., Teraoka, Y., Igarashi, C., Ezawa, I. and Kobayashi, T. 1995. Bioavailability of calcium from calcium carbonate, DL-calcium lactate, L-calcium lactate and powdered oyster shell calcium in vitamin D-deficient or-replete rats. Biol. Pharm. Bull. 18 : 677-682.
West, D. W. 1986. Structure and function of the phosphorylated residuces of casein. J. Dairy Res. 53:333-352.
Whitney, E. N. and Rolfes, R. R. 1999. Understanding Nutrition, 8th ed., pp. 336-403. Wadswoth Publishing Co. Calif., USA.
Yang, R. S., Liu, T. K. and Tsai, K. S. 1994. The acute metabolic effects of oral tricalcium phosphate and calcium carbonate. Calcif. Tissue Int. 55 : 335-341.
Ziegler, E. E. and Filer, L. J. Jr. 1996. Present Knowledge in Nutrition. 7th ed., pp. 120-129, 245-255, 456-463. ILSI Press, Wash. DC, USA.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top