跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 00:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃耿盟
研究生(外文):Ken-Men Wuang
論文名稱:喹啉和吡啶及其衍生物在河川底泥內硫酸還原狀態下之生物降解
論文名稱(外文):Biodegradation of quinoline and pyridine derivatives in estuarine sediments under sulfate reducing conditions
指導教授:劉秀美劉秀美引用關係
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:海洋生物研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:112
中文關鍵詞:生物降解
相關次數:
  • 被引用被引用:0
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本實驗是以採自基隆河大佳河濱公園畔之底泥來偵測各種喹啉與吡啶及其含甲基或乙基衍生物在底泥中之降解情形,發現在厭氧硫酸還原狀態下,quinoline、3-methylquinoline、4-methylquinoline、nicotinic acid、pyridine、2-methylpyridine、3-methylpyridine、4-methylpyridine、2-ethylpyridine、3-ethylpyridine、4-ethylpyridine、2,4-dimethylpyridine、2,6-dimethylpyridine及3,5-dimethylpyridine各自皆能降解。而經過4-methylquinoline馴化過的底泥,能加快quinoline、3-methylquinoline與4-methylquinoline之降解;且似乎能改變nicotinic acid之降解途徑;但對3-methylpyridine與4-methylpyridine之降解則沒有幫助反而有所抑制。同樣地經過3-methylquinoline馴化的底泥對3-methylpyridine與4-methylpyridine之降解同樣沒有幫助反而有所抑制。另外經過3-methylpyridine或4-methylpyridine馴化過的底泥,與未經馴化的底泥來作比較,發現對2-ethylpyridine與3-ethylpyridine之降解並沒有多大幫助。但經過3-methylpyridine或4-methylpyridine馴化底泥對2-methylpyridine、2,4-dimethylpyridine、2,6-dimethylpyridine與3,5-dimethylpyridine的降解速率有增快之情形。而4-ethylpyridine只有經過3-methylpyridine馴化底泥對其降解有所幫助,但對於經過4-methylpyridine馴化底泥則不會幫助其降解。上述各類化合物在降解過程中只有quinoline、3-methylquinoline與4-methylquinoline的中間產物被偵測出。依據過去的報告得知,這些中間產物分別是在quinoline環上第2個C上被羥基化之產物。過去雖有報告指出羥基化亦是methylpyridines在厭氧降解過程中的第一個步驟,但在本論文研究中並未發現與確認有這些產物,雖然從這些化合物在降解過程中其可見光-紫外光吸收圖譜的變化得知它們的降解變化。若羥基化是這類化合物在厭氧降解過程中的第一個步驟,則由以上的馴化實驗可以看出烷基的位置似乎會影響羥基化的位置與速率。不過將上述各類化合物在底泥中的最快降解速率及t1/2降解速率或半衰期(t1/2)與它們的pKa值或log Kow值做一比較,發現它們之間並未有相關性。
目錄
中文摘要------------------------------------------------------------------------------------1
英文摘要------------------------------------------------------------------------------------3
第一章 前言------------------------------------------------------------------------------4
第一節 研究背景-------------------------------------------------------------4
第二節 前人研究------------------------------------------------------------10
第三節 研究內容與目的---------------------------------------------------13
第二章 材料與方法--------------------------------------------------------------------15
第一節 實驗材料-----------------------------------------------------------15
第二節 儀器設備-----------------------------------------------------------17
第三節 實驗方法-----------------------------------------------------------19
第四節 實驗內容-----------------------------------------------------------25
第三章 結果-----------------------------------------------------------------------------30
第一節 實驗品管-----------------------------------------------------------30
第二節 quinoline、pyridine衍生物在硫酸還原狀態底泥中之生物降解-------------------------------------------------------32
第四章 討論------------------------------------------------------------------------------58
第五章 結論------------------------------------------------------------------------------65
第六章 參考文獻------------------------------------------------------------------------69
表1-1 quinoline、pyridine衍生物之物性與化性--------------------------------74
表1-2 quinoline、pyridine衍生物之CAS RN、log Kow值、pKa值-------------------------------------------------------76
表1-3 分離出6種不同菌株分別進行有氧代謝14種不同的pyridine衍生物,所呈現不同的分解能力----------------------------------------------------------78
表1-4 7種已馴化的底泥分別進行厭氧代謝13種quinoline、pyridine衍生物,
所呈現的降解能力-------------------------------------------------------------78
表3-1 標準品回收率-------------------------------------------------------------------79
表3-2 quinoline、pyridine衍生物標準品以HPLC分析之滯留時間------------------------------------------------------80
圖1-1 quinoline、pyridine衍生物之結構------------------------------------------81
圖1-2 環境中石化污染物之污染源---------------------------------------------83
圖3-1 溶劑與quinoline、pyridine衍生物之HPLC分析圖譜------------------84
圖3-2 quinoline、pyridine衍生物以HPLC分析之檢量線----------------------89
圖3-3 硫酸根離子之檢量線-----------------------------------------------------------91
圖3-4 (a)在硫酸還原狀態之底泥中,4-methylquinoline之降解情形(b)
4-methylquinoline在經4-methylquinoline馴化之底泥中硫酸還原狀態下之降解情形(c)在經4-methylquinoline馴化之硫酸還原狀態底泥中,4-methylquinoline之降解情形----------------------------------------------92
圖3-5 (a)在硫酸還原狀態之底泥中,quinoline之降解情形(b)在經4-methylquinoline馴化之硫酸還原狀態底泥中,quinoline之降解情形
---------------------------------------------------------93
圖3-6 (a)在硫酸還原狀態之底泥中,3-methylquinoline之降解情形(b)
3-methylquinoline在經3-methylquinoline馴化之底泥中硫酸還原狀態下之
降解情形(c)在經4-methylquinoline馴化之硫酸還原狀態底泥中,
3-methylquinoline之降解情形-------------------------------------------------94
圖3-7 (a)在硫酸還原狀態之底泥中,nicotinic acid之降解情形。(b)在經4-methylquinoline馴化之硫酸還原狀態底泥中,nicotinic acid之降解情形
---------------------------------------------------95
圖3-8 (a)3-methylpyridine在經3-methylpyridine馴化之底泥中硫酸還原狀態下之降解情形(b)在經4-methylquinoline馴化之硫酸還原狀態底泥中,3-methylpyridine之降解情形(c)在經3-methylquinoline馴化硫酸還原狀態底泥中,3-methylpyridine之降解情形------------------------------------96
圖3-9 (a)4-methylpyridine在經4-methylpyridine馴化之底泥中硫酸還原狀態下之降解情形(b)在經4-methylquinoline馴化之硫酸還原狀態底泥中,4-methylpyridine之降解情形(c)在經3-methylquinoline馴化硫酸還原狀態底泥中,4-methylpyridine之降解情形------------------------------------97
圖3-10(a)在硫酸還原狀態之底泥中,2-methylpyridine之降解情形(b)在經3-methylpyridine馴化之硫酸還原狀態底泥中,2-methylpyridine之降解情形(c)在經4-methylpyridine馴化之硫酸還原狀態底泥中,2-methylpyridine之降解情形------------------------------------------------------------------------98
圖3-11(a)在硫酸還原狀態之底泥中,2-ethylpyridine之降解情形(b)在經3-methylpyridine馴化之硫酸還原狀態底泥中,2-ethylpyridine之降解情形(c)在經4-methylpyridine馴化之硫酸還原狀態底泥中,2-ethylpyridine之降解情形-----------------------------------------------------------------------99
圖3-12 (a)在硫酸還原狀態之底泥中,3-ethylpyridine之降解情形(b)在經3-methylpyridine馴化之硫酸還原狀態底泥中,3-ethylpyridine之降解情形(c)在經4-methylpyridine馴化之硫酸還原狀態底泥中,3-ethylpyridine之降解情形----------------------------------------------------------------------100
圖3-13 (a)在硫酸還原狀態之底泥中,4-ethylpyridine之降解情形(b)在經3-methylpyridine馴化之硫酸還原狀態底泥中,4-ethylpyridine之降解情形(c)在經4-methylpyridine馴化之硫酸還原狀態底泥中,4-ethylpyridine之降解情形----------------------------------------------------------------------101
圖3-14 (a)在硫酸還原狀態之底泥中,2,4-dimethylpyridine之降解情形(b)在經3-methylpyridine馴化之硫酸還原狀態底泥中,2,4-dimethylpyridine之降解情形(c)在經4-methylpyridine馴化之硫酸還原狀態底泥中,2,4-dimethylpyridine之降解情形--------------------------------------------102
圖3-15 (a)在硫酸還原狀態之底泥中,2,6-dimethylpyridine之降解情形(b)在經3-methylpyridine馴化之硫酸還原狀態底泥中,2,6-dimethylpyridine之降解情形(c)在經4-methylpyridine馴化之硫酸還原狀態底泥中,2,6-dimethylpyridine之降解情形--------------------------------------------103
圖3-16 (a)在硫酸還原狀態之底泥中,3,5-dimethylpyridine之降解情形(b)在經3-methylpyridine馴化之硫酸還原狀態底泥中,3,5-dimethylpyridine之降解情形(c)在經4-methylpyridine馴化之硫酸還原狀態底泥中,3,5-dimethylpyridine之降解情形--------------------------------------------104
圖3-17 (a)在經3-methylpyridine馴化之硫酸還原狀態底泥中,pyridine之降解情形(b)在經2,4-dimethylpyridine馴化之硫酸還原狀態底泥中,2-methylpyridine之降解情形(c)在經2,4-dimethylpyridine馴化之硫酸還原狀態底泥中,4-methylpyridine之降解情形。-------------------------105
圖3-18 (a)在經2,6-dimethylpyridine馴化之硫酸還原狀態底泥中,2-methylpyridine之降解情形(b)在經3,5-dimethylpyridine馴化之硫酸還原狀態底泥中,3-methylpyridine之降解情形-------------------------------------------------106
圖3-19 所有未經馴化與馴化底泥混合水的t1/2與最快降解速率---------------107
圖3-20 pyridine衍生物之分光光度計分析圖譜------------------------------------112
圖3-21 14種quinoline、pyridine衍生物之pKa值與t1/2和最快降解速率之關係
--------------------------------------------------115
圖3-22 14種quinoline、pyridine衍生物之log Kow值與t1/2和最快降解速率之關係------------------------------------------------------------------------116
圖3-23 14種quinoline、pyridine衍生物之t1/2與pKa值、log Kow值之關係
--------------------------------------------------117
第六章 參考文獻
郭政龍、劉秀美。1996。同環和異環化合物在曾文溪厭氧底泥中生物轉化之潛水。碩士論文。海洋大學海洋生物研究所。
許瓊方、劉秀美。2002。2-,3-,4-甲基奎林在不同氧化還原電位下之生物分解。碩士論文。海洋大學海洋生物研究所。
行政院環保署全球資訊網。www.epa.gov.tw。
Aislabie, J., A.K. Bej., H. Hurst., S. Rothenburger and R.M. Atlas. 1990. Microbial degradation of quinoline of methylquinolinee. Appl. Environ. Microbiol., 56:345-351.
Alexander, M. 1994. Biodegradation and bioremediation. Academic Press. New York. pp. I-xi, 1-293.
Beckles, D.M., C.H. Ward and J.B. Hughes. 1997. Effect of mixtures of polycyclic aromatic hydrocarbon patterns. Environ. Toxicol. Chem.,17:1246-1251.
Berry, D.F., E.L. Madsen and J.-M. Bollag. 1987. Coversion of indole to oxindole under methanogenic conditions. Appl. Environ. Microbiol., 53:180-182.
Colwell, R.R. and J.D. Walker. 1977. Ecological aspects of microbial degradation of petroleum in the marine environment. Crit. Rev. Microbiol., 5:423-430.
Edwards, E.A., L.E. Wills., M. Reinhard and D. Grbic-Galic. 1992. Anaerobic degradation of toluene and xylene by aquifer microorganisms under sulfate-reducing conditions. Appl. Environ. Microbiol., 58:794-800.
Grbic-Galic, D., S.M. Henry., E.M. Godsy., E. Edward and K.P. Mayer. 1991. Anaerobic degradation of aromatic hydrocarbons and microorganism. pp. 239-265. In Robert, A. Baker Organic Substrances and Sediments in Water, Vol.3. Chelsa, Mich.
Gundlch, E.R. and M.O. Hayes. 1978. Classification of coastal environments in terms of potential vulnerability to oil spill damage. Mar. Technol. Soc. J., 12:18.
Kaiser, J.P. and J.M. Bollag. 1991. Metabolism of pyridine and 3-hydroxypyridine under aerobic, denitrifying and sulfate-reducing conditions. Experientia., 47:292-296.
Kaiser, J.P. and J.M. Bollag. 1992. Influence of soil inoculum and redox potential on the degradation of several pyridine derivatives. Soil. Biol. Biochem., 24:351-357.
Kaiser, J.P., Y. Feng and J.M. Bollag.1996. Microbial metabolism of pyridine, quinoline, acridine and their derivatives under aerobic and anaerobic conditions. Microbiol. Rev. Sept., 60:483-498.
Kaiser, J.P., R.D. Minard and J.M. Bollag. 1993. Transformation of 3- and 4-picoline under sulfate-reducing conditions. Appl. Environ. Microbiol., 59:701-705.
Kato, T., A. Hakura, T. mizutani and K. Saeki. 2000. Anti-mutagenic structural modification by fluorine-substitution in highly mutagenic 4-methylquinoline derivatives. Mut. Res., 465:173-182.
Kuhn, E.P. and J.M. Sufita. 1989. Microbial degradation of nitrogen, oxygen and sulfur heterocyclic compounds under anaerobic conditions, studies with aquifer samples. Environ. Toxicol. Chem., 8:1149-1158.
Lee, J.J., S.K. Rhee and S.T. Lee. 2001. Degradation of 3-methylpyridine and 3-ethylpyridine by Gordonia nitida LE31. Appl. Environ. Microbiol., 67:4342-4345.
Li,Y., G. Gu, J. Zhao and H. Yu. 2001. Anoxic degradation of nitrogenous heterocyclic compounds by acclimated activated sludge. Process. Biochem., 37:81-86.
Liu, S.M., C.H. Wu and H.J. Huang. 1998. Toxicity and anaerobic biodegradability of pyridine and its derivatives under sulfidogenic conditions. Chemosphere, 36:2345-2357.
Liu, S.M., W.J. Jones and J.E. Rogers. 1994a. Influence of redox potential on the anaerobic biotransformation of nitrogen-heterocyclic compounds in anoxic freshwater sediments. Appl. Microbiol. Biotech., 41:717-724.
Liu, S.M., W.J. Jones and J.E. Rogers. 1994b. Biotransformation of quinoline and methylquinolines in anoxic freshwater sediment. Biodagradation, 5:113-120.
McFarland, M.J. and R.C. Sims. 1991. Thermodynamic framework for evaluating PAH degradation in the subsurface. Groundwater, 151:71-76.
Myers, C.R., L.J. Alatalo and J.M. Myer. 1994. Microbial potential for the anaerobic degradation of simple aromatic compounds in sediment of the Milwaukee Harbor, Green Bay and Lake Erie. Environ. Toxi. Chem., 13:461-471.
Naik, M.N., R.B. Jackson, J. Stokes and R.J. Swaby. 1972. Microbial degradation and phytotoxicity of picloram and other substituted pyridines. Soil Biol. Biochem., 4:313-323.
O`Loughlin, E.J., S.R. Kehrmeyer and G.K. Sims. 1996. Isolation, characterization, and substrate utilization of a quinoline-degradating bacterium. Int. Biodet. and Biodegr., 96:107-118.
Page, D.S., J.C. Foster., P.M. Fickett and E.S. Gilfillan. 1989. Long-term weathering of Amco Cadiz oil in soft intertidal sediments. pp. 401. In Proc. 1989. Oil spill Conf., Publ. 4479. American Petroleum Institute, Washington, D.C.
Pelz, O., A. Chatinotas, N. Andersen, S.M. Bernasconi, C. Hesse, W. Abraham, J. Zeyer. 2001. Use of isotopic and molecular techniques to link toluene degradation in denitrifying aquifer microcosms to specific microbial populations. Arch. Microbiol., 175:270-281.
Pfaller, S.L., S.D. Sutton and B.K. Kinkle. 1999. Sphingomonas sp. strain Lep1:an aerobic degrader of 4-methylquinoline. Can. J. Microbiol., 45:623-626.
Ronen, Z., A. Abeliovich and A. Nejidat. 1998. Pyridine metabolism by a denitrifying bacterium. Can. J. Microbiol., 37:725-729.
Ronen, Z. and J.M. Bollag. 1991. Pyridine metabolism by a denitrifying bacterium. Can. J. Microbiol., 37:725-729.
Rothenburger, S. and R.M. Atlas. 1993. Hydroxylation and biodegradation of 6-methylquinoline by Pseudomonas in aqueous and nonaqueous immobilized-cell bioreactors. Appl. Environ. Microbiol., 59:2139-2144.
Schmidt, M., P. Roger and F. Lingens. 1991. Microbial metabolism of quinoline and related compounds. XI. Degradation of quinoline-4-carboxylic acid by Microbacterium sp. H2, Agrobacterium sp. 1B and Pimelobacter simplex 4B and 5B. Biol. Chem., Hoppe-Seyler. 372:1015-1020.
Sutton, S., S.L. Pfaller, J. Shann, D. Warshawsky, B.K. Kinkle and J.R. Vestal. 1996. Aerobic biodegradation of 4-methylquinoline by asoil bacterium. Appl. Environ. Microbiol., 62:2910-2914.
Tinschert, A., A. Kiener, K. Heinzmann and A. Tschech. 1997. Isolation of new 6-methylnicotinic-acid-degrading bacteria, one of which catalyses the regioselective hyhroxylation of nicotinic acid at position C2. Arch. Microbiol., 168:355-361.
Tinschert, A., A. Tschech., K. Heinzmann and A. Kiener. 2000. Novel regioselective hydroxylations of pyridine carboxylic acids at position C2 and pyrazine carboxylic acids at position C3. Appl. Microbiol. Biotechnol., 53:185-195.
Watson, G.K. and R.B. Cain. 1975. Microbial metabolism of the pyridine ring. Biochem. J., 146:157-172.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top