跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/01/21 13:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱凱鵬
研究生(外文):kai-peng chu
論文名稱:焦電薄膜紅外線影像感測元件之研究
論文名稱(外文):The Characterization and Fabrication of Pyroelectric Infrared image Sensor
指導教授:張忠誠張忠誠引用關係
指導教授(外文):chun-chen chan
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:114
中文關鍵詞:紅外線影像感測元件鈣鈦酸鉛殘餘極化量矯頑電場焦電係數電壓感度
外文關鍵詞:Pb0.7Ca0.3TiO3remanent polarizationcoercive electric fieldpyroelectric coefficientvoltage responsespecific detectivity
相關次數:
  • 被引用被引用:3
  • 點閱點閱:282
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要

本實驗以射頻磁控濺鍍法沈積焦電性之鈣鈦酸鉛薄膜於矽基板上,製作積體化之焦電式薄膜紅外線影像感測元件。利用蝕刻技術提昇元件特性,且並依此技術製作焦電式紅外線陣列感測器,以及研究熱影像分佈。
在鈣鈦酸鉛薄膜方面,經由焦電係數、最大偵測率及XRD繞射等實驗得知,鈣鈦酸鉛薄膜為鈣鈦礦的結構及退火溫度在650度15分鐘時,特性較佳。特性測量方面,其殘餘極化量為25.3 mC/cm2和矯頑電場為52.65 KV/cm。而焦電係數在300℃為4.13×10-4 C/m2K。
在元件特性方面,在單一感測器,於0.3Hz頻率可得最大感測元件電壓感度為468.98V/W,元件最大特定偵測率為8.28×106 cmW-1。
利用以上的結果,我們製作二維8 × 8 的焦電式紅外線影像感測元件。此影像陣列已在本實驗中用來作熱影像研究。
Abstract

In this paper, the integrated Pyroelectric Infrared image Sensors have been made using a Ca-Modified Lead Titanate (Pb0.7Ca0.3TiO3, PCT) thin films by RF sputtering method on silicon substrate. In addition, the etching technology is used to increase the sensitivity of the device. According as the technology, we can fabricate PIR image array to study the distribution of thermal image.
The deposited PCT thin film is the perovskite structure and the PCT thin film at annealed 650℃for 15 minutes can obtain the better performance. From the hysteresis loop, its remanent polarization (Pr) is 25.3 mC/cm2 and the coercive electric field is 52.65 KV/cm. Its pyroelectric coefficient is 4.13×10-4 C/m2K at 300℃. For the PIR performance measurement, the voltage response of the single PIR sensor is 468.98 VW-1 and the specific detectivity is 8.28×106 cmW-1 at 0.3 Hz.
In addition, we use these results to fabricate 2-D 8x8 element PIR image sensors. The sensor has been used for thermal image test in this experiment.
Contents
Chapter 1 Preface.....................1
1-1 Introduction and Research Motion............1
1-2 Thesis Outline....................6
Chapter 2 Theories of Pyroelectric Infrared Image Sensor....7
2-1 Review of Infrared.................7
2-2 Theory of Pyroelectric Coefficient.........8
2-3 Pyroelectric Effect..................9
2-4 The Pyroelectric Materials.............10
2-5 Structure and Properties of and PbCaTiO3.....12
2-6 The Performances of PIR Image Sensor.........13
2-6.1 Responsivity.................14
2-6.2 Noises...................16
2-6.3 Noise Equivalent Power (NEP) and Specific Detectivity (D*)....................18
2-6.4 Merit of Figures...............19
Chapter 3 The Fabrication Process of Pyroelectric Infrared Image Sensor ....................21
3-1 Pb0.7Ca0.3TiO3Detection Layer...........21
3-2 V-groove Structure of PIR image Sensor for TMAH etching.21
3-3 The Process of PIR image Sensor array Fabrication.....22
Chapter 4 Experimental Measurement Results.........24
4-1 Thin Film Characterization..............24
4-1.1 SEM Photograph ..............24
4-1.2 XRD Result ................26
4-2 Electric Measurement Result..............27
4-2.1 Dielectric Parameters of Pb0.75Ca0.25TiO3 and Pb0.7Ca0.3TiO3 Thin Film............27
4-2.2 P-E Loop Hysteresis analysis ..........29
4-2.3 Pyroelectric Coefficient Measurement ......31
4-2.4 Figures of Merit Behavior...........32
4-3 The Performance of PIR Image Sensor .........34
Chapter 5 Application of the Thermal Image.........37
5-1 Introduction....................37
5-2 Experimental...................37
5-3 Results and Discussion................38
Chapter 6 Conclusion...................40
Reference........................43










Table and Figure Captions
Table1-1 Physical properties and Figures of merit........51
Fig.2-1 The wavelength versus the intensity of radiation at different temperature..................52
Fig.2-2 The configuration of measurement of pyroelectric coefficient...................52
Fig.2-3 Electron spontaneous polarization in pyroelectric ceramic with the temperature changes...........53
Fig.2-4 The relationship between spontaneous polarizations...53
Fig.2-5 The frequency dependence of voltage response and current response....................54
Fig.3-1 (a)The top of V-groove structure and (b)the cross section of V-groove structure.................55
Fig.3-2 The mask diagram of PIR image array.........56
Fig.3-3 The fabrication steps of PIR image sensor.......57-59
Fig.3-4 The Top view of the PIR image array device.......60
Fig.4-1 Measurement system of the pyroelectric infrared....61
Fig.4-2 The surface morphology of Pb0.75Ca0.25TiO3 on Pt/Ti/Si
substrate at annealed 650℃ for 15 minutes.......62
Fig.4-3 SEM cross section of Pb0.75Ca0.25TiO3 on Pt/Ti/Si.....63
Fig.4-4-(a) The surface morphology of Pb0.7Ca0.3TiO3 on Pt/Ti/Si
substrate at annealed 550℃ for 15 minutes......64
Fig.4-4-(b) The surface morphology of Pb0.7Ca0.3TiO3 on Pt/Ti/Si
substrate at annealed 600℃ for 15 minutes......64
Fig.4-4-(c) The surface morphology of Pb0.7Ca0.3TiO3 on Pt/Ti/Si
substrate at annealed 650℃ for 15 minutes......65
Fig.4-4-(d) The surface morphology of Pb0.7Ca0.3TiO3 on Pt/Ti/Si
substrate at annealed 700℃ for 15 minutes......65
Fig.4-4-(e) The surface morphology of Pb0.7Ca0.3TiO3 on Pt/Ti/Si
substrate at annealed 750℃ for 15 minutes......66
Fig.4-4-(f) The surface morphology of Pb0.7Ca0.3TiO3 on Pt/Ti/Si
substrate at annealed 650℃ for 15 minutes with thickness of 260nm...................66
Fig.4-4-(g) The surface morphology of Pb0.7Ca0.3TiO3 on Pt/Ti/Si
substrate at annealed 650℃ for 15 minutes with thickness of 500nm...................67
Fig.4-4-(h) The surface morphology of Pb0.7Ca0.3TiO3 on Pt/Ti/Si
substrate at annealed 650℃ for 15 minutes with thickness of 745nm...................67
Fig.4-5 SEM cross section of Pb0.7Ca0.3TiO3 on Pt/Ti/Si....68
Fig.4-6 The XRD pattern of Pb0.75Ca0.25TiO3 thin film on Pt/Ti/Si substrate annealed at 650℃ for 15 minutes.69
Fig.4-7-(a) The XRD pattern of Pb0.7Ca0.3TiO3 thin film on Pt/Ti/Si substrate annealed at 550℃ for 15 minutes......70
Fig.4-7-(b) The XRD pattern of Pb0.7Ca0.3TiO3 thin film on Pt/Ti/Si substrate annealed at 600℃ for 15 minutes......71
Fig.4-7-(c) The XRD pattern of Pb0.7Ca0.3TiO3 thin film on Pt/Ti/Si substrate annealed at 650℃ for 15 minutes......72
Fig.4-7-(d) The XRD pattern of Pb0.7Ca0.3TiO3 thin film on Pt/Ti/Si substrate annealed at 700℃ for 15 minutes...... 73
Fig.4-7-(e) The XRD pattern of Pb0.7Ca0.3TiO3 thin film on Pt/Ti/Si substrate annealed at 750℃ for 15 minutes...... 74
Fig. 4-8 The FWHM on the Pb0.75Ca0.25TiO3/Pt/Ti/SiO2 substrate as a function of annealed temperature..........75
Fig.4-8 The relative dielectric constant of Pb0.75Ca0.25TiO3 dielectric material at annealed 650℃ for 15 minutes........76
Fig.4-9 The relative dielectric constant of Pb0.7Ca0.3TiO3 dielectric material at annealed 550℃ ~ 700℃ for 15 minutes...77
Fig.4-10 The loss tangent versus frequency of Pb0.75Ca0.25TiO3 dielectric material at annealed 650℃ for 15 minutes...78
Fig. 4-11 The loss tangent versus frequency of Pb0.7Ca0.3TiO3 dielectric material at annealed 550℃ ~ 700℃ for 15 minutes... 79
Fig.4-12 The legend of hysteresis loop of BM versusB0......80
Fig.4-13 The modified Sawyer-Tower circuits for remnant polarization and coercive filed measuring............80
Fig.4-14-(a) PE hysteresis loop of the Pb0.7Ca0.3TiO3 on Pt/Ti/Si substrate at annealed 550℃ for 15 minutes.......81
Fig.4-14-(b) PE hysteresis loop of the Pb0.7Ca0.3TiO3 on Pt/Ti/Si substrate at annealed 600℃ for 15 minutes.......81
Fig.4-14-(c) PE hysteresis loop of the Pb0.7Ca0.3TiO3 on Pt/Ti/Si substrate at annealed 650℃ for 15 minutes.......82
Fig.4-14-(d) PE hysteresis loop of the Pb0.7Ca0.3TiO3 on Pt/Ti/Si substrate at annealed 700℃ for 15 minutes.......82
Fig.4-14-(e) PE hysteresis loop of the Pb0.7Ca0.3TiO3 on Pt/Ti/Si substrate at annealed 750℃ for 15 minutes........83
Fig.4-15 Pyroelectric coefficient of Pb0.75Ca0.25TiO3 thin at annealed 650 ℃ for 15 minutes..............84
Fig.4-16 Pyroelectric coefficient of Pb0.7Ca0.3TiO3 thin film at annealed 550℃ ~ 700 ℃ for 15 minutes..........85
Fig.4-17 Voltage response of Pb0.75Ca0.25TiO3 thin film at annealed 650 ℃ for 15 minutes by back etching technology.....86
Fig.4-18 Noise voltage of Pb0.75Ca0.25TiO3 thin film at annealed 650 ℃ for 15 minutes by back etching technology.......87
Fig.4-19 Noise equivalent power of Pb0.75Ca0.25TiO3 thin film at annealed 650 ℃ for 15 minutes by back etching technology....................88
Fig.4-20 Detectivity with the Pb0.75Ca0.25TiO3 thin film at annealed 650 ℃ for 15 minutes by back etching technology......89
Fig.4-21 Specific detectivity with Pb0.75Ca0.25TiO3 thin film at annealed 650 ℃ for 15 minutes by back etching technology....90
Fig.4-22 Voltage Response of Pb0.7Ca0.3TiO3 thin film at annealed 550℃ ~ 700℃ for 15 minutes by surface v-groove etching technology...................91
Fig.4-23 Noise voltage of Pb0.7Ca0.3TiO3 thin film at annealed 550℃ ~ 700℃ for 15 minutes by surface v-groove etching technology...............92
Fig.4-24 Noise equivalent power of Pb0.7Ca0.3TiO3 thin film at annealed 550℃ ~ 700℃ for 15 minutes by surface v-groove etching technology....................93
Fig.4-25 Detectivity with the Pb0.7Ca0.3TiO3 thin film at annealed 550℃ ~ 700℃ for 15 minutes by surface v-groove etching technology....................94
Fig.4-26 Specific detectivity with Pb0.7Ca0.3TiO3 thin film at annealed 550℃ ~ 700℃ for 15 minutes by surface v-groove etching technology....................95
Fig.5-1 The PIR array imaging measurement system.......96
Fig.5-2-(a) The array cell signal (no hand to approach).......97
Fig.5-2-(b) The array cell signal (one hand to approach)......97
Fig.5-3 The external amplifier of PIR image sensor......98
Fig.5-4 The 8051 simulator and peripheral circuit........99
Fig.5-5 The data of PIR array sensor for the hand movement....100
Fig.5-6 The image of PIR array sensor for the hand movement...101
Fig.5-7 The measuring system of the pyroelectric infrared.....102
Fig. 5-8 The data of PIR array sensor of the measuring system of the pyroelectric infrared for a light bulb.........103
Fig. 5-9 The image of PIR array sensor of the measuring system of the pyroelectric infrared for a light bulb...........104
Reference
[1] R. D. Hudson, JR, “Infrared system engineering”, John Wiley and Sons, New York, 1969.
[2] X. D. Quan and S. B. Lang, “Measurement applications based on pyroelectric properties of ferroelectric polymers”, IEEE Transaction on Electrical Insulation, p.503-516, 1988.
[3] R. A. Wood, “Uncooled thermal imaging with monolithic silicon focal planes”, in Infrared Technology XIX, Proc. SPIE 2020, p.322-329, 1993.
[4] C. Ye, T. Tamagawa and D. L. Polla, “Pyroelectric PbTiO3 thin films for microsensor applications”, Solid-State Sensors and Actuators, 1991. Digest of Technical Papers, TRANSDUCERS 1991, International Conference, p.904 – 907, June 1991
[5] A. Seifert, P. Muralt, and N. Setter, “High figure-of-merit porous Pb1-xCaxTiO3 thin films for pyroelectric applications”, Applied Physics Letters, Vol.72, No. 1911, May, 1998.
[6] F. M. Pontes, D. S. L. Pontes, E. R. Leite, and E. Longo, “Influence of Ca concentration on the electric, morphological, and structural properties of ( Pb, Ca )TiO3 thin films”, Journal of Applied Physics, Vol. 91, No. 10, 15 May, 2002.
[7] C. M. Wang, Y. C. Chen, Y. T. Huang, M. C. Kao, “Calcium modified lead titanate thin films for pyroelectric applications”, Applications of Ferroelectrics, 2000. ISAF 2000. Proceedings of the 2000 12th IEEE International Symposium on, Vol. 2, p.771-774, 2000.
[8] E. Yamakm, H. Watanabe, H. Kimura, H. Kanaya and H. Onkuma, “Structural, ferroelectric, and pyroelectric properties of highly c-axis oriented Pb1-xCaxTiO3 thin film grown by radio-frequency magnetron sputtering”, J. Vac. Sci. Technol., Vol. A6, p.2921-2928, Sep/Oct 1988.
[9] A. Tsuzuki, H. Murakami, K. Kani, K. Watari and Y. Torii, “Preparation and ferroelectric properties of sol-gel-derived (Pb,Ca)TiO3 thin films”, J. Mater. Sci. Lett, Vol. 10, p.125-128,1991.
[10] R. Sirera, M. L. Calzada, F. Carrnona and B. Jimenez, “Ferroelectric thin films of calcium modified lead titanate by sol-gel processing”, J. Mater. Sci. Lett, Vol. 13, p.1804-1805, 1994.
[11] R. Ganesh and E. Goo, “Dielectric and ordering behavior in Pb1-xCaxTiO3”, J. Am. Ceram. Soc., vol. 80, pp.653-662, March 1997.
[12] H. Maiwa and N. Ichinose, “Preparation and properties of (Pb,Ca)TiO3 thin films by multiple-cathode sputtering”, Jpn. J. Appl. Phys., Vol. 36, p.5825-5828, September 1997.
[13] W. Y. Chung, T. P. Sun, Y. L. Chin and Y. L. Kao, “Design of pyroelectric IR readout circuit based on LiTaO3 detectors”, Circuits and Systems, 1996. ISCAS '96, Connecting the World, 1996 IEEE International Symposium, Atlanta, GA, USA, p. 225-228, 1996.
[14] 傅勝利,”電子材料”, 第七章,金華科技圖書公司印行, 台北
[15] 國立編譯館邱碧秀,”電子陶瓷材料”, 第十章, 徐氏基金會出版, 台北
[16] J. Huang, J. Lian and R. C. Buchanan, “Pyroelectric properties of PZT(90/10) thin film on Pt/Si substrate”, Ferroelectrics, 1996. ISAF '96, Proceedings of the Tenth IEEE International Symposium on Applications of IEEE, East Brunswick, NJ, USA, p.623-626, 1996.
[17] G. Z. Yan, C. H. Chan, M. Hsing, R. K. Sharma, and K. O. Sin, “An improved TMAH Si-etching solution without attacking exposed aluminum”, IEEE MENS2000 proceedings.
[18] U. Schnakenberg, W.Benecks, P. Lange, “TMAHW etchants for silicon micromachining”, Proceeding of 1991 IEEE, p.815-818, 1991.
[19] L. M. landsberger, Memser, IEEE, S. Naseh, M. Kahrizi and M. Paranjape, Member, IEEE, “On hillocks generated during anisotropic etching of Si in TMAH”, Journal of Microelectromechanical systems, Vol.5, No. 2, June 1996.
[20] G. Vélu and D. Rèmiens, “Electrical properties of sputtered PZT films on stabilized platinum electrode”, Journal of the European Ceramic Society, Volume 19, Issue 11, p. 2005-2013, 1999.
[21] J. D. Vincent, “Fundamentals of infrared detector operation & testing”, John Wiley & Sons, p. 453-456, 1990.
[22] J. D. Zook and S. T. Liu, “Pyroelectric effects in thin film”, J. Appl. Phys., New, York, Vol. 49, No. 8, p.4604-4606, 1978
[23] E. S. Barr, “The infrared pioneers-II. Macedonia Melloni”, Infrared Phys., 2, 67 (1962)
[24] 宇左美晶,“感測器應用技術100種”,第一篇,建宏出版社,台北
[25] W. Ren, X. Wu, L. Zhang and X. Yao, “Structure and property of ferroelectric PbTiO3 thin film by thermal decomposition of Metallo-Organic compounds”, Proceeding of 1991 IEEE, p.698-701, 1991.
[26] J. D. Vincent, “Fundamentals of infrared detector operation & testing”, Wiley-Interscience Publication, California, 1990.
[27] M. Lee, S. Bae, A. S. Bhalla, “Thermal properties of a pyroelectric-ceramic infrared detector with metallic intermediate layer”, Photo-Optical Instrumentation Engineers, 37(6), p.1746-1753, June 1998.
[28] J. Schieferdecker, R. Quad, E. Holzenkämpfer, M, Schulze, “Infrared thermopile sensors with high sensitivity and very low temperature coefficient”, Sensors and Actuators A, 46-47 p.422-427, 1995.
[29] A. Ignatiev, Y. Q. Xu., N. J. Wu, D. Liu, “Pyroelectric, ferroelectric and dielectric properties of Mn and Sb-doped PZT thin films for uncooled IR detectors”, Materials Science and Engineering B, 56 p.191-194, 1998.
[30] Y. Chen, H. L. W. Chan and C. L. Choy, “Pyroelectric properties of PbTiO3/P(VDF-TrFE) 0-3 nanocomposite films”, Thin Solid Film, 323, p.270-274, 1998.
[31] R. B. Liu, S. W. Lin, C. F. Qu, C. H. Yao and Y. H. Jin, “Series pyroelectric ceramics used for small area IR detector”, Proceeding of the Ninth IEEE International Symposium on Application of Ferroelectrics, University Park, PA, USA, p.812-814, 1995.
[32] E. Socher, O. Degani, Y. Nemirovsky, “Optimal design and noise considerations of CMOS compatible IR thermoelectric sensors”, Sensors and Actuators A, 71 p.107-115, 1998.
[33] M. E. MacDonald, E. N. Grossman, “Niobium microbolometers for far-infrared detection”, IEEE transaction on microwave theory and techniques., Ann Arbor, MI, USA, Vol. 43, No. 4, p.893-896,1995.
[34] M. Lee and S. Bae, “Temperature-induced transient noise of pyroelectric thermal detector”, Photo-Optical Instrumentation Engineers, 39(11), p.3076-3083, November 2000.
[35] W. Parrish Et.Al., “Characterization of a 32x32 InSb hybrid focal plane”, IEDM Technical Digest, p. 513-516 (Dec. 1978)
[36] B. Cole, R. Horning, B. Johnson, K. Nguyen, P. W. Kruce and M. C. Foute, “High performance infrared detector arrays using thin film microstructure”, Proceeding of the Ninth IEEE International Symposium on Applications of Ferroelectrics, p.653-656, 1995.
[37] C. Ye, T. Temagawa, and D. L. Polla, “Pyroelectric PbTiO3 Thin Films for Microsensor Applications”, Proceedings of the 1991 IEEE International Conference on Rocbotics and Automation Leuven, Beigium, p.904-907, 1991.
[38] T. Fukuda, H Sato, F. Arai, H. Iwata and K. Itoigawa, “Parallel beam micro sensor/actuator unit using PZT thin films and its application examples”, Proceedings of the 1998 IEEE International Conference on Robotics & Automation Leuven, Beigium, p.1498-1503, 1998.
[39] G. King and E. Goo, “Crystal structure and defects of ordered (Pb1-xCax)TiO3”, J. Am. Ceram. Soc., Vol. 71, No. 6, p.454-460, 1988.
[40] H. Banno, N. Sugimoto and T. Hayashi, “Preparation and properties of PZT/PbTiO3 ceramic composite”, IEEE 9th International Symposium on Electrets (ISE 9) Proceedings, East Brunswick, NJ, USA, p.523-526, 1996.
[41] S. G. Lee and Y. H. Lee, “Dielectric properties of sol-gol derived PZT(40/60)/PZT(60/40) heterolayered thin films”, Thin Solid Films, 353, p.244-248,1999.
[42] A. V. Shil’nikov, A. V. Sopit, A. I. Burkganovand, A. G. Luchaninov, “The dielectric response of electrostrictive (1-x) PMN-xPZT ceramics”, Journal of the European Ceramic Society, 19, p.1295-1297, 1999.
[43] Y. Park, S. M. Jeong, S. Ⅱ Moon, K. W. Jeong, S. Hkim, J. T. Song and J. Yi, “Pt and RuO2 bottom electrode effects on Pb(Zr,Ti)O3 memory capacitors”, Jpn. J. Appl. Phys., No. 12A, p.6801-6806, 1999.
[44] J. D. Kim, S. Kawagoe, K.Sasaki and T. Hata, “Target for a Pb(Zr,Ti)O3 thin film deposited at a low temperature using a quasi-metallic mode of reactive sputtering”, Jpn. J. Appl. Phys., No. 12A, p.6882-6886, 1999.
[45] K. Takeuchi, K. Shibata, T. Tanaka, K. Kuroki, S. Nakano and Y. Kuwano, “Modulation-type pyroelectric infrared detector and its application”, Sensors and Actuators A, 40, p.103-109, 1994.
[46] C. Ye, T. Tamagawa, and D. L. Polla, “Pyroelectric PbTiO3 thin films for microsensor applications”, Proceeding of the IEEE, Vol. 72, No. 8. May 1991
[47] R. C. Ibraim, T. Sakai, T. Nishida, T. Horiuchi, T. Shiosaki and K. Matsushige, ”Fabrication and evaluation of niobium doped lead titanate thin films”, Proceeding of the IEEE, Vol. 86, No. 5. January 1996
[48] K. lijima, T. Takeuchi, N. Nagao, R. Takayama and I Ueda, “Preparation and properties of Lanthanum Modified PbTiO3 thin films by RF-magnetron sputtering”, Proceeding of 1995 IEEE, p.53-58, 1995.
[49] B. Ploss and S. Bauer, “Characterization of materials for integrated pyroelectric sensors”, Sensors and Actuators A, 25-27, p.407-411, 1991.
[50] J. C. Gunter, S. K. Streiffer and A. I. Kingon, ”Low temperature preparation of sol-gel PZT thin film for pyroelectric and other integrated devices”, Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics, East Brunswick, NJ, USA, p.18-21, 1996.
[51] B. Zigon and B. B. Lavrencic, “Pyroelectric thin-film detector performance”, Sensors and Actuators A, 36, p.167-171, 1993.
[52] R. Balcerak, D. P. Jenkins, “Uncooled infrared focal plane arrays”, Engineering in Medicine and Biology Society, p. 2077-2078, 1996.
[53] L. Pham, W. Tjhen, C. Ye, D. L. Polla, “Surface-micromachined pyroelectric infrared imaging array with vertically integrated signal processing circuitry”, Ultrasonics, Ferroelectrics and Frequency Control, IEEE, p. 552-555, July 1994.
[54] J. J. Ho, Y. K. Fang, K. H. Wu, W. T. Hsieh, C. W. Chu, C. R. Huang, M. S. Ju, and C. P. chang, “A high sensitivity lead-titanate ( ) pyroelectric thin-film infrared sensor with temperature isolation improvement structure”, IEEE electron device letters, Vol. 19, No. 6, June 1998
[55] 王鴻志,“積體化MOSFET差動放大焦電式紅外線感測器之特性製作研究及應用”, 國立臺灣海洋大學電機工程學系碩士論文,民國90年
[56] 吳煥堂,“焦電薄膜紅外線感測器與積體化CMOS熱影像陣列之製作研究”, 國立臺灣海洋大學電機工程學系碩士論文, 民國92年
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊