跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/12 21:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃柏瀚
研究生(外文):Po-Han Huang
論文名稱:PDMS微流道及矽質光二極體整合型生物螢光檢測晶片
論文名稱(外文):On-chip fluorescence spectroscopy with PDMS microfluidic channels and silicon photodiodes
指導教授:張忠誠張忠誠引用關係
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:90
中文關鍵詞:微流道螢光感光元件
相關次數:
  • 被引用被引用:0
  • 點閱點閱:243
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文運用微機電系統技術於微流道生醫晶片,將高分子流道系統與矽質感光元件整合在一起,建立一套檢測系統。
流道系統晶片係採用PDMS高分子材質,運用黃光室曝光及顯影等完成所有製程,具備有低成本及製程簡易的概念。且透光性佳、化學穩定性佳,厚度可控制數十微米以上至所需厚度,成功製作出中空微流道系統。並運用本實驗室的濺鍍系統,產生所需的氧電漿,進行PDMS表面親水性質的改變,及與其他平滑接面黏著的加強。
在元件的製作方面,吾人製作簡易矽質金半金光檢測器,及矽質PN接面光檢測器,測量I-V曲線;與PDMS微流道檢測晶片黏合成體分別接上放大器做為螢光檢測器。
偵測系統方面,以雷射光源耦合至光纖,再入射激發螢光染料;所激發螢光經濾光片,再由矽質光檢測器接收,偵測因激發螢光所產生之化學冷光。主要架構是由光檢測器將光源吸收並轉換成電壓訊號,透過放大器作訊號處理,進而可判斷分析酵素免疫分析法中螢光染料濃度。
List of Tables…………………………………………………VI
Figure Captions………………………………………………VII
Chapter 1 Introduction ……………………………………1
1-1. Overview …………………………………………………1
1-2. Thesis Outline…………………………………………3
Chapter 2 PDMS Microfluidic Channels……………………4
2-1. Introduction………………………………………………4
2-2. Characteristic of PDMS Microfluidics……………5
2-2-1 Contact Angle………………………………………………6
2-2-2 Capillary Force……………………………………………7
2-2-3 Mixing Efficiency …………………………………………8
2-2-4 Microchannel Depth and Size……………………………8
2-3. Fabrication of the Microchannel…………………………9
2-4. Oxygen Plasma Treatment…………………………………11
2-5. Results and Discussion……………………………………13
Chapter 3 Metal-Semiconductor-Metal Photodetector……………………………………………………16
3-1. Introduction…………………………………………………16
3-2. Theoretical Analysis of Metal-Semiconductor-Metal Photodetector………………………………………………………17
3-2-1 Metal-Semiconductor-Metal Junction Introduction…17
3-2-2 Photocurrent Mechanisms. ………………………………18
3-2-3 Photo-Responsivity…………………………………………19
3-2-4 Quantum Efficiency…………………………………………20
3-2-5 Response Speed ………………………………………………21
3-2-6 Dark Current………………………………………………21
3-3. Anti-reflection…………………………………………22
3-3-1 Nanostructure Anti-reflection………………………23
3-3-2 Nanostructure Fabrication………………………………23
3-4. MSM Detector Fabrication..………………………………24
3-5. Conclusions…………………………………………………25
Chapter 4 Junction Photodiode………………………………27
4-1. Introduction…………………………………………………27
4-2. Theoretical Analysis of Photodiode……………………28
4-2-1 Theoretical Analysis………………………………………28
4-2-2 Dark Current and Photocurrent Models…………………29
4-2-3 Response Time….…………………………………………29
4-2-4 Bias.………………………………………………………30
4-2-5 Efficiency…………………………………………………30
4-3. The Fabrication Processes………………………………31
4-3-1 Fabrication Steps…………………………………………31
4-3-2 Oxidation……………………………………………………34
4-3-3 Etching Oxidation Layer…………………………………34
4-3-4 Boron Diffusion……………………………………………35
4-3-5 Evaporation………………………………………………35
4-3-6 Annealing……………………………………………………35
4-4. Results and Discussion…………………………………36
Chapter 5 Fluorescent Detection……………………….38
5-1. Fluorescent…………………………………………………38
5-2. Detection System……………………………………………39
5-3. Results……………………………………………………41
Chapter 6 Conclusions……………………………………………43
6-1. Summary………………………………………………43
6-2. Further……………………………………………………44
Reference …………………………………………………………45
Tables………………………………………………………….51
List of Table
Table 2-1 Physical and Chemical Properties of PDMS.………………………51
Table 2-2 ASE Process Characteristics………………………………………………………52
Table 2-3 Surface composition of PDMS…………………………52
Figure Captions
Fig 1-1 Microchip CE-EC schematic……………………………….…53
Fig 1-2 Optical micrograph of integrated electrophoresis device…..…54
Fig 1-3 Microfluidic plastic capillaries on silicon substrates: A new inexpensive technology for bioanalysis chips.……………….....55
Fig 1-4 Example integrated glass device with injectors, mixers, amplification chamber, separation, and detection………….….…..55
Fig 2-1 Poly(dimethyl siloxane), PDMS……………….…………....…56
Fig 2-2 Illustration of the interfacial surface contact angle…….…...…57
Fig 2-3 Water drops on two different PDMS samples……………....…57
Fig 2-4 CCD images of fluorescein (white image) being mixed with buffer (black image) in the reaction chambers………………....58
Fig 2-5 Silicon mold for 130um depth and 200um width…………..….59
Fig 2-6 Replication of channels……………………………………..…60
Fig 2-7 Our sputter system………………………………………....…..61
Fig 2-8 PDMS thickness as a function of spin rate at 30 seconds…..…62
Fig 2-9 Contact angles between water and PDMS……………………..63
Fig 2-10 Contact angles after 75sec plasma exposure……….……..….64
Fig 2-11 Red ink flow in PDMS microchannel after treated with plasma
………….…………………………………………………...……65
Fig 2-12 (a) PDMS micro lens and fiber inject channel…………...…..66
Fig 2-12 (b) Fluorescence was excited by blue laser………….….……66
Fig 2-13 (a) Silicon Mold for microchannels…………………67
Fig 2-13 (b) Silicon Mold for microchannels…………………67
Fig 2-14 Su-8 channels on silicon substrate…………………68
Fig 2-15 PDMS channels bonded on glass………………………68
Fig 3-1 (a)(b) The energy band diagram of the MSM photodetector under thermal equilibrium without illuminationcondition
………………………………………………………………...…69
Fig 3-2 Moth eye nano-structure anti-reflective ………..……….….....70
Fig 3-3(a) Schematic cross section of the NANO-pattern MSM Photodetector………………………………………...….…….71
Fig 3-3 (b) The pattern of the Cr/Au-Si MSMPD…………….….....….72
Fig 3-4 Nano-pattern fabrication steps……………………….…...……73
Fig 3-5 (a) Planar surfaced active area device…………………..……..74
(b)Sub-microstructured active area device……………..……74
Fig 3-6 (a)Top view of sub-microstructured active area device……….75
(b)45 degree view of sub-microstructured area…..…......75
Fig 3-7 The I-V characteristics of the MSM
(a)without nano-structure anti-reflection ..………………...…..76
(b)with nano-structure antireflection…...……………...…..…..76
Fig 3-8 Photograph of MSM photodiodes bonded with PDMS.…....….77
Fig 4-1 The three types of electron-pair creation by absorbed photons……………….………………………………………..78
Fig 4-2 Quantum efficiency ηversus wavelength ……………78
Fig 4-3 (a) fabrication process………………………79
(b) fabrication process………………79
Fig 4-4 (a) Shows the top view of back etching on (100)………81
(b) The back-side etching measurement…………………………81
Fig 4-5 The I-V characteristics for photodiode……………………………….82
Fig 4-6 SU8 microchannel on photodiodes………………………….83
Fig 4-7 PDMS directly bonded on photodiodes………….83
Fig 4-8 The relationship between etching time and depth with …………….……………84
Fig 5-1 Experimental setup…………………………………………..85
Fig 5-2 Schematic section of the system …………………………….86
Fig 5-3 The cross section of p-n photodiode………………….………87
Fig 5-4 The cross section of the MSM…………………………….87
Fig 5-5 Measurements of fluorescein with photodiodes…………88
Fig 5-6 Measurements of fluorescein with MSM……………………89
Fig 5-7 Compare measurements of fluorescein…………90
[1] Z. H. Fan and D. J. Harrison, "Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections," Anal. Chem., vol. 66, pp. 177, 1994.
[2] C. S. Effenhauser, A. Manz, and H. M. Widmer, "Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights," Anal. Chem., vol. 65, pp. 2637, 1993.
[3] K. Seiler, Z. H. Fan, K. Fluri, and D. J. Harrison, "Electroosmotic pumping and valveless control of fluid flow within a manifold of capillaries on a glass chip," Anal. Chem., vol. 66, pp. 3485, 1994.
[4] C. S. Effenhauser, G. J. M. Bruin, A. Paulus, and M. Ehrat, "Integrated capillary electrophoresis on flexible silicone microdevices: analysis of DNA restriction fragments and detection of single DNA molecules on microchips," Anal.Chem., vol. 69, pp. 3451, 1997.
[5] D. Trimbach, K. Feldman, N. D. Spencer, D. J. Broer, and C.W.M. Bastiaansen, "Block Copolymer Thermoplastic Elastomers for Microcontact Printing," Langmuir, vol. 19, pp. 10957-10961, 2003.
[6] J. C. McDonald, D. C.Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, "Fabrication of microfluidic systems in poly(dimethlsiloxane)," Electrophoresis, vol. 21, pp. 27-40, 2000.
[7] D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, "Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)," Anal. Chem., vol. 70, pp. 4974, 1998.
[8] Y. Xia and G..M.Whitesides, "Soft lithography," Angew.Chem., vol. 37, pp. 550, 1998.
[9] Y. H. Chen, W. C. Wang, K.C. Young, T. T. Chang, and S. H. Chen, "Plastic microchip electrophoresis for analysis of PCR products of hepatitis C virus," Clin. Chem., vol. 45, pp. 1938, 1999.
[10] J. Rossier, F. Reymond, and P. Michel, "Polymer microfluidic chips for electrochemical and biochemical analyses," Electrophoresis, vol. 23, pp. 858, 2002.
[11] N. Burggraf, B. Krattiger, A. J. de Mello, N. F. de Rooij, and A. Manz, "Holographic refractive index detector for application in microchip-based separation systems," Analyst, vol. 123, pp. 1443-1447, 1998.
[12] Z. Liang, N. Chiem, G. Ocvirk, T. Tang, K. Fluri, and D. J. Harrison, "Microfabrication of a planar absorbance and fluorescence cell for integrated capillary electrophoresis devices," Anal.Chem., vol. 68, pp. 1040-1046, 1996.
[13] S. C. Wang and M. D. Morris, "Plastic microchip electrophoresis with analyte velocity modulation. Application to fluorescence background rejection," Anal. Chem., vol. 72, pp. 1448-1452, 2000.
[14] R. S. Martin, A. J. Gawron, S. M. Lunte, and C. S. Henry, "Dual-electrode electrochemical detection for poly(dimethylsiloxane)-fabricated capillary electrophoresis microchips," Anal. Chem., vol. 72, pp. 3196-3202, 2000.
[15] J. R. Webster, M. A. Burns, D. T. Burke, and C. H. Mastrangelo, "Monolithic capillary electrophoresis device with integrated fluorescence detector," Anal. Chem., vol. 73, pp. 1622-1626, 2001.
[16] M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, "An integrated fluorescence detection system in PDMS for Microfluidic applications," Anal.Chem., vol. 73, 2001.
[17] A. Arora, J. C. T. Eijkel, W. E. Morf, and A. Manz, "A Wireless Electrochemiluminescence Detector Applied to Direct and Indirect Detection for Electrophoresis on a Microfabricated Glass Device," Anal.Chem., vol. 73, pp. 3282-3288., 2001.
[18] M.Grewe, A.Gross, and H.Fouckhardt, "Theoretical and experimental investigations of the optical waveguiding properties of on-chip microfabricated capillaries," Appl.Phys., vol. 70, pp. 839-847, 2000.
[19] A. Grosse, M. Grewe, and H. Fouckhardt, "Deep wet etching of fused silica glass for hollow capillary optical leaky waveguides in Microfluidic devices," J.Micromech.Microeng., vol. 11, pp. 257-262, 2001.
[20] J. M. Ruano, V. Benoit, J. S. Aitchison, and J. M. Cooper, "Flame hydrolysisdeposition of glass on silicon for the integration of optical and microfluidic devices," Anal.Chem., vol. 72, pp. 1093-1097, 2000.
[21] G. Barbany, A. Hagberg, U. O.-S. L. mberg, B. Simonsson, A.-C. S. L. nen, and U. Landegren, "Manifold-assisted reverse transcription-PCR with real-time detection for measurement of the BCR-ABL fusion transcript in chronic myeloid leukemia patients," Clin.Chem., vol. 46, pp. 913-920, 2000.
[22] M. Hernandez, M. Pla, T. Esteve, S. Prat, P. Puigdom`enech, and A. Ferrando, "A specific real-time quantitative PCR detection system for event MON810 in maize YieldGard based on the 3 -transgene integration sequence," Trans.Res., vol. 12, pp. 179?89, 2003.
[23] P. F. Man, D. K. Jones, and C. H. Mastrangelo, "Microfluidic plastic capillaries on silicon substrates: A new inexpensive technology for bioanalysis chips," presented at Proc.Int. Workshop Micro Electromechanical Systems (MEMS'97), 1997.
[24] M. A. Burns, C. H. Mastrangelo, T. S. Sammarco, P. F. Man, J. R. Webster, and D. T. Burke, "Microfabricated structures for integrated DNA analysis," Proc. Nat. Acad. Sci. USA, vol. 93, pp. 5556-5561, 1996.
[25] Kovacs and G. T. A., Micromachined Transducers Sourcebook. New York: McGraw-Hill, 1998.
[26] J. Lahann, M. Balcells, T. Rodon, J. Lee, I. S. Choi, K. F. Jensen, and R. Langer, "Reactive polymer coatings: A Platform for patterning proteins and mammalian cells onto a broad range of materials," Langmuir, vol. 18, pp. 3632-3638, 2002.
[27] T. L. Yang, S. Y. Jung, H. B. Mao, and P. S. Cremer, "Fabrication of phospholipid bilayer-coated microchannels for on-chip immunoassays," Anal.Chem., vol. 73, pp. 165-169, 2001.
[28] S. Jon, J. Seong, A. Khademhosseini, T. T. Tran, P. E. Laibinis, and R. Langer, "Construction of nonbiofouling surfaces by polymeric self-assembled monolayers," Langmuir, vol. 25, pp. 9989-9993, 2003.
[29] S. K. W. Dertinger, X. Y. Jiang, Z. Y. Li, V. N. Murthy, and G. M. Whitesides, "Gradients of substrate-bound laminin orient axonal specification of neurons," Proc. Natl. Acad. Sci. U.S.A., vol. 99, pp. 12542-12547, 2002.
[30] B. Zhao, J. S. Moore, and D. J. Beebe, "Surface-directed liquid flow inside microchannels," Science, vol. 291, pp. 1023-1026, 2001.
[31] D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo, "Functional hydrogel structures for autonomous flow control inside microfluidic channels," Nature, vol. 404, pp. 588-590, 2000.
[32] S. Takayama, J. C. McDonald, E. Ostuni, M. N. Liang, P. J. A. Kenis, R. F. Ismagilov, and G. M. Whitesides, "Patterning cells and their environments using multiple laminar fluid flows in capillary networks," Proc. Natl. Acad. Sci. U.S.A., vol. 96, pp. 5545-5548, 1999.
[33] W. Zhan, G. H. Seong, and R. M. Crooks, "Hydrogel-based microreactors as a functional component of microfluidic systems," Anal.Chem., vol. 74, pp. 4647-4652, 2002.
[34] M. Mrksich, L. E. Dike, J. Tien, D. E. Ingber, and G. M. Whitesides, "Using microcontact printing to pattern the attachment of mammalian cells to self-assembled monolayers of alkanethiolates on transparent films of gold and silver," Exp.Cell.Res., vol. 235, pp. 305-313, 1997.
[35] E. Delamarche, A. Bernard, H. Schmid, A. Bietsch, B. Michel, and H. Biebuyck, "Microfluidic networks for chemical patterning of substrates: design and application to bioass," J.Am.Chem.Soc., vol. 120, pp. 500-508, 1998.
[36] S. Takayama, E. Ostuni, P. LeDuc, K. Naruse, D. E. Ingber, and G. M. Whitesides, "Subcellular positioning of small molecules," Nature, vol. 411, pp. 1016, 2001.
[37] Y. S. Kim, K. Y. Suh, and H. H. Lee, "Fabrication of three-dimensional microstructures by soft molding," Appl.Phys.Lett., vol. 79, pp. 2285-2287, 2001.
[38] K. Y. Suh, Y. S. Kim, and H. H. Lee, "Capillary force lithography," Adv.Mater., vol. 13, pp. 1386-1389, 2001.
[39] P. B. Allen, I. Rodriguez, C. L. Kuyper, R. M. Lorenz, P. Spicar-Mihalic, J. S. Kuo, and D. T. Chiu, "Selective Electroless and Electrolytic Deposition of Metal for Applications in Microfluidics: Fabrication of a Microthermocouple," Anal.Chem., vol. 75, pp. 1578-1583, 2003.
[40] H. Suzuki, A. Kumagai, K. Ogawa, and E. Kokufuta, "New Type of Glucose Sensor Based on Enzymatic Conversion of Gel Volume into Liquid Column Length," Biomacromolecules, vol. 5, pp. 486-491, 2004.
[41] M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, "Monolithic microfabricated valves and pumps by multilayer soft lithography," Science, vol. 288, pp. 113-116, 2000.
[42] H. Jerwei, W. Chun-Jen, and L. Hui-Hsiung, "The study on SU8 micro cylindrical lens for laser induced fluorescence application," presented at IEEE/LEOS International Conference, 2003.
[43] R. P. Woodward, "Prediction of adhesion and wetting from lewis acid base measurements," Portsmouth 2000.
[44] A. Rickard and M. McNie, "Characterisation and optimisation of deep dry etching for MEMS applications," presented at SPIE International Conference, Edinburgh, 2001.
[45] A. M. Hynes, H. Ashraf, J. K. Bhardwaj, J. Hopkins, I. Johnston, and J. N. Shepherd, "Recent advances in silicon etching for MEMS using the ASE process," Sensors and Actuators, vol. 74, pp. 13-17, 1999.
[46] K. W. Ro, K.L., H.K., and J. H. Hahn, "Poly(dimethylsiloxane) microchip for precolumn reaction and micellar electrokinetic chromatography of biogenic amines," Electrophoresis, vol. 23, pp. 1129-1137, 2002.
[47] J. R. Anderson, D. T. Chiu, R. J. Jackman, O. Cherniavskaya, J. C. McDonald, H. Wu, S. H. Whitesides, and G. M. Whitesides, Anal.Chem., vol. 72, pp. 3158-3164, 2000.
[48] G. Y. Choi, A. Ulman, Y. Shnidman, W. Zurawsky, and C. Fleischer, "Isotope Effect in Adhesion," J.Phys.Chem., vol. 104, pp. 5768-5771, 2000.
[49] H. Hillborg and U. W. Gedde, "Hydrophobicity recovery of polydimethylsiloxane after exposure to corona discharges," Polymer, vol. 39, pp. 1991-1998, 1998.
[50] H. Hillborg and U. W. Gedde, "Hydrophobicity changes in silicone rubbers," IEEE Trans.Dielectrics and Electrical Insulation, vol. 6, pp. 703-717, 1999.
[51] S. J. Wilson and M. C. Hutley, "The optical properties of 'moth eye' antireflection surfaces," Optica Acta, vol. 29, pp. 993-1009, 1982.
[52] B. S. Thornton, "Limit of the moth's eye principle and other impedance-matching corrugations for solar-absorber design," J. Opt. Soc. Am. 65, 267-270 (1975).
[53] M. J. Minot, "Single-layer, gradient refractive index antireflective films effective from 0.35 to 2.5," J. Opt. Soc. Am., vol. 66, pp. 515-519, 1976.
[54] R. N. Joshi, V. P. Singh, and J. C. McClure, "Characteristics of indium tin oxide films deposited by rf magnetron sputtering," Thin Solid Films, vol. 257, pp. 32-35, 1995.
[55] D. L. Rogers, "Integrated optical receivers using MSM detectors," IEEE Journal of Lightwave Technology, vol. 9, pp. 1635-1638, 1991.
[56] C. G. Bernhard, "Structural and functional adaptation in a visual system," Endeavor, vol. 26, pp. 79-84, 1967.
[57] P. Lalanne and G. M. Morris, "Antireflection behavior of silicon subwavelength periodic structures for visible light," Nanotechnology, vol. 8, pp. 53, 1997.
[58] http://www.keytech.ntt-at.co.jp/nano/prd_0016.html.[online]
[59] M.Chabloz, "Improvement of sidewall roughness in deep silicon etching," Microsystem Technologies, vol. 6, pp. 86-89, 2000.
[60] S.Wolf and R. N.Tauber, Silicon Processing for the VLSI Era, vol. 1. Sunset Beach: Lattice Press, 1986.
[61] S. G. Chamberlain, "New profiled silicon photodetector for improved shortwavelength quantum efficiency," Journal of Applied Physics, vol. 50, pp. 7228-7231, 1979.
[62] S. M. Sze., "Physics of Semiconductor Devices," 2nd ed. New York: Wiley, 1981, pp. 752.
[63] R. Fisher, "P-i-n diode detectors for astronomical photometry," Applied Optics, vol. 7, pp. 1079-1083, 1968.
[64] S. M. Sze., VLSI Technology. New York: McGraw-Hill, 1983.
[65] K. R. Williams, K. Gupta, and M. Wasilik, "Etch rates for micromachining processing-part II," J. Microelectromech. Syst., vol. 12, 2003.
[66] S. M. Sze., "Physics of Semiconductor Devices," 2nd ed. New York: Wiley, 1981, pp. 65.
[67] I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules, 2 ed: Academic Press, 1971.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top