跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/16 00:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃信斌
研究生(外文):Sin-Bin Huang
論文名稱:硒化鋅異質磊晶層之銦錫氧化物電極金半金光檢測器整合N型金氧半電晶體研製
論文名稱(外文):Investigation of ZnSe Heteroepitaxy Metal-Semiconductor-Metal Photodetectors with ITO Electrode Integrated with NMOS Transistor
指導教授:張忠誠張忠誠引用關係
指導教授(外文):Chung-Cheng Chang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:93
中文關鍵詞:硒化鋅光檢測器金氧半短波長銦錫氧化物透明電極
外文關鍵詞:ZnSePhotodetectorMOSITOMSMintegrated
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用紅外線爐化學氣相沉積的方式於矽基板上磊晶異質硒化鋅薄膜。磊晶完成之硒化鋅則利用X光繞射儀(XRD)、掃描式顯微鏡(SEM)以及PL進行量測及分析,所得之磊晶膜亦進行光檢測器之製作。
在元件製作方面,利用硒化鋅薄膜製作之金半金光檢測器(ITO-ZnSe-MSMPD),採用銦錫氧化物(Indium Tin Oxide)ITO當透明電極並與傳統之金(Au)電極做比較。而銦錫氧化膜(Indium Tin Oxide)ITO使用磁控濺鍍法沉積,並進行不同退火程序實驗以改善銦錫氧化物之光穿透度以及導電度。而由實驗得知以提升穿透率以及導電率的ITO為電極之光檢測器,亦有較高之光電流及光響應度。
在元件整合方面,我們製作N型金氧半場效電晶體(N-MOSFET)與ZnSe-MSMPD 作整合之技術研究。完成ZnSe-MSMPD和N-MOSFET整合於同一晶片之製作,同時進行特性測試分析,證明此種元件亦可應用於光電積體電路(OEIC)之製作。
In this thesis, the low cost IR furnace chemical vapor deposition system is used to obtain the ZnSe epilayers. The quality of ZnSe epilayers is analyzed by the XRD, SEM and photoluminescence (PL) measurement.
The ZnSe epilayers was used to be the MSM photodetectors and their electrode was used ITO and Au materials. In additions, a new annealing technology was found to enhance the transparency and conductivity of ITO layers. The MSM photodetectors has better photocurrent and the photoresponsivity also since the electrode improvement.
In addition, MSM photodetectors and N-MOSFET are integrated to research the OEIC technology. The integrated technology is successful, In the future, in this experiment that this technique can be used to the OEIC fabrication.
Chapter 1 Introduction…………………………….……1
1-1 Overview………………………………….…….1
1-2 Outline……………………………………..……3

Chapter 2 Theoretical Analysis of and ZnSe/Si Heteroepitaxy…….………………………....4
2-1 Introduction …………………...………..…...….4
2-2 Growth Processes ……………………………....5
2-2-1 Kinetics of Epitaxial Growth…………… ...5
2-2-2 Gas-Phase Mass Transfer…………………..7
2-2-3 Boundary Layer Theory……………………8
2-2-4 ZnSe/Si Heteroepitaxy……………………10
2-3 Two-Step Growth Process……………………..11
2-4 Wet Etching…………………………………….12

Chapter 3 Quality Analyses of The ZnSe Epilayer on Silicon ……………………………………..…14
3-1 Introduction……………………………….……14
3-2 ZnSe Epilayer Morphologies………………….14
3-3 Crystallographic Properties…………………...15
3-4 Photo-Luminescence Properties……………....17
3-5 Conclusions……………………..………………18
Chapter 4 Investigation of Improving the Transparency and Conductivity of ITO Thin Films…………………………………….20
4-1 Introduction…………………………………….20
4-2 Experiment……………………………………..21
4-3 Results and Discussion…………………………22
4-3-1 Transparency………………………………22
4-3-2 Resistivity…………………………..……..23
4-3-3 Surface morphology……………………….24
4-3-4 XRD patterns………………………………25
4-3-5 Exception………………………………….25
4-3-6 Elements Analysis………………………....26
4-3-7 Annealing Time…….……………………...27
4-4 Conclusions…………..….……………………...28

Chapter 5 Theory and Fabrication of ZnSe/Si Metal –Semiconductor-Metal Photodetector ………………..……………...30
5-1 Introduction……………..……………………..30
5-2 Theoretical Analysis…………………………...31
5-2-1 Metal-Semiconductor-Metal Junction…....31
5-2-2 Photocurrent Mechanisms……………..…32
5-2-3 Photocurrent Responsivity………………..33
5-2-4 Quantum Efficiency………………………34
5-2-5 Response Speed………………….………35
5-2-6 Dark Current……………………………..36
5-3 Results and Discussion………………………..37
5-4 Conclusion……………………………….…….48

Chapter 6 Design and Fabrication of MSMPD-MOSFET Integrated Photo-Receiver………………………………39
6-1 Introduction……………………………………39
6-2 Device Fabrication……………….……………39
6-3 Results and Discussion………………………...40
6-4 Conclusion……………………………………...41


CHAPTER 7 CONCLUSIONS………………………...43
7-1 Summary……………………………………......43
7-2 Further………………………………………….44

References…………………………………………………..45

Tables…………………………………………………….…..52

Figures…………………………………………………….....54
[1] H. I. Chang, “Investigation of ZnSe Heteroeitaxy Metal-Semiconductor Metal Photdetectors with Indium-Tin-Oxide electrode Using IR Furnace Chemical Vapor Deposition,” National Taiwan Ocean University, 2000.
[2] R. L. Gunshor, A. V. Nurmikko, and N. Otsuka, “ Blue lasers on the horizon,” IEEE Spectrum Vol.30, pp.28-33, 1993.
[3] M. Y. Yeh, and M. K. Lee, “ ZnSe blue LED with nitrogen-doped ZnSe grown in a Se-rich condition by low-pressure OMCVD,” IEEE, Hong Kong. pp. 73-76, 6-10 Nov. 1995.
[4] M. K. Lee, M. Y. Yeh, and C. C. Chang “Heteroepitaxial growth of ZnSe on (100) Si by low-pressure organometallic chemical vapor deposition”Appl. Phys. Lett. 55, 1850 (1989)
[5] C. Qiu, Z. Xie, H. Chen, M. Wong, and H. S. Kwok “Comparative study of metal or oxide capped indium--tin oxide anodes for organic light-emitting diodes”J. Appl. Phys. 93, 3253 (2003)
[6] H. Antoniadis, J. N. Miller, D. B. Roitman, I. H.” Effects of Hole Carrier Injection and Transport in Organic Light-Emitting Diodes” Cambell Electron Devices, IEEE Transactions on , Volume: 44 Issue: 8 , Aug. 1997 Page(s): 1289 -1294
[7] H. Chen; C. Qiu; M. Wong; H. S. Kwok, “DC Sputtered Indium-Tin Oxide Transparent Cathode for Organic Light-Emitting Diode,” Electron Device Letters, IEEE , Volume: 24 Issue: 5 , May 2003 Page(s): 315 -317
[8] J. A. Tuchman, Z. Sui, S. Kim, and I. P. Herman, “Photoluminescence of ZnSe/ZnMnSe superlattices under hydrostatic pressure,” J. Appl. Phys., vol. 73, pp. 7730-7733, 1993.
[9] C. S. Lin, L. P. Tu, R. H. Yeh, and J. W. Hong “High-Sensitivity Planar Si-Based MSM Photodetector With Very Thin Amorphous Silicon-Alloy Quantum-Well-Like Barrier Layers” IEEE Photonics Technology Letters, VOL. 15, NO. 7, JULY 2003
[10] W. R. Chang, Y. K. Fang, S. F. Ting, Y. S. Tsair, C. N. Chang, C. Y. Lin, and S. F. Chen “The Hetero-Epitaxial SiCN/Si MSM Photodetector for High-Temperature Deep-UV Detecting Applications” IEEE Electron Device Letters, VOL. 24, NO. 9, SEPTEMBER 2003
[11] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, “GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts,” IEEE Photon. Technol. Lett., vol. 13, pp. 848–850, Aug. 2001.
[12] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J. Diaz, and M. Razeghi, “High speed, low noise metal-semiconducrormetal ultraviolet photodetectors based on GaN,” Appl. Phys. Lett., vol. 74, pp. 762–764. 1997.
[13] Wohlmuth, W.A.; Fay, P.; Caneau, C.; Adesida, I.” Low dark current, long wavelength metal-semiconductor-metal photodetectors”; Electronics Letters , Volume: 32 , Issue: 3 , 1 Feb. 1996 Pages:249 - 250
[14] S. J. Chang, M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, Senior Member, IEEE, C. S. Chang, C. J. Kao, G. C. Chi, and J. M. Tsai “GaN Metal–Semiconductor–Metal Photodetectors With Low-Temperature-GaN Cap Layers and ITO Metal Contacts” IEEE Electron Device Letters, VOL. 24, NO. 4, APRIL 2003
[15] P. Fay, W. Wohlmuth, A. Mahajan, C. Caneau, S. Chandrasekhar, and I. Adesida "A Comparative Study of Integrated Photoreceivers Using MSM/HEMT and PIN/HEMT Technologies" 582 IEEE Photonics Technology Letters, VOL. 10, NO. 4, APRIL 1998
[16] C. L. Ma, M. J. Deen, and L. Tarof, “Characterization and Modeling of SAGCM InP/InGaAs Avalanche Photodiodes for Multigigabit Optical Fiber Communications”, Advances in Imaging and Electron Physics, P. Hawkes, Ed. New York: Academic, 1998, vol. 99, pp. 65–170.
[17] S. An and M. J. Deen, “Low frequency noise in single growth planar separate absorption, grading, charge and multiplication avalanche photodiodes,” IEEE Trans. Electron Devices, vol. 47, pp. 537–543, Mar. 2000.
[18] D.B. Eason, Z. Yu, W.C. Hughes, C. Boney, J.W. Cook, Jr.; J.F. Schetzina, G. Cantwell, W.C. Harsch “Lasers and Electro-Optics Society Annual Meeting,” 1994. LEOS '94 Conference Proceedings. IEEE , Volume: 1 , 31 Oct.-3 Nov. 1994
[19] R. M. Park and H. A. Mar “Molecular beam epitaxial growth of high quality ZnSe on (100) Si,” Appl. Phys. Lett. 48, 529 (1986)
[20] S. M. Sze, “ Physics of semiconductor device,” 2nd ed. Wiley Interscience, New York, pp.23-45, 1991.
[21] K. T. Wu, “ Investigation of ZnSe/Si heterojunction opto-electronic devices by using IR furnace chemical vapor deposition,” National Taiwan Ocean University, pp. 13-34, 1998.
[22] S. M. Sze, “ ULSI technology,” McGraw-Hill, New York, pp.12-231988.
[23] X. Zhou, S. Jiang, F. Li, G. F. Spencer, R. T. Bate, and W. P. Kirk, “Molecular beam epitaxy of Si/ZnS/Si(100) heterostructures for fabrication of silicon-based quantum devices,” Proceeding of the IEEE, pp. 498-505, 1995.
[24] K. W. Gooseen, J. E.Cuningham, A. E. White, K. T. Short, W. Y. Jan and J. A. Walker “ GaAs on Si modulator using a buried silicon reflector,” IEEE Photonics Technology Letters., Vol.4, pp.140-142, 1991
[25] S. J. Lii, “ Chemical vapor deposition of ZnSe on Si substrate by IR furnace and heterojunction devices,” National Taiwan Ocean University, pp. 12-29, 1997.
[26] M. DePuydt, H. Cheng, J.E. Potts, T.L. Sminth, S.K. Mohapatra, J.” Growth of undoped ZnSe on (100) GaAs by molecular-beam epitaxy: An investigation of the effects of growth temperature and beam pressure ratio” Appl. Phys. 62 (1987) 4756
[27] C. D. Lee, S.K. Chang et al.,” High purity ZnSe epilayers grown by atmospheric double zone metalorganic atomic layer epitaxy” J. Crystal Growth 159 (1996) P108
[28] M. Yokoyama, N.T. Chen, H.Y. Ueng Journal of Crystal Growth 212 (2000) 97-102
[29] M. Yamaguchi, A. Yamamoto, and Mamoru Kondo, “Photo-luminescence of ZnSe single crystals diffused with a group-III element,” J. Appl. Phys., vol. 48, pp. 5237-5239, 1977.
[30] M. Sano, Y. Yamashita, and Y. Okuno, “ Growth and characterization of ZnSe epitaxial layers grown by the solution method,” J. Appl. Phys., Vol.74, pp.15-17, 1993.
[31] S. Fujita, H. Mimoto, and T. Noguchi, “ Photoluminescence in ZnSe grown by liquid epitaxy from Zn-Ga solution,” J. Appl. Phys., vol. 50, pp. 1079-1080, 1979.
[32] A. Kamata and T. Moriyama, “ Luminescence properties of nitrogen ion implanted ZnSe after thermal annealing,” Appl. Phys. Lett. vol. 67, pp. 1751-1753, 1995.
[33] L. Radomsky, G. J. Yi, and G. F. Neumark, “ Preferential donor-acceptor pairing results for ZnSe:Na,” Appl. Phys. Lett., vol. 64(8), pp. 1027-1029, 1994.
[34] H. G. Grimeiss, and C. Ovren, “ Identification of deep centers in ZnSe,” J. Appl. Phys., vol. 48, pp. 5122-5123, 1977.
[35] M. Y. Yeh and M. K. Lee, “ZnSe blue LED with nitrogen-doped ZnSe grown in a Se-rich condition by low-pressure OMCVD,” IEEE, Hong Kong. pp. 73-76, 6-10 Nov. 1995.
[36] J. H. Park, O. O. Park, J. W. Yu, J. K. Kim, and Y. C. Kim “Effect of polymer-insulating nanolayers on electron injection in polymer light-emitting diodes” Appl. Phys. Lett. 84, 1783 (2004)
[37] J. Liu, T. F. Guo, and Y. Yang “Effects of thermal annealing on the performance of polymer light emitting diodes” J. Appl. Phys. 91, 1595 (2002)
[38] H. N. Aiyer, D. Nishioka, N. Matsuki, H. Shinno, V. P. S. Perera, T. Chikyow, H. Kobayashi, and H. Koinuma “Improved performance of amorphous silicon thin film transistors by cyanide treatment”Appl. Phys. Lett. 78, 751 (2001)
[39] K. Sreenivas, T. Sudersena Rao, Abhai Mansingh, and Subhash Chandra “Preparation and characterization of rf sputtered indium tin oxide films” J. Appl. Phys. 57, 384 (1985)
[40] F. Nuesch, L. J. Rothberg, E. W. Forsythe, Quoc Toan Le, and Yongli Gao “A photoelectron spectroscopy study on the indium tin oxide treatment by acids and bases”Appl. Phys. Lett. 74, 880 (1999)
[41] D. L. Rogers, “ Integrated optical receivers using MSM detectors,” IEEE Journal of Lightwave Technology, vol. 9, no. 12, pp.1635-1638, 1991.
[42] Z. C. Huang, C. R. Wie, I, Na, H. Luo, D. B. Mott, and P. K. Shu, “ High performance ZnSe photoconductors,” Electronics Letters, vol. 32, no. 16, pp. 1507-1509, 1996.
[43] R. N. Joshi, V. P. Singh, J. C. McClure, “Characteristics of indium tin oxide films deposited by rf magnetron sputtering, “Thin Solid Films, vol. 257, no. 1, pp 32-35,1995.
[44] J. H. Tsai, “ The investigation of the characteristics and the application of ZnSe vapor phase epitaxial layer on Si Substrate,” National Taiwan Ocean University, pp.31-36, 1994.
[45] A. Huber et al., “Monolithic, high transimpedance gain (3.3K), 40Gb/s InP–HBT photoreceiver with differential outputs,” Electron. Lett. vol. 35, pp. 897–898, 1999.
[46] Z. Lao et al., “20-Gb/s 14-k transimpedance long-wavelength MSM-HEMT photoreceiver OEIC,” IEEE Photon. Technol. Lett., vol.10, pp. 710–712, 1998.
[47] P. Fay et al., “High-speed digital and analog performance of low-noiseintegrated MSM-HEMT photoreceivers,” IEEE Photon. Technol. Lett.,vol. 9, pp. 991–993, 1997.
[48] D. L. Rogers, "Monolithic integration of a 3GHz MESFET detector/ preamplifier,"in Proc. IEEE Gallium Arsenide Int. Circsymp. GaAs IC. 1986, p. 233.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top