|
[1] H. I. Chang, “Investigation of ZnSe Heteroeitaxy Metal-Semiconductor Metal Photdetectors with Indium-Tin-Oxide electrode Using IR Furnace Chemical Vapor Deposition,” National Taiwan Ocean University, 2000. [2] R. L. Gunshor, A. V. Nurmikko, and N. Otsuka, “ Blue lasers on the horizon,” IEEE Spectrum Vol.30, pp.28-33, 1993. [3] M. Y. Yeh, and M. K. Lee, “ ZnSe blue LED with nitrogen-doped ZnSe grown in a Se-rich condition by low-pressure OMCVD,” IEEE, Hong Kong. pp. 73-76, 6-10 Nov. 1995. [4] M. K. Lee, M. Y. Yeh, and C. C. Chang “Heteroepitaxial growth of ZnSe on (100) Si by low-pressure organometallic chemical vapor deposition”Appl. Phys. Lett. 55, 1850 (1989) [5] C. Qiu, Z. Xie, H. Chen, M. Wong, and H. S. Kwok “Comparative study of metal or oxide capped indium--tin oxide anodes for organic light-emitting diodes”J. Appl. Phys. 93, 3253 (2003) [6] H. Antoniadis, J. N. Miller, D. B. Roitman, I. H.” Effects of Hole Carrier Injection and Transport in Organic Light-Emitting Diodes” Cambell Electron Devices, IEEE Transactions on , Volume: 44 Issue: 8 , Aug. 1997 Page(s): 1289 -1294 [7] H. Chen; C. Qiu; M. Wong; H. S. Kwok, “DC Sputtered Indium-Tin Oxide Transparent Cathode for Organic Light-Emitting Diode,” Electron Device Letters, IEEE , Volume: 24 Issue: 5 , May 2003 Page(s): 315 -317 [8] J. A. Tuchman, Z. Sui, S. Kim, and I. P. Herman, “Photoluminescence of ZnSe/ZnMnSe superlattices under hydrostatic pressure,” J. Appl. Phys., vol. 73, pp. 7730-7733, 1993. [9] C. S. Lin, L. P. Tu, R. H. Yeh, and J. W. Hong “High-Sensitivity Planar Si-Based MSM Photodetector With Very Thin Amorphous Silicon-Alloy Quantum-Well-Like Barrier Layers” IEEE Photonics Technology Letters, VOL. 15, NO. 7, JULY 2003 [10] W. R. Chang, Y. K. Fang, S. F. Ting, Y. S. Tsair, C. N. Chang, C. Y. Lin, and S. F. Chen “The Hetero-Epitaxial SiCN/Si MSM Photodetector for High-Temperature Deep-UV Detecting Applications” IEEE Electron Device Letters, VOL. 24, NO. 9, SEPTEMBER 2003 [11] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, “GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts,” IEEE Photon. Technol. Lett., vol. 13, pp. 848–850, Aug. 2001. [12] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J. Diaz, and M. Razeghi, “High speed, low noise metal-semiconducrormetal ultraviolet photodetectors based on GaN,” Appl. Phys. Lett., vol. 74, pp. 762–764. 1997. [13] Wohlmuth, W.A.; Fay, P.; Caneau, C.; Adesida, I.” Low dark current, long wavelength metal-semiconductor-metal photodetectors”; Electronics Letters , Volume: 32 , Issue: 3 , 1 Feb. 1996 Pages:249 - 250 [14] S. J. Chang, M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, Senior Member, IEEE, C. S. Chang, C. J. Kao, G. C. Chi, and J. M. Tsai “GaN Metal–Semiconductor–Metal Photodetectors With Low-Temperature-GaN Cap Layers and ITO Metal Contacts” IEEE Electron Device Letters, VOL. 24, NO. 4, APRIL 2003 [15] P. Fay, W. Wohlmuth, A. Mahajan, C. Caneau, S. Chandrasekhar, and I. Adesida "A Comparative Study of Integrated Photoreceivers Using MSM/HEMT and PIN/HEMT Technologies" 582 IEEE Photonics Technology Letters, VOL. 10, NO. 4, APRIL 1998 [16] C. L. Ma, M. J. Deen, and L. Tarof, “Characterization and Modeling of SAGCM InP/InGaAs Avalanche Photodiodes for Multigigabit Optical Fiber Communications”, Advances in Imaging and Electron Physics, P. Hawkes, Ed. New York: Academic, 1998, vol. 99, pp. 65–170. [17] S. An and M. J. Deen, “Low frequency noise in single growth planar separate absorption, grading, charge and multiplication avalanche photodiodes,” IEEE Trans. Electron Devices, vol. 47, pp. 537–543, Mar. 2000. [18] D.B. Eason, Z. Yu, W.C. Hughes, C. Boney, J.W. Cook, Jr.; J.F. Schetzina, G. Cantwell, W.C. Harsch “Lasers and Electro-Optics Society Annual Meeting,” 1994. LEOS '94 Conference Proceedings. IEEE , Volume: 1 , 31 Oct.-3 Nov. 1994 [19] R. M. Park and H. A. Mar “Molecular beam epitaxial growth of high quality ZnSe on (100) Si,” Appl. Phys. Lett. 48, 529 (1986) [20] S. M. Sze, “ Physics of semiconductor device,” 2nd ed. Wiley Interscience, New York, pp.23-45, 1991. [21] K. T. Wu, “ Investigation of ZnSe/Si heterojunction opto-electronic devices by using IR furnace chemical vapor deposition,” National Taiwan Ocean University, pp. 13-34, 1998. [22] S. M. Sze, “ ULSI technology,” McGraw-Hill, New York, pp.12-231988. [23] X. Zhou, S. Jiang, F. Li, G. F. Spencer, R. T. Bate, and W. P. Kirk, “Molecular beam epitaxy of Si/ZnS/Si(100) heterostructures for fabrication of silicon-based quantum devices,” Proceeding of the IEEE, pp. 498-505, 1995. [24] K. W. Gooseen, J. E.Cuningham, A. E. White, K. T. Short, W. Y. Jan and J. A. Walker “ GaAs on Si modulator using a buried silicon reflector,” IEEE Photonics Technology Letters., Vol.4, pp.140-142, 1991 [25] S. J. Lii, “ Chemical vapor deposition of ZnSe on Si substrate by IR furnace and heterojunction devices,” National Taiwan Ocean University, pp. 12-29, 1997. [26] M. DePuydt, H. Cheng, J.E. Potts, T.L. Sminth, S.K. Mohapatra, J.” Growth of undoped ZnSe on (100) GaAs by molecular-beam epitaxy: An investigation of the effects of growth temperature and beam pressure ratio” Appl. Phys. 62 (1987) 4756 [27] C. D. Lee, S.K. Chang et al.,” High purity ZnSe epilayers grown by atmospheric double zone metalorganic atomic layer epitaxy” J. Crystal Growth 159 (1996) P108 [28] M. Yokoyama, N.T. Chen, H.Y. Ueng Journal of Crystal Growth 212 (2000) 97-102 [29] M. Yamaguchi, A. Yamamoto, and Mamoru Kondo, “Photo-luminescence of ZnSe single crystals diffused with a group-III element,” J. Appl. Phys., vol. 48, pp. 5237-5239, 1977. [30] M. Sano, Y. Yamashita, and Y. Okuno, “ Growth and characterization of ZnSe epitaxial layers grown by the solution method,” J. Appl. Phys., Vol.74, pp.15-17, 1993. [31] S. Fujita, H. Mimoto, and T. Noguchi, “ Photoluminescence in ZnSe grown by liquid epitaxy from Zn-Ga solution,” J. Appl. Phys., vol. 50, pp. 1079-1080, 1979. [32] A. Kamata and T. Moriyama, “ Luminescence properties of nitrogen ion implanted ZnSe after thermal annealing,” Appl. Phys. Lett. vol. 67, pp. 1751-1753, 1995. [33] L. Radomsky, G. J. Yi, and G. F. Neumark, “ Preferential donor-acceptor pairing results for ZnSe:Na,” Appl. Phys. Lett., vol. 64(8), pp. 1027-1029, 1994. [34] H. G. Grimeiss, and C. Ovren, “ Identification of deep centers in ZnSe,” J. Appl. Phys., vol. 48, pp. 5122-5123, 1977. [35] M. Y. Yeh and M. K. Lee, “ZnSe blue LED with nitrogen-doped ZnSe grown in a Se-rich condition by low-pressure OMCVD,” IEEE, Hong Kong. pp. 73-76, 6-10 Nov. 1995. [36] J. H. Park, O. O. Park, J. W. Yu, J. K. Kim, and Y. C. Kim “Effect of polymer-insulating nanolayers on electron injection in polymer light-emitting diodes” Appl. Phys. Lett. 84, 1783 (2004) [37] J. Liu, T. F. Guo, and Y. Yang “Effects of thermal annealing on the performance of polymer light emitting diodes” J. Appl. Phys. 91, 1595 (2002) [38] H. N. Aiyer, D. Nishioka, N. Matsuki, H. Shinno, V. P. S. Perera, T. Chikyow, H. Kobayashi, and H. Koinuma “Improved performance of amorphous silicon thin film transistors by cyanide treatment”Appl. Phys. Lett. 78, 751 (2001) [39] K. Sreenivas, T. Sudersena Rao, Abhai Mansingh, and Subhash Chandra “Preparation and characterization of rf sputtered indium tin oxide films” J. Appl. Phys. 57, 384 (1985) [40] F. Nuesch, L. J. Rothberg, E. W. Forsythe, Quoc Toan Le, and Yongli Gao “A photoelectron spectroscopy study on the indium tin oxide treatment by acids and bases”Appl. Phys. Lett. 74, 880 (1999) [41] D. L. Rogers, “ Integrated optical receivers using MSM detectors,” IEEE Journal of Lightwave Technology, vol. 9, no. 12, pp.1635-1638, 1991. [42] Z. C. Huang, C. R. Wie, I, Na, H. Luo, D. B. Mott, and P. K. Shu, “ High performance ZnSe photoconductors,” Electronics Letters, vol. 32, no. 16, pp. 1507-1509, 1996. [43] R. N. Joshi, V. P. Singh, J. C. McClure, “Characteristics of indium tin oxide films deposited by rf magnetron sputtering, “Thin Solid Films, vol. 257, no. 1, pp 32-35,1995. [44] J. H. Tsai, “ The investigation of the characteristics and the application of ZnSe vapor phase epitaxial layer on Si Substrate,” National Taiwan Ocean University, pp.31-36, 1994. [45] A. Huber et al., “Monolithic, high transimpedance gain (3.3K), 40Gb/s InP–HBT photoreceiver with differential outputs,” Electron. Lett. vol. 35, pp. 897–898, 1999. [46] Z. Lao et al., “20-Gb/s 14-k transimpedance long-wavelength MSM-HEMT photoreceiver OEIC,” IEEE Photon. Technol. Lett., vol.10, pp. 710–712, 1998. [47] P. Fay et al., “High-speed digital and analog performance of low-noiseintegrated MSM-HEMT photoreceivers,” IEEE Photon. Technol. Lett.,vol. 9, pp. 991–993, 1997. [48] D. L. Rogers, "Monolithic integration of a 3GHz MESFET detector/ preamplifier,"in Proc. IEEE Gallium Arsenide Int. Circsymp. GaAs IC. 1986, p. 233.
|