|
[1] B. Bhanu and J. Peng, “Adaptive integrated image segmentation and object recognition,” IEEE Trans. Systems, Man, and Cybernetics, vol. 30, no. 4, pp. 427-441, Nov. 2000. [2] P. Suetens, P. Fua, and A. J. Hanson, “Computational strategies for object recognition,” ACM Comput. Surv., vol. 24, pp. 5-61, Mar. 1992. [3] K. Hohne, H. Fuchs, and S. Pizer, 3D Imaging in Medicine: Algorithms, Systems, Applications, Berlin, Germany: Springer-Verlag, 1990. [4] M. Boman, K. Hohne, U. Tiede, and M. Riemer, “3-D segmentation of MR images of the head for 3-D display,” IEEE Trans. Med. Image, vol. 9, pp. 253-277, June 1990. [5] P. Willemin, T. Reed, and M. Kunt, “Image sequence coding by split and merge,” IEEE Trans. Commun., vol. 39, pp. 1845-1855, Dec. 1991. [6] F. D. Natale, G. Desoli, D. Giusto, and G. Vernazza, “Polynomial approximation and vector quantization: A region-based integration,” IEEE Trans. Commun., vol. 43, 1995. [7] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd Edition, Prentice-Hall, New Jersey 2002. [8] N. R. Pal and S. K. Pal, “A review on image segmentation techniques,” Pattern Recognition Soc., pp. 1277-1294, 1993. [9] R. Haralick and L. Shapiro, “Image segmentation techniques,” CVGIP, vol. 29, pp. 100-132, 1985. [10] D. Marr, and E. Hildreth, “Theory of edge detection,” Proc. R. Soc. Lond., vol. B207, pp. 187-217. 1980. [11] R. M. Haralick, “Digital step edges from zero crossing of second directional derivatives,” IEEE Trans. Pattern Anal. Machine Intell., vol. 6, pp. 58-68, 1984. [12] J. F. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Machine Intell., vol. 8, pp. 679-698, 1986. [13] J. Basak, B. Chanda, and D. D. Majumder, “On edge and line linking with connectionist models,” IEEE Trans. System, Man, and Cybernetics, vol. 24, pp. 413-428, Mar. 1994. [14] S. A. Hojjatoleslami and J. Kittler, “Region growing: a new approach,” IEEE Trans. Image Processing, vol. 7, pp.1079-1084, Jul. 1998. [15] S. Chen, W. Lin, and C. Chen, “Split-and-merge image segmentation based on localized feature analysis and statistical tests,” CVGIP: Graph. Models Image Processing, vol. 53, pp. 457-475, Sep. 1991. [16] Z. Wu, “Homogeneity testing for unlabeled data: A performance evaluation,” CVGIP: Graph. Models Image Processing, vol. 55, pp. 370-380, Sep. 1993. [17] T. Pavlidis and Y. Liow, “Integrating region growing and edge detection,” IEEE Trans. Pattern Anal. Machine Intell., vol. 12, pp. 225-233, Mar. 1990. [18] L. D. Griffin, A. C. F. Colchester, and G. P. Robinson, “Scale and segmentation of grey-level images using maximum gradient paths,” Image Vis. Comput., vol. 10, pp. 389-402, 1992. [19] L. Vincent and P. Soille, “Watersheds in digital spaces: An efficient algorithm based on immersion simulations,” IEEE Trans. Pattern Anal. Machine. Intell., vol. 13, pp. 583-598, June 1991. [20] F. Meyer and S. Beucher, “Morphological segmentation,” Journal of Visual Commun. Image Representation, vol. 1, pp. 21-46, Sep. 1990. [21] Y. W. Yu, “Image segmentation Based on improved watershed technique,” Master Thesis, National Taiwan Ocean University, Taiwan, Jun. 2000. [22] S. A. Hojjatoleslami, and J. Kittler, “Region Growing: A New Approach,” IEEE Trans. Image Processing, vol. 7, no. 7, pp. 1079-1084, Jul. 1998. [23] P. Salembier, F. Marques, “Region-Based Representations of Image and Video: Segmentation Tools for Multimedia Services,” IEEE Trans. Circuits and Systems for Video Technology, vol. 9, no. 8, pp.1147-1169, Dec. 1999. [24] T. Pavlidis, Structural Pattern Recognition, New York: Springer, 1980. [25] K. Haris, S. N. Efstratiadis, N. Maglaveras, and A. K. Katsaggelos, “Hybrid image segmentation using watersheds and fast region merging,” IEEE Trans. Image Processing, vol. 7, no. 12, pp. 1684-1699, Dec. 1998. [26] F. Meyer, “Color image segmentation,” Intnl. Conf. on Image Processing and its Applications, pp. 303-306, 1992. [27] K. Saarinen, “Color image segmentation by a watershed algorithm and region adjacency graph processing,” Proc. ICIP-94, Image Processing, IEEE Intnl. Conf., vol. 3, pp. 1021-1025, Nov. 1994. [28] K. Haris, and M. Strintzis, “Segmentation of 3D MR image sequences,” Proc. Intnl.WorkShop on Stereoscopic and Three Dimensional Imaging, Santorini, Greece, pp 270-274, Sep. 1995. [29] A. Bleau and L. J. Leon, “Watershed-based segmentation and region merging,” Computer Vision and Image Understanding, vol. 77, no. 3, pp. 317-370, Mar. 2000. [30] L. Najman and M. Schmitt, “Geodesic saliency of watershed contours and hierarchical segmentation,” IEEE Trans. Pattern Anal. Machine. Intell., vol. 18, Issue 12, pp. 1163-1173, Dec. 1996. [31] T. J. Paul, “Gradient Watersheds in Morphological Scale-Space,” IEEE Trans. Image Processing, vol. 5, no. 6, pp. 913-921, June 2001. [32] J. Serra, Image Analysis and Mathematical Morphology, London: Academic, 1982. [33] S. R Sternberg, “Grayscale morphology,” Comput. Vision, Graphics, Image Processing, pp. 333-355, 1986. [34] J. M. Gauth, “Image segmentation and analysis via multiscale gradient watershed hierarchies,” IEEE Trans. Image Processing, vol. 8, no. 1, pp. 69-79, Jan. 1999. [35] L. Vincent, “Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms,” IEEE Trans. Image Processing, vol. 2, Issue 2, pp. 176-201, Apr. 1993. [36] A. P. Mendonca and E. A. B. da Silva, “Segmentation approach using local image statistics,” Electronics Letters, vol. 36, Issue 14, pp. 1199-1201, 6 July 2000. [37] R. N. Davé and R. Krishnapuram, “Robust clustering methods: a unified view,” IEEE Trans. Fuzzy Systems, pp. 270-293, 1997. [38] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, 1981. [39] J. J. Hopfield, “Pattern recognition computation using action potential timing for stimulus representation,” Nature, vol. 376, pp. 33-36, 1995. [40] T. Kohonen, “The self-organizing map,” Proceedings of the Institute of Electrical and Electronics Engineers, vol. 78, pp. 1464-1480, 1990. [41] B. Fritzke, “Growing cell structures − A self-organizing network for unsupervised and supervised learning,” Neural Networks, vol. 7, no. 9, pp.1441-1460, 1994. [42] T. Kohonen, The self-organizing maps, 3rd Edition, Berlin: Springer-Verlag, 2000. [43] J. H. Wang and J. D. Rau, “VQ-Agglomeration − A novel approach to clustering,” IEE Proceedings-Vision, Image and Signal Processing, vol. 148, no. 1, pp. 36-44, Feb. 2001. [44] S. Haykin, Neural Networks − A comprehensive foundation, 2nd Edition, Prentice-Hall, New Jersey, 1999. [45] K. J. Han and A. H. Tewfik, “Hybrid wavelet transform filter for image recovery,” Proc. ICIP-98, Image Processing, IEEE Intnl. Conf., vol. 1, pp. 540-543, Oct., 1998. [46] B. Zeidman, Designing with FPGAs and CPLDs, CMP Books, Sep., 2002.
|