跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/14 05:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張承漢
研究生(外文):Cheng-Han Chang
論文名稱:空氣式噴嘴之液膜噴流霧化數值模式
論文名稱(外文):Numerical Modeling for the Atomization ofLiquid Films Issued from Airblast Nozzles
指導教授:闕振庚
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:機械與輪機工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:78
中文關鍵詞:空氣式噴嘴液膜噴流霧化
外文關鍵詞:Airblast NozzlesLiquid FilmsAtomization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:1
摘要

對於燃氣渦輪機燃燒器的性能與環保改善,燃油噴射和霧化的過程是重要的因素,而其中空氣式噴嘴是燃油供應和產生噴灑與霧化的一個主要方法。因此在工業界有大量的資源用在空氣式噴嘴的設計,但對於燃油噴灑霧化的物理過程並不太瞭解,特別是靠近噴嘴的主要霧化區。一個完整的霧化燃燒模式必須能解決連續液體薄膜運動行為、在兩相界面上的波動力學、以及主要與次要斷裂的霧化機制等問題,本研究主要是針對這些問題,結合圓錐液膜運動模式與兩相界面的不穩定波動力分析,建立一個空氣式噴嘴的霧化模式。
在本研究中,首先建立液膜動力模式,其包含旋性中空圓錐形與非旋性鐘形之兩種環狀液膜噴流。再來以表面波穩定理論為基礎,來分析表面不穩定波的成長率與液膜厚度、速度、黏度、表面張力及燃燒室內壓力的關係。進而聯結液膜動力模式與液膜表面波不穩定分析,建立液膜的主要霧化模式,可預測液膜流動結構(包含:液膜速度、噴灑角度和液膜厚度等)和主要霧化性質(包含:液膜斷裂長度與液滴尺寸)。最後與其他實驗數據比較,來驗証本研究模式的計算結果。
Abstract

Fuel jet and atomization process are important factors to improve the performance and emission pollution of the gas turbine combustor. Airblast nozzle is a main way to supply fuel and to produce spray with atomization. Therefore, there has been great quantity of resources used for designing airblast nozzles in the industry. However, the physics process of fuel spray is still not fully understood, especially in the primary atomization area near the nozzle. A complete atomization combustion model must be provided to resolve these problems, including continuous liquid film motion, wave mechanics on the two-phase interface, and atomization mechanism of primary and second breakup. In the present study, cone film motion model will be coupled with wave dynamics model on the two-phase interface for instability analysis in order to establish a atomization model of airblast nozzle.
In the present study, liquid film dynamics model will be first set up for two annular liquid film jets of swirling hollow cone shape and non-swirling bell shape. Then, based on the surface wave theory, the growth rates of unstable wave on the surface will be analyzed, which are related to liquid film thickness, velocity, viscosity, surface tension, and pressure in the combustion chamber. The liquid film dynamics model and liquid film surface wave analysis are combined to establish primary atomization model of liquid films, which can predict liquid film flow structure (i.e. film velocity, spray angles, and film thickness etc.) and atomization characteristics (i.e. film breakup length and droplet size). Finally, comparison with other experiment data will be made to verify the calculated results of present study model.
目錄
中文摘要
英文摘要
目錄------------------------------------------------------------------ Ⅰ
圖目錄---------------------------------------------------------------- Ⅱ
符號說明-------------------------------------------------------------- Ⅴ
第一章 簡介----------------------------------------------------------- 1
1-1 研究動機---------------------------------------------------------- 1
1-2 文獻回顧---------------------------------------------------------- 5
1-3 研究目標---------------------------------------------------------- 12
第二章 研究方法------------------------------------------------------- 14
2-1液膜動力模式------------------------------------------------------- 14
2-2液膜表面波不穩定理論----------------------------------------------- 22
2-3液膜斷裂與霧化模式------------------------------------------------- 26
2-4模式聯結程序------------------------------------------------------- 32
第三章 結果與討論----------------------------------------------------- 35
3-1環狀液膜動力分析--------------------------------------------------- 35
3-2液膜表面波不穩定分析----------------------------------------------- 46
3-3空氣式噴嘴霧化分析------------------------------------------------- 53
第四章 結論與建議----------------------------------------------------- 68
4-1結論--------------------------------------------------------------- 68
4-2建議--------------------------------------------------------------- 70
參考文獻-------------------------------------------------------------- 72
1. LeFebvre, A. H., Gas Turbine Combustion, Hemisphere Publishing Corp., New York, NY, 1983.
2. Habchi, S. D., and Przekwas, A. J., “REFLEQS-2D: A Computer Program for Turbulent Flows With and Without Chemical Reaction, Volume 1: User’s Manual,” GR-88-4, CFD Research Corporation, Huntsville, AL, 1989.
3. Ratcliff, M. L., and Smith, C. E., “REFLEQS-2D: A Computer Program for Turbulent Flows With and Without Chemical Reaction, Volume 2: Validation Manual,” GR-88-4, CFD Research Corporation, Huntsville, AL, 1989.
4. Mongia, H. C., Reynolds, R. S., and Srinivasan, R., “Multidimensional Gas Turbine Combustion Modeling: Applications and Limitations,” ALAA Joumal, Vol. 24, 1986, pp.890.
5. Ferrenberg, A. J., and Varma, M. S., “Atomization Data Requirement for Combustor Modeling,” NASA Report NAS8-34504, 1986.
6. Schuman, M., and Webber, W., “Transient Performance Program,” AFRPL-TR-80-2, 1980.
7. Chiu, H. H., “Effects of Bipropellant Spray Injection and Atomization on Vaporization and Combustion Performance,” Rocket Performance Panel of JANNAF, NASA George C. Marshall Space Flight Center, May 1987.
8. Van Dyke, M., An Album of Fluid Motion, The Parabolic Press, Stanford, CA, 1982.
9. Lefebvre, A. H., “Airblast Atomization,” Prog. Energy Combustion Sci., Vol. 6, 1980, pp. 233.
10. Faeth, G. M., “Current Status of Droplet and Liquid Combustion,” Prog. Energy Combustion Sci., Vol. 3, 1977, pp. 191.
11. Sallam, K. A., Dai, Z., and Faeth, G. M., “Liquid Breakup at the Surface of Turbulent Round Liquid Jets,” International Journal of Multiphase Flow, Vol. 28, 2002, pp. 427-779.
12. Sterling, A. H., and Sleicher, C. A., “The Instability of Capillary Jets,” Journal of Fluid Mechanics, Vol. 68, 1975, pp. 477.
13. Reitz, R. D., and Bracco, F. V., “Mechanism of Atomization of a Liquid Jet,” Phys. Fluid, Vol. 25, 1982, pp. 1730.
14. Lin, S. P., and Kang, D. J., “Atomization of a Liquid Jet,” Phys. Fluid, Vol. 30, 1987, pp. 2000.
15. Przekwas, A. J., Chuech, S. G., and Singhal, A. K., “Numerical Modeling for Primary Atomization of Liquid Jets,” AIAA-89-0163, 1989.
16. Rayleigh, Lord, “On the Instability of Jets”, Proceedings of London Math. Society, vol. 10, 1879, pp. 4.
17. Rayleigh, Lord, Theory of Sound, London, Macmillan, 2nd ed. (reprinted in 1945, New York, Dover), 1896.
18. Weber, C., “Zum Zerfall eines Flussigkeitsstrahles(On the Disruption of Liquid Jets)”, Z. Angew, Math. Mech., vol. 11, 1931, pp. 136.
19. Sterling, M. and Sleicher, C. A., “The Instability of Capillary Jets,” J. Fluid Mech., vol. 68, 1975, pp. 477-495.
20. Reitz, R. D. and Bracco, F. V., “Mechanism of Atomization of a Liquid Jet,” Phys. Fluids, vol. 25, 1982, pp. 1730-1742.
21. Lin, S. P. and Kang, D. J., “Atomization of a Liquid Jet,” Phys. Fluids, Vol.30, No.7, 1987, pp. 2000-2006.
22. Lin, S. P. and Reitz, R. D., “Drop and Spray Formation From a Liquid Jet,” Annu. Rev. Fluid Mech., vol. 30, 1998, pp. 85-105.
23. Inamura, T., and Daikoku, M., “Numerical Simulation of Droplet Formation from Coaxial Twin-Fluid Atomizer,” Atomization and Sprays, Vol. 12, 2002, pp. 247-266.
24. Squire, H. B., “Investigation of the Instability of a Moving Liquid Film,” Brit. Journal of Appl. Phys., Vol. 4, 1953, pp. 167.
25. Haggerty, W. W., and Shea, J. F., “A Study of the Stability of Plane Fluid Sheets,” Journal of Appl. Mech., Vol. 22, 1955, pp. 509.
26. Fraser, R. P., Eisenklam, P., Dombrowski, N., and Hasson, D., “Drop Formation from Rapidly Moving Liquid Sheets,” Amer. Inst. of Chem. Journal, Vol. 8, 1962, pp. 672.
27. Dombrowski, N., and Hooper, P., “The Effect of Ambient Density on Drop Formation in Sprays,” Chem. Engrg. Sci., Vol. 17, 1962, pp. 291.
28. Lozano, A., and Barreras, F., “Experimental Study of the Gas Flow in an Air-Blasted Liquid Sheet,” Experiments in Fluids, Vol. 31, 2001, pp. 367-376.
29. Li, X., and Shen, J., “Experiments on Annular Liquid Jet Breakup,” Atomization and Sprays, Vol. 11, 2001, pp. 557-573.
30. Kim, W. T., Hub, K. Y., Friedman, J. A., and Renksizbulut, M., “Numerical Investigation of a Steady Nonevaporating Hollow-Cone Spray Interacting with Annular Air Jet,” Atomization and Sprays, Vol. 11, 2001, pp. 187-200.
31. Amsden, A. A., KIVA-3: A KIVA Program with Block-Structured Mesh for Complex Geometries, Los Alamos Natl. Lab. Rep. LA-12503-MS, March 1993.
32. Liao, Y., Jeng, S. M., Jog, M. A., and Benjamin, M. A., “Advanced Sub-Model for Airblast Atomizers,” Journal of Propulsion and Power, Vol. 17, No. 2, 2001, pp. 411-417.
33. Hirt, C. W., and Nichols, B. D., “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” Journal of Comp. Phys., Vol. 26, 1981.
34. Przekwas, A. J., “Spray Formation in Liquid Propellant Atomization Systems,” JANNAF Workshop on Atomization, NASA George C. Marshall Space Center, AL, May 1987.
35. Liang, P. Y., “Liquid Rocket Computer Code Development,” Proceeding of High-Pressure Oxygen/Hydrogen Technology conference, NASA CP-2372, 1986.
36. Przekwas, A. J., Chuech, S. G., and Gross, K. W., “Computational Modeling Development for Liquid Propellant Atomization,” Proceedings of the 25th JANNAF Combustion Meeting: Vol. 11, NASA Marshall Space Flight Center, Huntsville AL, Oct. 1988, pp. 81-92.
37. Savart, F., Ann. Chem. Phys., Vol. 54, 1833, pp. 55; Ibid., Vol. 55, 1834, pp. 257.
38. Boussinesq, J., C. R. Acad. Sic., Paris, Vol. 69, 1869, pp. 45; Ibid., Vol. 157, 1913, pp. 89.
39. Binnie, A. M., and Squire, H. B., “Liquid Jets of Annular Cross Section,” Engineer, Vol. 171, 1941, pp. 236.
40. Hopwood, F. L., “Water Bells,” Proc. Phys. Soc., Vol. B65, 1952, pp. 2.
41. Lance, G. N., and Perry, R. L., “Water Bell,” Proc. Phys. Soc., Vol. B66, 1953, pp. 1067.
42. Taylor, G., “The Dynamics of Thin Sheets of Fluid, I. Water Bells,” Proc. Roy. Soc., Vol. A253, 1959, pp. 289.
43. Baird, M. H. I., and Davidson, J. F., “Annular Jets, I. Fluid Dynamics,” Chem. Engrg. Sci., Vol. 17, 1962, pp. 467.
44. Dombrowski, N., and Johns, W. R., “The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets,” Vol. 18, 1963, pp. 203.
45. Meyer, J., and Weihs, D., “Capillary Instability of an Annular Liquid Jet,” Journal of Fluid Mechanics, Vol. 179, 1987, pp. 531.
46. York, J. L., Stubbs, H. E., and Tek, M. R., “The Mechanism of Disintegration of Liquid Sheets,” Trans. ASME, Vol. 75, 1953, pp. 1279.
47. Rayleigh, Lord, Theory of Sound, 2nd Ed., Macmillan, London, 1894.
48. Taylor, G., “The Dynamics of Thin Sheets of Fluid, III. Disintegration of Fluid sheets,” Proc. Roy. Soc., Vol. A253, 1959, pp. 313.
49. York, J. L., and Stubbs, H. E., “Photographic Analysis of Sprays,” Trans. ASME, Vol. 74, 1952, pp. 1157.
50. Dombrowski, N., and Fraser, R. P., “A Photographic Investigation into the Disintegration of Liquid Sheets,” Phil. Trans. Roy. Soc., Vol. A247, 1954, pp. 101.
51. Rizk, N. K., and LeFebvre, A. H., “Influence of Liquid Film Thickness on Airblast Atomization,” Presented at Winter Annual Meeting of ASME, Atlanta, GA, Gas Turbine Combustion and Fuels Technology, 1977, pp. 37.
52. Rizkalla, A. A., and LeFebvre, A. H., “Influence on Liquid Properties on Airblast Atomization,” Trans. ASME, J. Fluids Engrg, Vol. 97, 1975, pp. 316.
53. Rizk, N. K., “Studies on Liquid Sheet Disintegration in Airblast Atomizers,” Ph.D. Thesis, Canfield Institute of Technology, 1977.
54. Graves, C. C., and Bahr, D. W., “Atomization and Evaporation of Liquid Fuels,” National Advisory Committee for Aeronautics, Report No. 1300, 1959.
55. Meister, B. J., and Scheele, G. F., “Prediction of Jet Length in Immiscible Liquid Systems,” AIChE Journal, Vol. 15, 1966, pp. 669.
56. Phinney, R. E., “Stability of a Laminar Viscous Jet – The Influence of the Initial Disturbance Level,” AIChE Journal, Vol. 18, 1972, pp. 432.
57. Chuech, S. G., and Przekwas, A. J., “Numerical Modeling for Airblast Atomization,” CFDRC Report 4060/1, 1989.
58. Bryan, R., Godbole, P. S., and Norster, E. R., “Characteristics of Airblast Atomizers,” Combustion and Heat Transfer in Gas Turbine Systems, Cranfield International Symposium Series,Volume II, Pergamon Press, 1971, pp. 343.
59. Jasuja, A. K., “Atomization of Crude and Residual Fuel Oils,” ASME Paper 78/GT/83, Presented at ASME Gas Turbine Conference, London, 1978.
60. Radcliffe, A., “Fuel Injection,” sec. D, Vol. XI, High Speed Aerodynamics and Jet Propulsion, Princeton University Press, 1960.
61. Abou-Ellail, M. M. M., Elkotb, M. M., and Rafat, N. M., “Effect of Fuel Pressure, Air Pressure and Air Temperature on Droplet Size Distribution in Hollow-Cone Kerosene Sprays,” Proceedings of the First International Conference on Liquid Atomization and Spray Systems, 1978, pp. 85-92.
62. Simmons, H. C., “The Prediction of Sauter Mean Diameter for Gas Turbine Fuel Nozzles of Different Types,” ASME Paper 79-WA/GT-5, 1979.
63. Smith, C. E., Graves, C. B., Johnson, B. V., and Roback, R., “Advanced Fuel Injector Characterization,” Phase I Design Report, Naval Regional Contracting Center, Contract No. N00140-83-C-8899, 1986.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 3.朱麗容,中共承認及執行外國仲裁判斷的司法實踐-廣州遠洋運輸公司申請承認及執行英國仲裁判斷裁決案的評析,商務仲裁,第31期,1992年7月。
2. 2.朱麗容,外國仲裁判斷在中國大陸的承認及執行,商務仲裁,第30期,1991年9月。
3. 1.王泰銓,大陸台灣同胞投資保護法實施細則評析,兩岸經貿通訊,第97期,2000年1月。
4. 4.吳光明,衡平原則與衡平仲裁 "Equity and Amiable Compositeur",中興法學,第43期,1997年12月。
5. 7. 李永然,台商對大陸仲裁制度的應有認識-兼論大陸仲裁法的適用與特色,商務仲裁,第38期,1995年1月。
6. 8. 李玉章,中共國際經濟貿易仲裁制度概述,商務仲裁,第28期,1991年3月。
7. 9.李玉章,中共海事仲裁與海事爭議,商務仲裁,第30期,1991年9月。
8. 10.李念祖,仲裁在兩岸經貿投資活動的功能,商務仲裁,第38期,1995年1月。
9. 11.李家慶,大陸現行仲裁制度相關課題之探討,商務仲裁,第48期,1997年12月。
10. 13.林文軒,大陸仲裁制度現狀與問題,台北,法令月刊,第54卷,第3期,2003年3月。
11. 14.林曉瑩,論仲裁人之獨立性及公正性,仲裁,第63期,2001年12月。
12. 15.柯澤東,全球化、仲裁與主權國家,仲裁,第68 期,2003年5月。
13. 16.柯澤東,國際貿易與商務仲裁 (上),商務仲裁,第35期,1994年1月。
14. 17.柯澤東,國際貿易與商務仲裁 (下),商務仲裁,第36期,1994年4月。
15. 18.范光群,大陸仲裁法的評介及其與台灣商務仲裁制度的比較,商務仲裁,第38期,1995年1月。