跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/08 02:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許炳耀
研究生(外文):Ping-Yao Hsu
論文名稱:個人電腦使用多孔噴流冷卻圓柱熱沉之數值研究
論文名稱(外文):A Numerical Study of Multiple-Jet Impingement Cooling on Pin-Fin Heat Sinks in Personal Computers
指導教授:田華忠田華忠引用關係
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:機械與輪機工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:75
中文關鍵詞:衝擊冷卻單孔噴流多孔噴流熱阻熱沉
外文關鍵詞:impingement coolingsingle-jetmultiple-jetthermal resistanceheat sink
相關次數:
  • 被引用被引用:0
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文以單孔或多孔噴流搭配圓形柱狀鰭片熱沉為散熱模組作數值分析,並將散熱模組植入桌上型電腦,模擬其系統內之熱流場。首先採用單孔噴流方式對圓形柱狀鰭片熱沉之直徑、底板厚度作討論,並在不同雷諾數下作高度最佳化設計。接著選擇鰭片熱沉底板大小75×95×7mm、鰭片直徑5.2mm、鰭片高度32.75mm,固定噴流高度與孔徑比H/D=4、噴流雷諾數15000為其基準散熱模組,討論多孔噴流孔距與孔徑比S/D之值,以S/D=4時可得最低熱阻值。
固定上述參數,將其植入Intel Pentium 4 1.5GHz 發熱量54.7瓦之個人電腦,討論不同噴流孔數與雷諾數之熱流場,發現四孔噴流方式於雷諾數15000時即可符合英特爾規定之操作溫度且比單孔噴流方式低約5℃。但當雷諾數加大至35000,單孔與多孔的溫差縮小為3℃。另有鑑於系統內部有熱堆積情形,吾人針對四孔噴流提出幾種改善方式,以加裝系統風扇於機殼側邊直接抽取熱堆積處可得較佳之散熱效果,不僅可降低處理器溫度,亦可有效減少個人電腦其它硬體之溫度。
In this study, single or multiple-jet impingement cooling on a pin-fin heat sink was numerically analyzed. The heat sink along with the jets was conceptually implemented in a personal computer and the thermal and fluid fields were investigated. First, we discussed the effects of the pin diameter and the thickness of the base plate under the condition of single-jet impingement cooling. The fin height was optimized for various jet Reynolds numbers. Next, we chose a 75×95×7mm heat sink with fin diameter of 5.2mm, fin height of 32.75mm, H/D (ratio of jet height to jet diameter) of 4, and the jet Reynolds number of 15000 as the benchmark values for these parameters. The effects of S/D (ratio of jet spacing to the jet diameter) were studied under the forgoing condition. It was found that the thermal resistance of the heat sink arrives at its minimum when S/D is equal to 4. After being installed in a personal computer (with an Intel P4 1.5GHz CPU, 54.7W), it was found that the CPU operating temperature under four-jet impingement cooling is able to fulfill the specifications by Intel, and is lower than that under single-jet cooling by 5℃ when the jet Reynolds number equals 15000. However, the difference reduces to 3℃ as the jet Reynolds number increases to 35000. Moreover, in order to depress the accumulation of the waste heat for jet Reynolds number of 15000, several possible improvements were proposed. It was found that adding a fan installed on the side of the chasis would remove the waste heat efficiently and this would reduce the CPU operating temperature as well as other electronic components in the computers.
中文摘要……………………………………………………………… Ⅰ
英文摘要……………………………………………………………… Ⅱ
目錄…………………………………………………………………… Ⅲ
表目錄………………………………………………………………… Ⅴ
圖目錄………………………………………………………………… Ⅵ
符號說明……………………………………………………………… Ⅸ
第一章 緒論………………………………………………………… 1
1-1 前言………………………………………………………… 1
1-2 文獻回顧…………………………………………………… 2
1-3 研究目的…………………………………………………… 5
第二章 數值方法…………………………………………………… 7
2-1 前言………………………………………………………… 7
2-2 數值方法…………………………………………………… 7
2-2-1 基本元素有限體積法簡介………………………… 7
2-2-2 基本假設…………………………………………… 8
2-2-3 統御方程式與離散方程式………………………… 9
2-3 數值模擬流程……………………………………………… 12
2-3-1 前處理……………………………………………… 12
2-3-2 定義有限元素及求解……………………………… 13
2-3-3 後處理……………………………………………… 14
第三章 結果與討論 ………………………………………………… 15
3-1 熱沉熱傳分析……………………………………………… 15
3-1-1 熱阻………………………………………………… 15
3-1-2 鰭片尺寸最佳化…………………………………… 16
3-2 數值模擬結果的驗証與討論……………………………… 18
3-2-1 網格數之討論……………………………………… 18
3-2-2 數值模擬驗證……………………………………… 19
3-3 有限制和無限制噴流之差異……………………………… 19
3-4 熱沉幾何效應……………………………………………… 20
3-4-1 鰭片直徑…………………………………………… 20
3-4-2 熱沉底板厚度……………………………………… 21
3-4-3 最佳高度…………………………………………… 22
3-5 多孔噴流…………………………………………………… 22
3-5-1 噴流間距比………………………………………… 22
3-5-2 單孔與多孔噴流比較……………………………… 23
3-6 全機模擬…………………………………………………… 24
3-7 系統改良…………………………………………………… 25
第四章 結論 ………………………………………………………… 27
附表…………………………………………………………………… 29
附圖…………………………………………………………………… 31
參考文獻……………………………………………………………… 60
1. “Intel Pentum 4 Processor Datasheet,”from
http://processorfinder.intel.com/scripts/list.asp?ProcFam=483
2. S. Narasimhan and J. Majdalani,“Characterization of Computer Heat Sink Models in Natural Convection,”IEEE Trans. on Comp., Packag. Tech., Vol. 25, No. 1, pp. 78-86, Sep. 2002.
3. Y. Kondo, H. Matsushima, and T. Komatsu,“Optimization of Pin-Fin Heat Sinks for Impingement Cooling of Electronic Package,”ASME Journal of Electronic Packag.,Vol. 122,pp. 240-246,Sep. 2000.
4. H. A. El-Sheikh and S. V. Garimella,“Enhancement of Air Jet Impingement Heat Transfer Using Pin-Fin Heat Sink,” IEEE Trans. on Comp., Packag. Tech., Vol. 23, No. 2, pp. 300-308, Sep. 2000.
5. H. A. El-Sheikh and S. V. Garimella,“Heat Transfer form Pin-Fin Heat Sinks under Multiple Impingement Jets,” IEEE Trans. on Comp., Packag. Tech., Vol. 23, No. 1, pp. 113-120, Sep. 2000.
6. L. B. Y. Aldabbagh and I. Sezai,“Numerical Simulation of Three-dimensional Laminar Multiple Impingement Square Jets,”Int. J. Heat and Fluid Flow, Vol. 23,pp. 509-518, Sep. 2002.
7. L. A. Brignoi and S. V. Garimella, “Heat Transfer From a Finned Surface in Ducted Air Jet Suction and Impingement,”ASME. Electronic Packaging, Vol. 122, pp. 282-285,Sep. 2000.
8. J. R. Guarino and V. P. Manno“Characterization of Laminar Jet Impingement Cooling in Portable Computer Applications,” IEEE Trans. on Comp., Packag. Tech., Vol. 25, No. 3, pp. 337-346, Sep. 2002.
9. H. C. Ryu, D. Kim, and S. J. Kim,“Experimental Analysis Of Shrouded Pin Fin Heat Sinks For Electronic Equipment Cooling,”in Proc. IEEE Inter soc. Conf. Thermal Phenom.,Sep. 2002.
10. A. Horvat and I. Catton,“Numerical Technique for Modeling Conjugate Heat Transfer in an Electronic Device Heat Sink,”Int. J. Heat and Mass Tran.,Vol. 46,pp. 2155-2168,Sep. 2003.
11. 黃宏利,“數值探討熱沉散熱器之設計,”國立台灣海洋大學機械與輪機工程學系碩士學位論文,Sep 2001.
12. Z. Zhao and C. T. Avedisian,“Enhancing Forced Air Convection Heat Transfer from an Array of Parallel Plate Fins Using a Heat Pipe,”Int. J. Heat Mass Tran.,Vol. 40,No. 13,pp. 3135-3147,Sep. 1997.
13. K. S. Kim, M. H. Woo, J. W. Kim, and B. J. Back,“Heat Pipe Cooling Technology for Desktop PC CPU,”Applied Thermal Engineering, Vol. 23,pp. 1137-1144,Sep. 2003.
14. 羅玉山、周永泰、林顯群、周建安,“小型電腦軸流風扇之遮蔽效應,” 機械工程研討會論文集, Nov. 2003.
15. N. Khan, Pinjala, M. K. Iyer, T. K. Chuan, and J. Weixin,“Thermal Enhancement of Desk Top Computer by Chassis Design Optimization,”IEEE Electronics Packaging Tech. Conf.,Sep. 2000.
16. J. Y. Chang, C. W. Yu, and R. L. Webb,“Identification of Minimum Air Flow Design for a Desktop Computer Using CFD Modeling,”Inter Society Conference on Thermal Phenomena,Sep. 2000.
17. C. W. Yu and R. L. Webb, “Thermal Design of a Desktop Computer
System Using CFD Analysis,” 17th IEEE SEMI-THERM Symposium, Sep. 2001.
18. MAYA Heat Transfer Technologies Ltd., ”I-DEAS ESC Reference
Manual,” ESC ref9w,Sep. 2001.
19. ” ESC Flow Solver and Modeling Theory,” from
http://www.mayasim.com/expertise/papers/
20. G. E. Schneider and M. J. Raw, “Control-Volume Finite Element
Method For Heat Transfer and Fluid Flow Using Co-located Variables-1. Computational Procedure,” Numerical Heat Transfer, Vol. 11, pp. 363-390,Sep. 1987.
21. M. E. Tomas, N. R. Shimp, M. J. Raw, P. F. Galpin and G. D. Raithby,
“The Development of an Efficient Turbomachinery CFD Analsis Procedure,” AIAA/ASME/SAE/ASEE 25th Joint Propulsion Conference, Monterey, CA, July 10-12, Sep. 1989.
22. C. M. Rhie and W. L. Chow,”A Numerical Study of the Turbulent Flow
Past an Isolated Airfoil with Trailing Edge Separation,” AIAA paper 82-0998,Sep. 1982.
23. A. F. Mills, Heat Transfer, ed., New Jersey:Prentice Hall, 1999 , pp.86-92
24. A. D. Kraus, A. Aziz, and J. Welty, Extended Surface Heat Transfer, New York:Wiley,2001.
25. 黃為棟,“採空氣衝擊冷卻柱狀鰭片熱沉之個人電腦熱傳分析,”國立台灣海洋大學機械與輪機工程學系碩士學位論文,Sep. 2003.
26. 林修宇,“高階個人電腦熱流場數值研究,”國立台灣海洋大學機械與輪機工程學系碩
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊