跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/11 01:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:傅淳彥
研究生(外文):Chun-Yan Fu
論文名稱:低頻扭轉振動輔助硼玻璃磨削效應之研究
論文名稱(外文):Study of the Effect of Low Frequency Torsional Vibration Assisted Grinding for Boron Glass
指導教授:吳忠恕吳忠恕引用關係
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:機械與輪機工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:87
中文關鍵詞:低頻扭轉振動磨削硼玻璃
外文關鍵詞:Low Frequency Torsional VibrationGrindingBoron Glass
相關次數:
  • 被引用被引用:9
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
近些年來隨著科技的蓬勃發展,陶瓷材料製成的高精密零組件需求相較於已往有大幅的增加。而加入振動輔助於磨削中,因其週期性運動和外加於工件的機械式能量,對於硬脆材料的加工具有減少次表面破壞層缺陷的深度和改善表面粗糙度的功效。
本研究主旨在於探討扭轉式振動輔助硼玻璃磨削加工效應。利用兩個壓電致動器同時施力於基座兩側翼上,使基座產生扭轉振動。實驗設計上採用反應曲面法來規劃實驗,並帶入SAS 8.1統計軟體做迴歸分析以建立磨削力和表面粗糙度與加工參數之間的數學模式。最後,以此數學模式來探討低頻扭轉式振動輔助磨削效應以及其與傳統磨削上的差異。
Abstract
Along with the flourishing development of the technology in recent years, the demand of the high precision parts which is made by ceramics. Because of the cyclic motion and the external mechanical energy applied to the workpiece, the vibration assisted machining for hard and brittle materials can reduce the depth of the subsurface damage and improve the surface roughness.
In this study, we investigated the effect of Low frequency torsional vibration assisted grinding for boron glass. Two electromagnetic actuators was arranged to create torsional vibration. In the experiment, we adopted response surface methodology of statistical experimental design to plan the experiment of low frequency torsional vibration assisted grinding. The results of the regression analysis using the SAS 8.1 statistical software can be applied to obtain mathematical relationships to reflect the influence machining factors on grinding forces and surface roughness. Finally the mathematical models were used to study the effect of the law frequency torsional vibration assisted grinding for boron glass and the difference between the new grinding method and the traditional grinding was also investigated.
目錄
第一章 緒論………………………………………………………1
1.1前言…………………………………………………………… 1
1.2文獻回顧……………………………………………………… 1
1.2.1超音波輔助車削………………………………………… 2
1.2.2超音波輔助磨削………………………………………… 5
1.3研究動機……………………………………………………… 8
1.4研究目的……………………………………………………… 8
1.5論文架構……………………………………………………… 9

第二章 相關理論…………………………………………………10
2.1磨輪…………………………………………………………… 10
2.1.1磨粒……………………………………………………… 10
2.1.2結合劑…………………………………………………… 11
2.1.3組織……………………………………………………… 13
2.1.4磨輪的研磨面的研磨作用…………………………….... 13
2.1.5研磨中切刃的變化…………………………………….... 14
2.2磨削去除機制…………………………………………….... 15
2.2.1磨削的切削去除機制………………………………….... 15
2.2.2硬脆材料去除機制……………………………………... 18
2.3振動輔助磨削………………………………………………...20
2.3.1振動輔助磨削的發展狀況……………………………… 20
2.3.2壓電式致動器………………………………………….... 21
2.3.3振動輔助磨削………………………………………….... 22
2.3.4振動輔助磨削之特性………………………………..….. 24

第三章 實驗設備與實驗規劃…………………………………32
3.1實驗設備與工件……………………………………………… 32
3.3.1實驗設備………………………………………………... 34
3.3.2實驗工件………………………………………………… 39
3.2實驗設計……………………………………………………… 40
3.2.1反應曲面法……………………………………………… 40
3.2.2直角表…………………………………………………… 43
3.2.3中心合成設計……………………………………………. 45
3.2.4反應曲面模式分析………………………………………. 46
3.3實驗規劃與流程……………………………………………….49
3.3.1實驗規劃…………………………………………………. 49
3.3.2實驗流程………………………………………………… 52

第四章 實驗結果與討論………………………………………55
4.1實驗結果……………………………………………………… 55
4.2統計檢定……………………………………………………… 57
4.2.1迴歸分析………………………………………………… 57
4.2.2統計檢定………………………………………………… 63
4.2.3迴歸圖形………………………………………………... 67
4.3結果與討論…………………………………………………… 74
4.3.1垂直切削力(Fz)的探討……………………………... 74
4.3.2表面粗糙度(Ra)的探討……………………………... 75
4.4驗證實驗……………………………………………………… 77

第五章 結論與外來展望………………………………………79
5.1結論…………………………………………………………… 79
5.2未來展望……………………………………………………… 79

References………………………………………………………..81
References
1.Henrik D., Per Q., Mads P. S., “Productivity, Surface Quality and Tolerances in Ultrasonic Machining of Ceramics,” Journal of Materials Processing Technology, 1995, p 358-368.
2.Pei, Z. J., Prabhakar, D., Ferreira, P. M., “A Mechanistic Approach to the Prediction of Material Removal Rates in Rotary Ultrasonic Machining,” Department of Mechanical and Industrial Engineering, v 117, May, 1995, p 142-151.
3.Ya, G., Qin H. W., Yang, S. C., Xu, Y. W., “Analysis of the Rotary Ultrasonic Machining Mechanism,” Journal of Materials Processing Technology, 2002, p 182-185.
4.Weber, H., Herberger, J., Pilz, R., “Turning of Machinable Glass Ceramics with an Ultrasonically Vibrated Tool,” Annals of the CIRP, v 33, n 1, 1984, p 85-87
5.Takeyama, H., Iojoma, N., “Machinability of Glassfiber Reinforced Plastics and Application of Ultrasonic Machining,” Annals of the CIRP, v 37, n 1, 1988.
6.Moriwaki, T., Shamoto, E., Inoue, K., ”Ultra-Precision Diamond Turning of Stainless Steel by Applying Ultrasonic Vibration,” JSPE, v 57, n 11, 1991, p 1983-1988.
7.Moriwaki, T., Shamoto, E., Inoue, K., “Ultraprecision Ductile Cutting of Glass by Applying Ultrasonic Vibration,” CIRP Annals, v 41, n 1, 1992, p 141-144.
8.Kim, J. D., Choi, I. H., “Micro Surface Phenomenon of Ductile Cutting in the Ultrasonic Vibration Cutting of Optical Plastics,” Journal of Materials Processing Technology, v 68, n 1, Jun. 16, 1997, p 89-98.
9.Schmutz, J., Brinksmeier, E., Bischoff, E., ”Sub-Surface Deformation in Vibration Cutting of Copper,” Precision Engineering, v 25, n 3, Jul., 2001, p 218-223.
10.Zhou, M., Wang, X. J., Ngoi, B. K. A., ”Brittle-Ductile Transition in the Diamond Cutting of Glasses with the Aid of Ultrasonic Vibration,” Journal of Material Processing Technology, 2002, p 243-251.
11.Wang, X., Zhou, M., Gan, J. G. K., Ngoi, B., “Theoretical and Experimental Studies of Ultraprecision Machining of Brittle Materials with Ultrasonic Vibration,” International Journal of Advanced Manufacturing Technology, v 20, n 2, 2002, p 99-102.
12.Babitsky, V. I., Mitrofanov, A. V., Silberschmidt, V. V., ”Ultrasonically Assisted Turning of Aviation Materials: Simulation and Experimental Study,” Ultrasonics, 2004, p 81-86.
13.Colwell, L. V., ”Effect of High Frequency Vibrations Help in Grinding,” ASME Paper, n 55-SA-12, 1955.
14.N. N., “Ultrasonic Vibrations Help Grinding Strel,” v 152, n 20, 1963.
15.Suzuki, K., Uemastu, T., et al., “A Method for Making Grooves with Sharp Corners on a Green Ceramic Body Using a Tool with Biaxial Ultrasonic Vibration,” Ceramic Trans. 26(ACErs), 1992, p 225-230.
16.Suzuki, K., Tochinai, H., et al, ”A New Grinding Method for Ceramics Using a Biaxially Vibrated Nonrotational Ultrasonic Tool,” Annals of the CTRP, v 42, 1993, p 375-378.
17.Spur, G., “Ultrasonic National Machining and Grinding Conference,” Dearborn, Michigan, 1995, p 12-14.
18.Spur, G., Holl S. E., ”Ultrasonic Assisted Grinding of Ceramics,” Journal of Material Processing Technology, 1996, p 287-293.
19.Uhlmann E., ”Surface Formation Creep Feed Grinding of Advanced Ceramics with and without Ultrasonic Assistance,” Annals of the CIRP, v 47, n 1, 1998, p 249-252.
20.Hashimoto, H., Imai, K., ”Epistemology and Abduction in Shear (Ductile) Mode Grinding of Brittle Materials,” Processing of the ASPE Spring Topical Meeting, 1998, p 36-39.
21.Yang, J., Zhang, Y., Yang, S., Guo, W., Hao, L., “Ultrasonic Vibration Grinding - a New Approach in the Precision Processing of Deep Holes in Ceramics,” Binggong Xuebao/Acta Armamentarii, v 19, n 3, Aug., 1998, p 287-288.
22.Qu, W., Wang, K., Miller, M. H., Huang, Y., Chandra, A., “Using Vibration-Assisted Grinding to Reduce Subsurface Damage,” Journal of the International Societies for Precision Engineering and Nanotechnology, 2002, p 329-337.
23.Onikura, H., Ohnishi, O., Take, Y., ”Fabrication of Micro Carbide Tools by Ultrasonic Vibration Grinding,” CIRP Annals - Manufacturing Technology, v 49, n 1, 2000, p 257-260.
24.Spur, G., Uhlmann, E., Holl, S. E., “Ultrasonic Assisted Grinding of Ceramics,” Industrial Ceramics, v 21, n 3, Dec., 2001, p 177-181.
25.Zhao, B., Liu C., Gao G., Jiao F., “Surface Characteristics in the Ultrasonic Ductile Honing of Ceramics Using Coarse Grits,” Journal of Materials Processing Technology, 2002, p 54-60.
26.Inasaki I., “Grinding of Hard and Brittle Materials,” Annals of the CIRP, v 36, n 2, 1987, p 463-471.
27.McEachron, R. W., Ratterman E., “Diamond Processing of Structural Ceramics,” Ceramic Engineering and Science Proceedings, v 7, n 7-8, 1986, p 1063-1069.
28.Alfares, M., Elsharkawy, A., “ Effect of Grinding Forces on the Vibration of Grinding Machine Spindle System,” International Journal of Machine Tools and Manufacture, v 40, n 14, Sep., 2000, p 2003-2030.
29.Landman, U., “Frustrated Lubricant Molecules Offer New Strategy for Reducing Friction in Mechanical Devices,” Journal of Physical Chemistry, v B102, 1998, p 5033-5037.
30.William, D., Callister, Jr., “Materials Science And Engineering An Introduction,” John Wiley &Sons, Inc., 2000.
31.Mohammed, A., Abdallah E., “Effect of Grinding Forces on Vibration of Grinding Machine Spindle System,” International Journal of Machine Tools & Manufacture, 2000, p 2003-2030.
32.傅光華,"切削工具學",高立圖書股份有限公司,民國七十四年初版。
33.賴耿陽編,"精密加工新技術全集",復漢出版社,民國九十年六月第一版。
34.賴耿陽編,"超音波工學理論實務",復漢出版社,民國九十年三月第一版。
35.劉應進,"精密陶瓷電解式線上削銳研磨之研究",碩士論文,國立海洋大學,2000。
36.黃銘銓,"電解式線上削銳系統磨削性能與機構之研究",碩士論文,國立海洋大學,2001。
37.陳界評,"高頻振動輔助電解式線上削銳磨削系統之研究",碩士論文,國立海洋大學,2002。
38.簡國諭,"超音波振動輔助車削之研究",碩士論文,國立中正大學,2002。
39.張智星著,"MATLAB程式設計與應用",清蔚科技股份有限公司,2000。
40.姚景星著,"實驗設計",華泰書局,民國七十八年八月出版。
41.張瑞慶譯,"非傳統加工",高立圖書股份有限公司,民國八十四年二版。
42.簡國諭、張萬欽、陳政雄,"超音波振動輔助車削之動態幾何參數電腦模擬分析",機械月刊第二十八卷第九期。
43.陳政雄,"超精密奈米加工技術之進展、應用與未來趨勢",機械月刊第二十七卷第八期。
44.蔡鎮竹,”壓電煞車之專利介紹”,機械月刊第二十八卷第四期。
45.江茂雄、鄒丹妮、張瑛淑,"高精密氣壓-壓電混合定位控制",機械月刊第二十八卷第八期。
46.張裕祺,"電化學加工",化學技術第一卷第五期。
47.吳東霖、林傑斌、劉明德編著,"SAS與統計模式建構",文魁資訊股份有限公司,2002。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top