跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/19 03:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃川東
研究生(外文):Chuan-Tung Huang
論文名稱:應用FLOTHERM於電腦中央處理器散熱鰭片熱流場設計之研究
論文名稱(外文):On Study of Heat Flow Fields in the Fin Array of the CPU by FLOTHERM Packge
指導教授:楊國誠雷顯宇
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:機械與輪機工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:98
中文關鍵詞:有限體積法熱傳遞對流熱傳遞係數紐賽數強制對流
外文關鍵詞:FLOTHERMheat transferheat transfer coefficientNusselt numberforced convection
相關次數:
  • 被引用被引用:2
  • 點閱點閱:724
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要

隨著科技的進步,現今的電腦已經和以往大大不同,無論是在運算效能、體積、重量及周邊整合度上都大有精進。CPU面對越來越高的工作時脈,使得晶體的消耗功率也大幅增加,晶體溫度亦隨之上升,如何有效地作廢熱處理,以避免熱集中現象,已成為散熱設計者所需要面臨的艱鉅挑戰。

本文以套裝軟體FLOTHERM為數值模擬軟體工具,討論主要分為四部份,第一部份,藉由比對一維、二維及三維鰭片熱傳導解析解與數值解結果,誤差均在2.0%以下,確定了模擬軟體的適用性及精確度。第二部份、藉由利用紐塞數經驗關係式,探討層流場之對流熱傳遞係數、出口溫度及熱傳量,研究結果發現在熱入口區佔管長越長時,對流熱傳遞係數會越高,與經驗關係式計算的結果差距會越大,層流場之熱入口長度隨雷諾數增加而增長。第三部份探討紊流場在不同雷諾數下,熱入口區效應的影響,研究顯示雷諾數越高,紐塞數也越大,但熱入口長度不會因雷諾數越高而有增長的趨勢。第四部份、藉由實例研究針對平板式與交錯式鰭片陣列做一探討,由研究結果得知在不增加散熱面積的條件下,交錯式鰭片陣列在對流熱傳遞係數與熱傳量皆優於平板式鰭片陣列。
ABSTRACT

Nowadays, with continuous development of technology, computers not only are developed towards light and handy, but also can be operated at a high speed. However, the high speed of the central processing units (CPU) increased the heat source from the chip dramatically. In order to decrease the load on computers and prevent any possible heat concentration, how to increase the heat dissipation efficiently is therefore becoming one of the keys to the CPU thermal designers.

Based on simulation software, FLOTHERM, this study was divided into four parts. Firstly, three kinds of fins were compared (one-dimensional, two-dimensional, three-dimensional) , the errors of the conduction heat transfer analytic solutions and numerical solutions were within 2.0%. It is proved that this software’s accuracy and availability in the heat conduction analysis. Secondly, according to the results obtained from correlation of experimental Nusselt number, the longer the thermal entrance region in the rectangular tube, the higher the convection heat transfer coefficient. It was different from the formula we used before. Thirdly, the relationships between different Reynolds number and the thermal entrance region were examined, it was shown that Nusselt number would be higher if Reynolds number were higher, but the length of the thermal entrance region would not become longer even though Reynolds number became larger. Finally, an experiment on the staggered fin array and the plate fin array was studied to evaluate the convection heat transfer coefficient and the heat transfer rate. In the case of maintaining the same area of heat dissipation, it is proved that the staggered fin array was more thermally efficient than the plate fin array.
目錄
頁次
中文摘要 I
英文摘要 II
目錄 IV
符號說明 VI
第一章 緒論 1
1-1前言 1
1-2文獻回顧 2
1-3研究動機 6
第二章 研究方法與理論分析 7
2-1 FLOTHERM CODE 簡介與基本架構 7
2-2基本假設 8
2-3統御方程式 9
2-4離散化方法 10
2-5 SIMPLE演算法 13
第三章 結果與比較討論 18
3-1散熱鰭片熱傳分析與驗證 18
3-1-1 一維散熱鰭片 18
3-1-2 二維散熱鰭片 25
3-1-3 三維散熱鰭片 28
3-1-4固體熱傳導格點數討論 30
3-1-5 FLOTHERM於熱傳導場的適用性 32

3-2層流場熱傳分析比較 32
3-2-1矩形管熱傳分析與驗證 32
3-2-1層流場熱入口效應 35
3-3紊流場熱傳分析比較 36
3-3-1對流熱傳遞經驗式與數值解之紐塞數比較 36
3-3-2不同雷諾數下局部紐塞數與熱入口區之影響 37
3-4實例研究─平板鰭片與交錯式平板鰭片比較 38
3-4-1格點測試 39
3-4-2熱傳分析比較 40
3-4-3熱流場分析 40
第四章 結論與未來展望 42
4-1結論 42
4-2未來展望 43
參考文獻 44
附圖 48
附錄 97
參考文獻

1. J. P. Holman, “Heat Transfer”, 7/E, McGraw-Hill,Inc., pp.376-377, 1995

2. Frank P. Incropera and David P. DeWitt, “Fundamentals of Heat and Mass Transfer, 4th ed., ” John Wiley & Sons, Inc., pp.420-460, 1996

3. Anthony F. Mills, “Heat Transfer, 2nd ed., ” New Jersey Prentice Hall, pp.269-280, 1999

4. Soule,C. A., “Future Trends in Heat Sink Design,” Electronics Cooling, Vol. 7, No. 1, pp. 18-27, 2001

5. V. M. Filippov, “Experimental Investigation of the Development of Laminar Flow in Rectangular Ducts, ” Fluid Mechanics-Soviet Research, Vol.9, No.3, 1980

6. G. S. Beavers, E. M. Sparrow and R. A. Magunson, “Experiments on Hydrodynamically Developing Flow in Rectangular Ducts of Arbitrary Aspect Ratio,” Int. J. Heat Mass Transfer, Vol.13, pp.689-702, 1969

7. A. R. Berker, “Integration Des Equations Du Movement Dun Fluids Visqueux Incompressible, ,” Encyclopedia of Physics, Vol.8, part.2, pp.1-384, 1963

8. Md. Moazzem Hossain and Gregory B. Raupp, “Three-Dimensional Developing Flow Model for Photocatalytic Monolith Reactors,” AICHE Journal, Vol.45, No.6, pp.1309-1321, 1999

9. R. Quadir and M. Zamir, “Entry Length and Flow Development in Tubes of Rectangular and Elliptic Cross Section,” Laminar and Boundary Layers, Vol.14, pp.155-176, 1997

10. Sparrow, E.M. and Liu, C.H., “Heat transfer, Pressure Drop, and Performance Relationship for Inline, Stagger, and Continuous Plate Heat Exchangers,” Int. Journal of Heat and Mass Transfer, Vol. 22, pp. 1613-1625, 1979

11. Sathyamurth, P. and Runstadler, P.W., “Numerical and Experimental Evaluation of Planar and Stagger Heat Sink,” IEEE Inter Society Conference Thermal Phenomena, pp. 132-139, 1996

12. Jonsson, H. and Plam, B., “Thermal and Hydraulic of Plate Fin and Strip Fin Heat Sinks under Varying bypass Conditions,” Inter Society Conference on Thermal Phenomena, pp.98-103, 1998

13. Ledeama, G. and Bejan, A.“ Heat Sinks with Sloped Plate Fins in Natural and Forced Convection,” Int. J. Heat Mass Transfer, Vol. 39, No. 9, pp. 1773-1783, 1996

14. Biber,C. R., “Pressure Drop and Heat Transfer in an Isothermal Channel with Impinging Flow,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, Vol. 20, No. 4, pp. 458-462 ,1997

15. Madhusudan Iyengar and Avram Bar-Cohen, “Least-Material Optimization of Vertical Pin-Fin, Plate-Fin, and Triangular-Fin Heat Sink in Natural Convective Heat Transfer,” Inter Society Conference on Thermal Phenomena, pp. 295-302,1998

16. Lee, S., ”Calculating Spreading Resistance in Heat Sinks,” Electronics Cooling, January, 1998

17. Hideo IWASAKI and Masaru ISHIZUKA, “Forced Convection Air Cooling Characteristics of Plates Fins for Notebook Personal Computer,” IEEE Inter Society Conference Thermal Phenomena, pp. 21-26, 2000

18. Brignoi, L. A. and Garimella,S. V., “Heat Transfer From a Finned Surface in Ducted Air Jet Suction and Impingement,” ASME J. Electronic Packaging, Vol. 122, pp.282-285, 2000

19. 劉季儒, “熱沉對高效能個人電腦中央處理器散熱效應之數值探討,” 國立海洋大學機械與輪機工程學系碩士論文, 2000

20. 黃宏利, “數值探討熱沉散熱器之設計,” 國立海洋大學機械與輪機工程學系碩士論文, 2001

21. Patankar, S. V., and Spalding, D. B., “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows.” Int. J. Heat Mass Transfer, Vol. 15, pp. 1787-1806, 1972.

22. Patankar, S. V., “Numerical Heat Transfer and Fluid Flow”, McGraw-Hill, New York, 1981.

23. Patankar, S. V., “A calculation procedure for two-dimensional elliptic situations,” Numerical Heat Transfer, Vol. 4, pp. 409-425, 1981.

24. Van Doormal, J. P., and Rairhby, G. D., “Enhancements of the SIMPLE method for predicting incompressible fluid flows,” Number. Heat Transfer, Vol. 7, pp. 147-163, 1984.

25. 張志崴, “高效率CPU散熱鰭片之ANSYS熱傳模組分析,”國立海洋大學機械與輪機工程學系碩士論文, 2002

26. 黃為棟,“採空氣衝擊冷卻柱狀鰭片熱沉之個人電腦熱傳分析,”國立海洋大學機械與輪機工程學系碩士論文, 2003

27. JA Visser, DJ de Kock and FD Conradie, “Minimization of Heat Sink Mass Using Mathematical Optimization,” 16th IEEE SEMI-THERM Symposium, pp.252-259, 2000

28. H. H Jung and J. G. Maveety, “Pin-Fin Heat Sink Modeling And Characterization,” 16th IEEE SEMI-THERM Symposium, pp.260-265, 2000

29. Zhao, Z. and Avedisian, C. T., “Enhancing Forced Air Convection Heat Transfer from Array of Parallel Plate Fins Using a Heat Pipe,” Int. J. Heat Mass Transfer, Vol.40, No.13, pp. 3135-3147,1997

30. Yusuf, I., Watwe, A., and Ekhlassi, H., “Integrated Heat Sink-Heat Pipe Thermal Cooling Device,” Inter Society Conference on Thermal Phenomena, pp. 27-30, 2000

31. Allan D. Kraus and Abdul Aziz and James Welty, “Extended Surface Heat Transfer” John Wiley & Sons, Inc., pp.5-52,2001

32. Kays, W. M., and M. E. Crawford, Convective Heat and Mass Transfer, McGraw-Hill, New York, 1980.

33. Dittus, F. W., and L. M. k. Boelter, University of California, Berkeley, publications on Engineering, Vol. 2, p. 443, 1930

34. Gnielinski, V., Int. Chem.Eng., 16, 359, 1976
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top