(3.238.250.105) 您好!臺灣時間:2021/04/20 06:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪念民
研究生(外文):Nien-Ming Hong
論文名稱:集水區蒸發散與基流特性之研究
論文名稱(外文):Study of Evapotranspiration and Baseflow Characteristics
指導教授:譚義績譚義績引用關係童慶斌童慶斌引用關係
指導教授(外文):Yih-Chi TanChing-Pin Tung
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生物環境系統工程學系暨研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:119
中文關鍵詞:氣候變遷水文模式基流推估潛能蒸發散蒸發散折算係數SCSGWLF
外文關鍵詞:climate changeconceptual modelbaseflow estimationpotential evapotranspirationconversion coefficientSCSGWLF
相關次數:
  • 被引用被引用:8
  • 點閱點閱:326
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
由於水資源評估的空間尺度較大,因此多採用概念性水文模式進行評估。雖然概念性水文模式具有參數較少之優點,卻也減少了物理機制的完整描述,進而增加模式的不確定性。故本研究為降低模式的不確定,針對常用概念性水文模式進行探討,並對於集水區蒸發散與基流特性進一步研究。水文模式探討上,比較各模式的垂直分層與各水文分量控制之機制,並探討其優劣性。在蒸發散量研究方面,則是以土壤含水量觀測來推估日蒸發散量,並配合Penman-Montieth公式推估潛能蒸發散量,獲得集水區的蒸發散折算係數。蒸發散折算係數中包含植物覆蓋係數與土壤阻抗之影響,研究結果顯示,本研究集水區中,當土壤含水量低於0.35時,蒸發散量將因為土壤水分阻抗之減少,且推估本集水區覆蓋係數為2.57。基流研究部分,本研究以日為時間尺度,建立一新的基流連續推估方程式,其不受地下水位、退水時間等時間參數之影響,僅與集水區特性的地文因子有關,此方程式可作為連續推估基流變化之依據。研究成果亦指出,本研究的連續推估方程式的基流變化特性與水文模式中非線性水庫是相同的,此結論亦可作為水文模式中飽和層與基流量關係之修正。
The conceptual models always are used to evaluate the impacts of climate change and climate variation in water resources. Even less parameters in conceptual model are positive, the description of physical become indistinct. For this reason, the study is involved in discussing conceptual models, evapotranspiration and baseflow in watershed. The vertical layers of each conceptual model, often used in hydrology simulation, are compared. The mechanisms of hydrological components in models are discussed. The study of evapotranspiration is to establishment of the conversion coefficients by measuring soil water content in daily time step. Cover coefficient and soil water resistance are included in conversion coefficient. It results that the soil water resistance happens under 35% water content and the cover coefficient is 2.57 in the watershed. On baseflow analysis, a new equation describing the relationship between three successive mean baseflows was derived in this study. There is no time dependent variable, as ground water table and the time of recession. Only a geohydrology parameter is in our equation. Furthermore, nonlinear storage can be describe the decay of baseflow as our equation. Because our equation is developed from groundwater governing equations, the lieanr storage of baseflow in conceptual model can be replaced by nonlinear storage.
中文摘要
Abstract
表目錄
圖目錄
第一章 研究動機與目的 1
1.1. 研究動機 1
1.2. 研究目的 2
第二章 文獻回顧與探討 4
2.1. 概念性水文模式 4
2.1.1. 水文模式 5
2.1.2. SCS曲線值法 22
2.1.3. 綜合說明 24
2.2. 蒸發散量推估文獻回顧 25
2.2.1. 蒸發散量的公式推估 25
2.2.2. 蒸發散量與土壤含水量觀測 29
2.2.3. 蒸發散量與集水區水平衡 30
2.2.4. 蒸發散量與遙測影像 31
2.3. 河川基流量特性之研究 32
2.3.1. 地下水邊界條件 33
2.3.2. 控制方程式與解析解 35
2.3.3. 基流雙對數圖 36
2.3.4. 基流與非線性水庫關係 38
第三章 集水區蒸發散量之研究 40
3.1. 研究方法 40
3.1.1. 土壤含水量的觀測 40
3.1.2. 日蒸發散量之推估 40
3.1.3. 土壤含水量的阻抗效應 41
3.1.4. 蒸發散折算係數及其參數推估方式 42
3.2. 實驗設計 43
3.2.1. 實驗集水區概況 43
3.2.2. 儀器說明 46
3.2.3. 室內實驗 47
3.2.4. 現地實驗 50
3.3. 觀測資料分析 51
3.3.1. 室內試驗 51
3.3.2. 現地觀測成果 53
3.4. 實測蒸發散量的推估與應用 56
3.4.1. 不降雨日平均蒸發散量推估 56
3.4.2. 各月分平均蒸發散量 60
3.4.3. 土壤阻抗係數與覆蓋係數推估 62
3.5. 結論與建議 63
第四章 基流特性之研究 65
4.1. 基流控制方程式 65
4.1.1. 部分貫穿假設 65
4.1.2. 完全貫穿假設 67
4.1.3. 基流連續推估方程式 67
4.2. 資料分析 68
4.2.1. 集水區特性及流量資料選定 68
4.2.2. 傳統log-log圖分析 70
4.2.3. 基流連續推估式驗證 72
4.3. 基流與非線性水庫 86
4.3.1. 理論說明 86
4.3.2. 案例分析 86
4.4. 結論與建議 89
第五章 GWLF模式修正及不確定性探討 91
5.1. 蒸發散量與基流推估之修正 91
5.1.1. 蒸發散量推估修正 91
5.1.2. 基流量推估修正 92
5.2. GWLF模式修正之探討 92
5.2.1. 原GWLF推估結果 92
5.2.2. 修正GWLF推估結果 94
5.3. GWLF不確定性探討 101
5.4. 結論與建議 105
第六章 結論與建議 106
6.1. 集水區蒸發散量推估 106
6.2. 基流特性之研究 107
6.3. GWLF模式探討 108
參考文獻
Abbott, M. B. and J. C. Refsgaard, 1996, “Distributed hydrological modeling”, Dordrecht, Boston, Kluwer Academic.
Allen, R. G., Jensen, M. E., Wright, J. L., and Burman, R. D., 1989, ” Operational estimates of reference evapotranspiration”, Agron. J., 81, 650-662.
Allen, R. G., Smith, M, Perrier, A., and Pereira, L. S., 1994a, “An update for definition of the reference evapotranspiration”, ICID Bull., New Delhi, 42(2), 1-34.
Allen, R.G., Smith, M., Pereier, A., and Pereira, L. S., 1994b, “An update for the calculation of reference evapotranspiration”, ICID Bull., New Delhi, 43(2), 35-92.
Arnold, J. G., J. R. Williams, R. Srinivasan, and K. W. King, 1996, “SWAT: Soil and Water Assessment Tool”, Temple, TX: USDA-ARS, Grassland, Soil and Water Research Laboratory.
Bergström, S., 1976, “Development and application of a conceptual runoff model for Scandinavian catchments”, report RHO 7, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden.
Beven, K. J., and Kirkby, M. J., 1976, “Towards a simple physically-based variable contributing area model of catchment hydrology”, Working Paper 154, School of Geography, University of Leeds.
Bormann, H., B. Diekkrüger; and Richter, O., 1996, “Effect of Data Availability on Estimation of Evapotranspiration”, Physical Chemical Earth, Vol. 21, No. 3, 171-175.
Boruneau, P, Gascuel-Odoux, C, Robin, P, Merot, Ph, and Beven, K. J., 1995, “The sensitivity to space and time resolution of a hydrological model using digital elevation data”, Hydrological Processes, Vol.9, 69-81.
Bosch, D., Theurer, F., Bingner, Felton G., Chaubey, I., 1998, “Evaluation of the AnnAGNPS Water Quality Model”, ASAE, Annual International Meeting, ASAE, No. 982195, 1-12.
Boussinesq, J., 1903, Sur le dèbit ; en temps de sècheresse, “d‘une source alimentèe par une nappe d’eaux d’infiltration”, C. R. Acad. Sci., 136, 1511-1517.
Boussinesq, J., 1904, Recherches the thèoriques sur l’ècoulement des nappes d’eau d’infiltrèes dans le sol et sur le dèbit des sources”, J. Math. Pures Appl., 5th Ser., 10, 5-78.
Brutsaert, W., 1994, “The unit response of groundwater outflow from a hill slope”, Water Resources. Res., 30(10), 2759-2763.
Brutsaert, W., and J. L. Nieber, 1977, “Regional drought flow hydrographs from a mature glaciated plateau”, Water Resources. Res., 13(3), 637-643.
Brutsaert, W., and J. P. Lopez, 1998, “Basin-scale geohydrologic drought flow features of riparian aquifer in the southern Great Plains”, Water Resources. Res., 34(2), 223-240.
Chiew, F. H. S, N. N. Kamaladasa, H. M. Malanoand T. A. McMahon, 1995, “Penman-Monteith, FAO-24 reference crop evapotranspiration and class-A pan data in Australia”, Agricultural Water Management, Vo.28, 9-21.
Coutagne, A., 1948, “Etude generale des variations de debits en fonction des facteur qui les conditionent, 2eme partie: les variations de debit en periode non influencee par les precipitations”, La Houille Blanchu, Sept.-Oct., 416-436.
Crawford, N. H. and Linsley, R. K., 1966, “Digital simulation in hydrology”, Stanford Watershed Model IV, Tech. Rept. 39, Dept. of Civil Engineering, Stanford University, Stanford, CA.
Dooge, J. C. I., 1973, “Linear theory of hydrological systems”, U. S. Dep. Agr. Tech. Bull., 1468, 327.
Doorenbos, J. and Pruitt, W. O., 1977, “Guidelines for predicting Crop Water Requirement”, Food and Agriculture Organization of the United States, FAO Irrigation and Drainage Paper 24, Rome, 143.
Franchini, M., Wending, J., Obled, C., and Todini, E., 1996, “Physical interpretation and sensitivity analysis of the TOPMODEL”, Journal of Hydrology, Vol.175, 293-338.
Gurney, R. J., Camillo, P. J., 1983, “Sattlite-drived surface energy balance estimates in the Alaskan sub-arctic”, Jounrnal of Climate Application Meteorology, 22, 115-125.
Haith, D. A., and L. L. Sheomaker, 1977, “Generalized Watershed Loading Functions for Stream Flow Nutrients”, Water Resources Bullentin, 22(3), 471-478.
Haman, W. R., 1961, “Estimating potential evapotranspiration”, Journal of Hydraulics Division, 83(7), 107-120.
Hawkins, R. H., 1984, “A comparison of predicted and observed runoff curve number”, Proc. Spec. Conf. Irrig. and Drain. Div., ASCE, New York, N. Y., 702-709.
Hawkins, R. H., 1993, “Asymptotic determination of runoff curve number from data”, Journal of Irrigation and Draining Engineering, ASCE, 119(2), 334-345.
Hawkins, R. H., Hjelmfelt, A. T., and Zevenberger, A. W., 1985, “Runoff probability, storm depth, and cure numbers”, Journal of Irrigation and Draining Engineering, ASCE, 111(4), 330-340.
Jansson, P-E., Cienciala, E., Grelle, A., Kellner, E., Lindahl, A., and Lundblad M., 1999, “Simulated evapotranspiration from Norunda forest stand during the growing season of a dry year”, Agricultural Forest Meteorology, Vol.98-99, 621-628.
Jensen, M. E., Burman, R. D., and Allen, R. G., eds., 1990, “Evapotranspiration and irrigation water requirements”, ASCE Manuals and Reports on Engrg. Pract. No. 70, ASCE, Reston, VA.
Kubota, J. and Sivapalan, M., 1995, “Toward a catchment —scalel model of subsurface runoff generation based on synthesis of small-scale process-based modelling and field studies”, Hydrological Processes, 9, 541-554.
Kustas, W. P., Moran, M. S., Jackson, R. D., Gay, L. W., Duell, L. F. W, Kunkel, K. E., Matthias, A. D., 1990, “Instantaneous and daily values of the surface energy balance over agricultural fields using remote sensing and a reference field in an arid environment”, Remote Sensing Environment, 32, 125-141.
Laymon, C., Quattrochi, D., Malek, E., Hipps, L.,Bottinger,J., and McCurdy, G., 1998, “Remotely-sensed regional-scale evapotranspiration of a semi-arid Great Basin desert and its relationship to geomorphology, soils, and vegetation”, Geomorphology, Vol.21, 329-349.
Leopoldo, P. R., W. K. Franken, N. A. V. Nova, 1995, “Real evapotranspiration and transpiration through a tropical rain forest in central Amazona as estimated by water balance method”, Forest Ecology and Management, Vol.73, 185-195.
Linsley, R. K., M. A. Kohler, and J. L. H. Pauihus, 1958, “Hydrology for Engineers”, McGraw-Hill, New York, 340.
Liu, C., Zhang, X., Zhang, Y, 2002, “Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter”, Agricultural and Forest Meteorology, Vol. 111, 109-120.
Marco Franchiniav, Jacques Wendlingbvl, Charles Obled, Ezio Todini, 1996, “Physical interpretation and sensitivity analysis of the TOPMODEL”, Journal of Hydrology, 175, 293-338.
Marques, J., Santos, J. M. and Salati, E., 1979, ”O armazenamento atmosférico de vapor d’ água sobre a região Amzonica”, Acta Amazôn., Vol. 9, 715-721.
Mastrorilli, M., Katerji, N., Rana, G., and B. B. Nouna, 1998, “Daily actual evapotranspiration measured with TDR technique in Mediterranean condition”, Agricultural and Forest Meteorology, Vol.90, 81-87.
McCuen, R. H., 2002, “Approach to Cofidence Interval Estimate for Curve Numbers”, Journal of Hydrological Engineering, Jan-Feb, 43-48.
Menenti, M., and Choudhury, B. J., 1993, “Parameterization of land surface evaporation by means of location dependent potential evaporation and surface temperature range”, Proceedings of IAHS conference on Land Surface Processes, IAHS Publ., No. 212, 561-568.
Mockus, V., 1972, “Estimation of direct runoff from storm rainfall”, National Engineering Handbook, NEH Notice 4-102, August, 10.1-10.22.
Monteith, J. L., 1965, “Evaporation and environment”, The state and movement of water in living organisms, 19th Symp. of Soc. Exp. Biol., Cambridge University press, Cambridge, U. K., 205-234.
Monteith, J. L., 1988, ”A four-layer model for the heat budget of homogeneous land surfaces.” Q. J. R. Meteorol. Soc., 114, 373-398, 1988.
Nathan, R. J. and McMahon, T. A., 1990, “Evaluation of automated techniques for base flow and recession analyses”, Journal of Hydrology, 30, 1465-1473,. 1990.
Penman, H. L., 1948, “Natural evaporation from open water, bare soil and grass”, Proc. Royal Soc., Ser., A, London, 193, 120-145.
Pereira, L. S., A. Perrier, R.G. Allen, and I. Alves, 1999, “Evapotranspiration: Concepts and Future Tends”, Journal of Irrigation and Drainage Engineering, March/April, 44-51.
Philip, J.R., 1957, “The theory of infiltration 1-7”, Soil Science., Vol. 83, 84 and 85.
Polubarinova-Kochina, P. Y. —A., 1962, Theory of ground water management, translated from Russian by R. J. M. DeWiest, 613, Pricenton University Press, Princeton, N. J.
Polubarinova-Kochina, P. Y. —A., Theory of ground water management, translated from Russian by R. J. M. DeWiest, 613, Pricenton University Press, Preston, N. J. 1962.
Ponce, V. M., and R. H., Hawkins, 1996, “Runoff Curve Number: Has It Reached Maturity?”, Journal of Hydrological Engineering, Jan, 11-19.
Rodriquez-Iturbe I. et. al., 1999, “On the spatial and temporal links between vegetation, climate, and soil moisture”, Water Resources Res., 35(12), 3709-3722.
Roreink,G.J.,Su,Z. and Menenti, M., 2000, “S-SEBI:A simple remote sensing algorithm to estimate the surface emergy balances.”, Phys. Chem. Earth(B), Vol. 25, No. 2,pp.147-157.
Running, S. W. and Coughlan, J. C., 1988, “Ageneral model of forest ecosystem processes for regional application I. hydrological balance, canopy gas exchange and primary production processes”, Ecol. Modell., 42, 125-154.
Schwarze, R., Droge, W., and Opherden, K., 1997, “Regional analysis and modelling of groundwater runoff components from small catchments in solid rock areas”, Landschaftsokol. Umweltforsch., 25, 59-62.
SCS national engineering handbook, 1985, “Section4: Hydrology”, Soil Conservation Service, USDA, Washington DC.
Singh, K. P., 1968, “Some factor affecting baseflow”, Water Resources. Res., 4(5), 985-999.
Smith, M. R., Allen, R. G., Monteith, J. L., Pereira, L. S., and Segeren, A., 1991, “Rep. on the Expert Consultation on Procedures for Revision of FAO guidelines for Predicting Crop Water Requirements”, FAO, Land and Water Devel. Div., FAO, Rome.
Spolia, S. K. and Chander, S., 1974, “Modelling of surface runoff systems by an ARMA model”, Journal of Hydrology, 22, 317-332.
Toebes, C and Strang, D. D.,1964, ” On recession curves, 1-recession equations”, Journal of Hydrology, (N.Z.), 3(2), 2-15, 1964.
Troch, P. A., Troch F. De. and W. Brutsaert, 1993, “Effective water table depth to describe initial conditions prior to storm rainfall in humid regions”, Water Resources. Res., 29(2), 427-434.
Troch, P. A., Troch F. De. and W. Brutsaert, 1993,” Effective water table depth to describe initial conditions prior to storm rainfall in humid regions”, Water Resources. Res., 29(2), 427-434.
U.S. Soil Conservation Service., 1986, “Technical Release 55: Urban Hydrology for Small Watersheds”, USDA (U.S. Department of Agriculture), June.
Vogel, R. M., and C. N. Kroll, 1991, “The value of streamflow recession augmentation procedures in low flow and flood flow frequency analysis”, Journal of Hydrology, 125, 259-276.
Vogel, R.M, and C. N. Kroll, 1992, “Regional geohydrologic-geomorphic relationships for the estimation of low-flow statistics”, Water Resources. Res., 28(9), 2451-2458.
Wallis, J. R., 1965, “Multivariate statistical methods in hydrology comparison using data of known functional relationship”, Water Resources. Res., 1(4), 447-461.
Walton, W. C., and R. J. Schicht, 1961, “Hydrological Budgets for three sanll watersheds in Illinois”, Ill. State Water Surv. Rep. Invest., 40.
Water Resources Bureau, 1998, “Hydological Year Book of Taiwan”, Water Resources Bureau Rep., Taiwan, 1-378.
Williams, J. R., 1995, “The EPIC model, In Computer Models of Watershed Hydrology”, ed. V. P. Singh, 909-1000, Highlands Ranch, CO: Water Resources publications.
Wilson, K. B., Hanson, P. J., Mulholland, P. J., Baldocchi, D. D., Wullschleger, S. D., 2001, “A comparison of methods for determininig forest evapotranspiration and its components: sap-flow, soil water budge, eddy covariance and catchment water balance”, Agricultural and Forest Meteorology, Vol. 106, 153-168.
Wittenberg, H., 1994, “Nonlinear analysis of flow recession curves”, IAHS Publ., 221, 61-67.
Wittenberg, H., 1999, ”Baseflow recession and recharge as nonlinear storage processes”, Hydrological Processes, 13, 715-726.
Wood, E. F., Letternmaier, D. P., and Zartarian, V. G., 1992, “A land-surface hydrological parameterization with subgrid variability for general circulation models”, Journal of Geophysical Resources, 97, 2717-2728.
Zecharias, Y. B., and W. Brutsaert, 1988, “Recession characteristics of groundwater outflow and base flow from mountainous watersheds”, Water Resources. Res., 24(10), 1651-1658.
台灣省林業試驗所,1997,林業試驗所蓮華池分所氣象資料,臺北市。
何正品,1994,「蓮華池森林集水區坡面土壤水份變化對降雨之反應」,台大森林研究所碩士論文,14~22。
李光敦、陳耐錦、張進鑫,2002,「美國水土保持局(SCS)公式於台灣地區集水區適用性之探討」,第十三屆水利工程研討會,O38-O44。
郭振民、陳姜琦與游保杉,2002,「應用NOAA衛星遙測估算蒸發散量之氣象因子」,農業工程學報,Vol. 48, NO. 3,19-30。
陳文福、賴裕森、王仲豪,2000,「以SCS曲線值法推估翡翠水庫集水區季節性逕流係數」,Vol. 32,No. 2,115-125。
童慶斌、洪念民、陳主惠,1999,「氣候變遷對水資源影響評估與適應策略研擬」。中國農業工程學報,第45卷,第四期,73-90。
童慶斌、洪念民、譚義績,1998,「氣候變遷對大安溪水資源營運之衝擊」。台灣水利季刊,第46卷,第2期。
童慶斌。1997。「氣候變遷對大甲溪上游河川流量之衝擊」。臺灣水利季刊,第45卷,第二期,64-70。
黃景凔,1997,「關刀溪森林集水區之蒸發散量推估」,碩士論文,中興大學水土保持學研究所,1-90。
楊道昌、陳姜琦、吳雷根、游保杉,2003,「結合水文模式與氣象資料預報長期逕流量之研究」,農業工程學報,Vol. 49,No.1,23-33。
楊道昌、游保杉,1997,「目標函數對連續型降雨-逕流模式率定之影響」,台灣水利季刊,Vol.45,No.4,66-73。
葛錦昭、楊炳炎、林淵霖、楊楚淇、漆陞忠,1978,「台灣森林集水區經營試驗初步報告」,台灣省林業試驗所研究報告第304號,34頁。
鄭皆達、林維侃、蘇瑞榮,1992,「應用GIS及HEC-1水文模式探討台灣中部上游集水區降雨逕流之關係」,中華水土保持學報,Vol. 25,No. 3,143-150。
鄭賢德,1997,「柳杉林各樹冠級之根系研究 」,台灣大學森林系碩士論文。
盧惠生,1985,「坡地不同作物水土保持方法之逕流曲線指數」,中華水土保持學報,16(2),36-47。
鍾譯靚,2001,「利用衛星遙測估算蒸發散量與熱通量之研究」國立臺灣大學土木工程學研究所碩士論文。
電子全文 電子全文(限國圖所屬電腦使用)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔