(3.238.249.17) 您好!臺灣時間:2021/04/13 17:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許鈺佩
研究生(外文):Yu-Pei Hsu
論文名稱:洋桔梗種子發芽特性之研究
論文名稱(外文):Studies on the germination characteristic of eustoma Grandiflorum(Raf.) shinn.
指導教授:郭華仁郭華仁引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農藝學研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:70
中文關鍵詞:洋桔梗發芽率照光量TEZ生化活力測定發芽模式
外文關鍵詞:Eustoma grandiflorum (Raf.) ShinngerminationphotoperiodTEZ testinghydrothermal time
相關次數:
  • 被引用被引用:7
  • 點閱點閱:682
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:109
  • 收藏至我的研究室書目清單書目收藏:0
本論文目的在於探討環境與洋桔梗種子發芽特性的關係,以期建立種子標準發芽試驗的條件;研究如何以TEZ活力檢驗程序快速測定種子活力;利用溫度與水勢環境調查種子發芽速率,以期建立種子發芽模式;並且嘗試利用萌調處理與低溫層積處理提高種子發芽品質。所獲結果冀可提供進行種子檢查與栽培種植時之參考。
結果顯示適合洋桔梗種子發芽的溫度範圍約在20至30度間,而以30℃發芽最佳,但是種子品質影響種子的發芽速率、發芽整齊度以及發芽百分率。此外洋桔梗種子的發芽對光量頗為敏感。本論文建議標準發芽試驗條件可設定在日夜變溫30/25℃或恆溫30℃,照光量在0.58 mol m-2 d-1附近範圍。第一次發芽調查可在種子吸水後第六天進行,第二次調查可設定在第21天。
本論文建立洋桔梗種子TEZ檢驗方法的程序,將標準TEZ檢驗程序修定為:種子在進行染色之前,先將裸胚於室溫下浸水24小時,以此方法可以準確地區分活與死亡種子的活力。
種子發芽模式是利用9種水勢與3種溫度組合進行發芽試驗,以累積發芽百分數估算各組合的基礎溫度與基礎水勢,試驗得知基礎溫度範圍分佈在0.45∼8.55℃之間,基礎水勢則分佈在-1.32∼-2.45MPa間。經模式反覆估算得到最佳估計值Tb、Ψb(50)、ΘHT、σΨb 分別為:4℃、-1.72MPa、200℃MPa-day、0.36MPa,將以上常數帶入模式適配可得到種子發芽模式:
Probit (G’) = {Ψ- [ 200 / ( T — 4 ) tg ] — ( -1.72 )}/ 0.36。由此結果顯示,發芽模式可預估洋桔梗種子的發芽行為。
萌調處理結果顯示,膜調法較滲調法可提升品質較低之洋桔梗子發芽品質。以-1.5Mpa的PEG6000溶液進行滲調處理,發現在30℃之下以膜調法處理14∼21天可提高洋桔梗老化種子的發芽率、發芽速率與整齊度。另以5℃黑暗下進行低溫層積處理,以六週處理效果最明顯,可以縮短種子發芽所需時間6∼7日,並且增加發芽整齊度。

The purpose of this thesis is to propose the germination test conditions for the seeds of lisianthus (Eustoma grandiflorum ( Raf. ) Shinn.) by studying the relationships between the environmental factors and seed germination indices; to establish TEZ test procedure for the seeds of lisianthus; to quantify the relationship between temperature, water potential and seed germination rate by seed germination models; and to improve seed quality of lisianthus by comparing priming methods and conditions, as well as by cold stratification procedures.
Seeds of lisianthus germinated well at a wide range of temperatures from 20 to 30℃, and the temperature at 30℃ obtained the highest percent germination. Lisianthus seeds are sensitive to light intensity in respective of germination, and the optimum photo dose perceived is about 0.58 mol m-2d-1, below or above which probit germination percentage shows respectively positive and negative linear relationship with light quantum. We suggest that germination test temperature regime for lisianthus seeds is either at alternating temperature of 30/25℃ or at constant temperature of 30℃. Light intensity is to be set at approximately 0.58 mol m-2d-1 by white fluorescent tubes. The first count is to be at the 6th days, and the final count is the 21st day of the germination test.
The tetrazolium testing procedure for the tiny lisianthus seeds has been investigated. A modified TEZ test is proposed, i.e., naked embryos should be imbibed in water at room temperature for one day before staining. The modified procedure was capable of distinguishing viable and non-viable embryos as compared to standard TEZ test procedure.
Germination rates of lisianthus seeds have been monitored under combinations of 9 water potentials and 3 temperature regimes. Base temperatures for each percentile are founded to be changed by water potential of the germination media, and are in between 0.45 and 8.55℃. The base water potentials are normally distributed between -1.32 and -2.45MPa. The best estimated values of Tb, Ψb(50), θHT, and σΨb are 4℃, -1.72MPa, 200℃MPa-day, and 0.36MPa, respectively. The fitted seed germination model, Probit (G’) = {Ψ- [ 200 / ( T — 4 ) tg ] — ( -1.72 )}/ 0.36, is founded to fit the germination curves of 30℃quite well.
The results also show that membrane priming was more suitable than osmotic priming for the enhancement of germination as the low quality seeds of lisianthus were detected. Germination percentage, germination rate and germination synchrony are all improved by membrane priming the seeds at PEG 6000 -1.5MPa for 14 to 21days at 30℃. Cold stratification of pelleted seeds at 5℃ for 6 weeks reduced the mean germination time from 13~14 days to 4~5 days, and increased uniformity of germination.

圖表目錄………………………………………………I
中文摘要………………………………………………Ⅳ
英文摘要………………………………………………Ⅵ
壹、前言………………………………………………1
貳、前人研究…………………………………………3
參、材料與方法………………………………………14
肆、結果………………………………………………22
伍、討論………………………………………………29
陸、圖…………………………………………………38
柒、表…………………………………………………56
捌、參考文獻…………………………………………64

王裕文、郭華仁。1990。種子分析巨集程式(Seed Analysis Marco Program )。http://seed.agron.ntu.edu.tw/tool/samp.xls。台灣大學農藝學系。
朱鈞。2001。光與光強度。科學農業 49: 56-57。
李哖。1995。金魚草。增修訂再版台灣農家要覽農作篇(二)。農委員會台灣農家要覽增修再版策劃委員會業。財團法人豐年社pp579-580。。
李叡明。1984。以花農立場探討本省花卉生產問題(以67年銷日洋桔梗產銷經過為例)。台灣省農業試驗所特刊 14: 29-36。
林源奇、宋妤、張五男。1999。 PEG濃度、溫度及處理日數對`青玉'甜椒
種子滲調效果之研究。植物種苗 1: 73-90。
余宣穎。2003。小花蔓澤蘭種子的發芽生態學。國立台灣大學農藝學研究
所作物科學組碩士論文。
林美華。1998。木瓜種子活度測驗與儲藏行為再探討。國立台灣大學農藝
學研究所碩士論文。
柯榮輝。1986。洋桔梗、白頭翁生長習性之研究。國立台灣大學園藝學研
究所碩士論文。
施佳宏。1994。木瓜種子休眠儲藏行為及活力測定法之探討。國立台灣大
學農藝學研究所碩士論文。
夏奇鈮。1985。洋桔梗在台灣生長開花習性之研究。國立中興大學園藝學
研究所碩士論文。
徐煇妃。1994。洋桔梗苗期生育、溫度與Gibberellic Acid對其生長與開花
之影響。國立台灣大學園藝學研究所碩士論文。
陳俊仁。1995。洋桔梗苗期溫度與植物生長調節劑對生育之影響。國立中
興大學園藝學研究所碩士論文。
郭華仁、朱鈞。 1981。種子滲調法。科學農業 29: 381-383。
郭華仁。1985。充實環境因素與成熟種子發芽能力。科學農業 29: 9-13。
郭華仁。1988。提高種子品質之研究策略。園藝種產銷技術研討會專刊 34:
9-20。
郭華仁。1994。薺(Capsella bursa-pastoris)種子在變溫條件下的發芽。
台大農學院研究報告 34: 9-20。
張仁銓。2000。提昇芹菜種子品質之研究。國立中興大學園藝學系碩士論
文。
許淑賢。2002。洋桔梗生產成本與收益簡要分析。台灣花卉園藝月刊183:38。
曾美倉。1992。溫度對木瓜種子發芽之影響。中華農學會報 158: 29-45。
黃達雄。1995。洋桔梗。增修訂再版台灣農家要覽農作篇(二)。農委員會台灣農家要覽增修再版策劃委員會業。財團法人豐年社pp569-574。
黃敏展。1998。花卉產地與生產。亞熱帶花卉學總論。國立中興大學園藝
系pp56-57。
楊軒昂。2001。類地毯草及兩耳草種子的發芽生態學。國立台灣大學農藝
系研究所碩士論文。
農業統計年報。2002。行政院農業委員會pp124。
廖麗雅。1993。洋桔梗涼溫育苗及微體繁殖系統之建立。國立中興大學園
藝學研究所碩士論文。
顏勝雄。2002。本地芹菜品種種子發芽特性之研究。國立台灣大學園藝學
研究所碩士論文。
Aker, S. W. 1990. Seed response to priming in aerated solution. Search 19: 8-17.
Alvarado, V. and Bradford, K. J. 2002. A hydrothermal time model explains the cardinal temperature for seed germination. Plant, Cell and Environment 25: 1061-1069.
Barla-Szabo, A. and Dolinka, B. 1988. Complex stressing vigour test : a new method for wheat and maize seeds. Seed Science and Technology 16: 63-73.
Baskin, C. C. 1987. Accelerated- aging test. In D. A. Perry ( ed. ), Handbook of Vigour Test Methods, ISTA, 2nd ed., Zurich. pp22-25
Baskin, C. C. and Baskin, J. M. 1988. Germination ecophysiology of herbaceous plant species in a temperature region. American Journal of Botany 75: 286-305.
Baskin, C. C., Baskin, J. M. and Spooner, D. M. 1989. Role of temperature, light and date : seed were exhumed from soil on germination of four wetland perennials. Aquatic Botany 35: 33-39.
Bell, C., J. and Rose, D. A. 1981. Light measurement and terminology of flow. Plant, Cell and Environment 4: 89-96.
Bewley, J. D. and Black, M. (ed.) 1994. Dormancy and the control of germination. Seeds Physiology of Development and Germination, 2nd. ed., New York and London, pp258-271.
Bradford, K. J. 1986. Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. HortScience 21: 1105-1112.
Bradford, K. J. 1990. A water relations analysis of seed germination rates. Plant Physiology 94: 840-849.
Bradford, K. J. 1995. Water relations in seed germination. In J. Kigel and G. E. Galili (eds.), Seed Development and Germination, Marcel Dekker, New York, pp351-396.
Brown, R. F. 1987. Germination of Aristida armata under constant and alternating temperatures and its analysis with the cumulative Weibull distribution as a model. Australian Journal of Botany 35:581-591.
Copeland, C. D. and McDonald, M. B. (ed.) 1995. Seed Science and Technology, Chapman & Hall, New York, pp127-152.
Covell, S., Ellis, R. H., Roberts, E. H. and Summerfield, R. J. 1986. The influence of temperature on seed germination rate in grain legumes. I. A comparison of chickpea, lentil, soybean and cowpea at constant temperatures. Journal of Experimental Botany 37: 705-715.
Dahal, P. and Bradford, K. J. 1994. Hydrothermal time analysis of tomato seed germination at suboptimal temperature and reduced water potential. Seed Science Research 4: 71-80.
Dumur, D., Pilbeam, C. J. and Craigon, J. 1990. Use of the Weibull function to calculate cardinal temperatures in faba bean. Acta Horticulture 41: 1423-1430.
Ellis, R. H., Hong, T. D. and Roberts, E. H. 1986a. The response of seeds of Bromus sterilis L. and Bromus mollis L. to white light of varying photo flux density and photoperiod. New Phytologist 104: 485-496.
Ellis, R. H., Hong, T. D. and Robert, E. H. 1986b. Quantal response of seed germination in Brachiaria humidicola, Echinochloa turnerana, Eragrostis tef and Panicum maximum to photo dose for the low energy reaction and high irradiance reaction. Journal of Experimental Botany 37: 742-753.
Ellis, R. H., Hong, T. D. and Roberts, E. H. 1987. Comparison of cumulative germination and rate of germination of dormant aged barley seed lots at different constant temperatures. Seed Science Research 15: 717-727.
Ellis, R. H., Hong, T. D. and Roberts, E. H. 1989a. Quantal response of seed germination in seven genera of Cruciferae to white light of varying photo flux density and photoperiod. Annals of Botany 63: 145-148.
Ellis, R. H., Hong, T. D. and Roberts, E. H. 1989b. Response of seed germination in three genera of Compositea to white light of varying photoflux density and photoperiod. Journal of Experimental Botany 40: 13-22.
Ellis, R. H. 1992. Seed and seedling vigour in relation to crop growth and yield. Plant Growth Regulation 11: 249-255.
Evenari, M. 1965. Physiology of seed dormancy, after-ripening and germination. Proceedings of International Seed Testing Association 30: 49-71.
Evenari, M. 1980/1981. The history of germination research and the lesson it contains for today. Israel Journal of Botany 29: 4-21.
Finch-Savage, W. E. 1995. Influence of seed quality on crop establishment, growth and yield. In: S. Brasra, (ed.) Seed Quality: Basic Mechanisms and Agricultural Implications, Haworth Press, New York, pp361-384.
Fyfield, T. P. and Gregory, P. J. 1989. Effects of temperature and water potential on germination, radicle elongation and emergence of mungbean. Journal of Experimental Botany 40: 667-674.
Gorski, T. and Gorska, K. 1979. Inhibitory effect of full daylight on the germination of Lactuca sativa. Planta 144: 121-124.
Griesbach, R. J. 1987. Genetic engineering as a tool to improve Lisianthus. Greenhouse Grower 5: 18-22.
Grundy, A. C., Phelps, K., Reader, R. J. and Burston, S. 2000. Modeling the germination of Stellaria media using the concept of hydrothermal time. New Phytologist 148: 433-444
Gummerson, R. J. 1986. The effect of constant temperature and osmotic potential on the germination of sugar beet. Journal of Experimental Botany 37: 729-741.
Halevy, A. H. and Kofranek, A. M. 1984. Evaluation of lisianthus as a new flower crop. HortScience 19: 845-847.
Hampton, J. G. and Coolbear, P. 1990. Potential versus actual seed performance can vigour testing provide an answer. Acta Horticulture 253: 55-61.
Hampton, J. G. 1995. Methods of viability and vigor testing : a critical appraisal . In A. S. Basra, (ed.), Seed Quality: Basic Mechanisms and Agricultural Implication, Food Products Press, New York, pp81-118
Heydecker, W., Higgins, J. and Gulliver, R. J. 1973. Accelerated germination by osmotic seed treatment. Nature 246: 42-44.
Hisamatsu, T., Koshioka, M., Oyama, N. and Mander, L. N. 1999. The relationship between endogenous gibberellins and rosetting in Eustoma grandiflorum. Journal of the Japanese Society for Horticultural Science 68: 527-533.
ISTA. 1999. International rules for seed testing. Seed Science and Technology 21: Supplement.
Karssen, C. M., Zagorski, S., Kepczynski, J. and Groot, S. P. C. 1989. Key role for endogenous gibberellins in the control of seed germination. Annals of Botany 63: 71-80.
Kebreab, E. and Murdoch, A. J. 1999. Modeling the effects of water stress and temperature on germination rate of Orobanche agyptiaca seeds. Journal of Experimental Botany 50: 655-664.
Kuo, W. H. J. 1994. Seed germination of Cyrtococcum patents under alternating temperature regimes. Seed Science and Technology 22: 43-50.
Kuo, W. H. J., Yan, A. C. and Leist, N. 1996. Tetrazolium test for the seeds of Salvia splendens and S. Farinacea. Seed Science and Technology 24: 17-21.
Mariko, K., Yasushi, T., Masaki, I. and Mino, M. 2001. Elevated sensitivity to gibberellin by vernalization in the vegetative rosette plants of Eustoma grandiflorum and Arabidopsis thaliana. Plant Science 160: 1237-1245.
Matthews, S. and Powell, A. A. 1986. Environmental and physiological constraints on field performance of seeds. HortScience 21: 1125-1128.
McDonald, M. B. 1977. The influence of seed moisture on the accelerated aging seed vigor test. Journal of Seed Technology 2: 18-28.
McDonald, M. B. and Phaneendranath, B. R. 1978. A modified accelerated aging seed vigor test of soybeans. Journal of Seed Technology 3: 27-37.
McDonald, M. B. 2000. Seed priming. In M. Black, and J. D. Bewley (eds.), Seed Technology and its Biological Basis, Sheffield Academic Press Ltd., Sheffield, pp287-316.
Mexal, J., Fisher, J. T., Osteryoung, J. and Reid, C. P. 1975. Oxygen availability in polyethylene glycol solutions and its implications in plant-water relations. Plant Physiology 55: 20-24.
Modarresi, R., Rucker, M. and Tekrony, D. M. 2002. Accelerating ageing test for comparing wheat seed vigour. Seed Science and Technology 30: 683-687.
Moore, R. P. 1985. Handbook of Tetrazolium testing. International Seed Testing Association, Zurich, pp9-32.
Nau, J. 1993. Ball Culture Guide : the Encyclopedia of Seed Germination, Ball Pub., Batavia, pp143.
O'Brien, F. E. M. 1948. The control of humidity by saturated salt solution. Journal of Scient Instrument 25: 73-76.
Ohkawa, K., Korenaga, M. and Yoshizumi, T. 1993. Influence of temperature prior to seed ripening and at germination on rosette formation and bolting of Eustoma grandiflorum. Scientia Horticulturae 53: 225-230.
Ohkawa, K., Yoshizumi, T., Korenaga, M. and Kanematsu, K. 1994. Reversal of heat-induced rosetting in Eustoma grandiflorum with low temperatures. HortScience 29: 165-166.
Ohkawa, K. and Sasaki, E. 1999. Eustoma ( Lisianthus )- its past, present, and future. Acta Horticulture 482: 423-426.
Pergola, G., Oggiano, N. and Curir, P. 1992. Effect of seeds and seedlings temperature conditioning on planting, bolting and flower in Eustoma russellianum. Acta Horticulture 314: 173-177.
Perry, D. A. ( ed. ). 1987. TTC testing. Handbook of Vigour Test Method., 2nd ed., International Seed Testing Association, Zurich, pp46-53.
Pons, T. L. 1991. Induction of dark-dormancy in seeds; its importance for the seed bank in the soil. Functional Ecology 5: 669-675.
Pons, T. L. 1992. Seed responses to light. In M. E. Fenner (ed.), Seeds: The Ecology of Regeneration in Plant Communities, 2nd ed., Wallingford CAB International, London, pp231-259.
Powell, A. A. 1986. Cell membrane and seed leachate conductivity in relation to the quality of seed for sowing. Journal of Seed Technology 10: 81-100.
Probert , R. J. 2000. The role of temperature in the regulation of seed dormancy and germination. In M. E. Fenner (ed.), Seeds: The Ecology of Regeneration in Plant Communities, 2nd ed., Wallingford CAB International, London, pp261-292.
Roberts, E. H. 1988. Temperature and seed germination. Symposia of the Society for Experimental Biology 42: 109-132.
Rowse, H. R. 1996. Drum-priming: a non-osmotic method of priming seeds. Seed Science and Technology 24: 281-294.
Rowse, H. R., McKee, J. M. T. and Higgs, E. C. 1999. A model of the effects of water stress on seed advancement and germination. New Phytologist 143: 273-279.
Rowse, H. R., McKee, J. M. T. and Finch-Savage, W. E. 2001. Membrane priming - a method for small samples of high value seeds. Seed Science and Technology 29: 587-597.
Rowse, H. R. and Finch-Savage, W. E. 2003. Hydrothermal threshold models can describe the germination response of carrot (Daucus carota) and onion (Allium cepa) seed populations across both sub- and supra-optimal temperatures. New Phytologist 158: 101-108.
Schütz, W. 1997. Primary dormancy and annunal dormancy cycles in seeds of six temperate wetland sedges. Auquatic Botany 59: 75-85.
Scopel, A. L., Ballare, C. L. and Sanchez, R. A. 1991. Induction of extreme light sensitivity in buried weed seeds and its role in the perception of soil cultivations. Plant, Cell and Environment 14: 501-508.
Squire, G. R., Marshall, B., Dunlop, G. and Wright, G. 1997. Genetic basis of rate-temperature characteristics for germination in oilseed rape. Journal of Experimental Botany 48: 869-875.
Tadashi, T. 1994. Studies on rosette formation and bolting of seedlings and lateral buds of Eustoma grandiflorum (Raf.) Shinn. Journal of the Japanese Society for Horticultural Science 63: 653-662.
Tanigawa, T., Kuroyanagi, N. and Kunitake, T. 2002. Effect of low temperature treatment of imbibed seeds of Eustoma grandiflorum (Raf.) Shinn. on their germination and subsequent bolting. Journal of the Japanese Society for Horticultural Science 71: 697-701.
Tarquis, A. and Bradford, K. J. 1992. Prehydration and priming treatment that advance germination also increase the rate of deterioration of lettuce seed. Journal of Experimental Botany 43: 307-317.
Taylor, A. G. 1988. SMP: solid matrix priming of seeds. Scientia Horticulturae 37: 1-11.
Tompson, P. A. 1974. Germination of celery (Apium graveolens L.) in response to fluctuating temperature. Journal of Experimental Botany 25: 156-163.
Vujanovic, V., St-Arnaud, M. and Barabe, D. 2000. Viability testing of orchid seed and the promotion of coloration and germination. Annals of Botany 86: 79-86.
Wang, B. S. P. and Berjak, P. 2000. Beneficial effects of moist chilling on the seeds of black spruce (Picea mariana [ Mill.] B. S. P. ). Annals of Botany 86: 29-36.
Woltz, J. M. and Tekrony, D. M. 2001. Accelerated aging test for corn seed. Seed Technology 23: 21-34.
Wood, C. E. and Weaver, R. E. 1982. The genera of Gentianaceae in the Southeastern United States. Journal of the Arnold Arboretum 63: 441-487.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔