(3.235.25.169) 您好!臺灣時間:2021/04/17 20:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:嚴秉廉
論文名稱:高亮度共振腔發光二極體之研究
論文名稱(外文):Study of high brightness resonant cavity light emitting diodes
指導教授:林浩雄林浩雄引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
中文關鍵詞:共振腔發光二極體氧化單膜態高亮度
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,我們分別討論870nm共振腔發光二極體的研製及其特性分析。在3.89% duty cycle 400mA的操作條件下,元件的最大發光強度為42.5mW,相對應的wall plug efficiency可達到6%。
我們採用金屬有機化學汽相沉積 (MOCVD) 的方式,在(100)指向的砷化鎵基板成長元件結構。本元件採用砷化鋁鎵的布拉格反射器作為共振腔的上下反射層,其中下層週數為30週,元件的主動層則為砷化銦鎵的量子井,另外為了增加元件的發光強度,亦設計使用5m的砷化鋁鎵厚窗層以及適當的電極設計來避免電流擁擠效應。然而,本元件亦因為此厚窗層之共振而產生多模態之光譜,最佳的解決方法,就是在厚窗層的表面鍍一層薄膜做為抗反射結構以破壞其共振模態,但是卻也因此大幅增加元件製作的困難度和成本。在本篇論文中,吾人藉由側向氧化以提升元件發光強度的機會,成功地在Al0.5Ga0.5As上成長一層做為抗反射層的氧化物薄層以達到模態抑制的效果。
In this thesis, fabrication and characterization of resonant cavity light emitting diodes operated at ∼870nm are studied. An output power of 45.2mW and a wall plug efficiency of 6% at 400mA injection pulsed current were attained at room temperature from a diode with 1-thick active region.
The device structure was grown by metal-organic chemical vapor deposition (MOCVD) on (100) Si-doped GaAs wafers. The active region was sandwiched between Al0.12Ga0.88As  Al0.9Ga0.1As distributed Bragg reflectors. An Al0.5Ga0.5As thick window layer was designed to decrease the sheet resistance at the p-side of the junction diode and to improve the current spreading at high power operation. However, the thick window layer also serves as an extra cavity and induces a multimode spectrum. We found that with a thin oxide deposited on the device surface, the cavity mode of the RCLED can be readjusted and even be removed.
中文摘要………..……………………………………………………………….…… I
Abstract………..………………………………………………………………………. II
Contents………..……………………………………………………………………… III
Captions………..……………………………………………………………………… V
Chapter 1 Introduction………………..…………………………....................... 1
Chapter 2 Fabrication and Characterization of the RCLED…………..… 5
2.1 RCLED structure………………………………………….………….. 5
2.2 Relation between the Fabry-Perot mode and the quantum well mode…………………………………………………………………...
7
2.3 Diode Fabrication Process………………………………………….. 9
2.4 Measurement……………………………………............................. 10
2.4.1 Current-voltage measurement………………….......................... 10
2.4.2 Light-intensity current (L-I) measurement………....................... 10
2.4.3 Electroluminescence(EL) spectrum measurement…………….. 11
2.4.4 Far-field pattern measurement…………………………………… 11
2.4.5 Transient behavior measurement………………………………... 12
Chapter 3 Experimental Results and Discussion………………………... 24
3.1 Oxidation data analysis using the Deal & Grove mode…………... 24
3.2 Current-Voltage and Light power-Injection current (L-I)
relationship……………………….……………………………..…….
28
3.3 Electroluminescence (EL) spectrum……………………………….. 31
3.4 Far-field pattern…………………………………….......................... 33
3.5 Transient behavior……………………………………………………. 36
Chapter 4 Conclusion…………………………………………………………..... 55
Reference……………...………………………………………………...………….... 57
Figure 2.1 Schematic of a DBR mirror……………………..……....... 16
Figure 2.2 The setup of wet oxidation system…………………….. 17
Figure 2.3 The flow chart of RCLED fabrication process………... 18
Figure 2.4 The dimension of epoxy encapsulated RCLED……... 19
Figure 2.5 The setup of current-voltage measurement system... 20
Figure 2.6 The setup of light-intensity measurement system…... 21
Figure 2.7 The setup of electroluminescence spectrum measurement…...............................................................
22
Figure 2.8 The setup of far field pattern measurement................ 23
Figure 2.9 The setup of high-speed measurement system…….. 24
Figure 3.1 The behavior of the lateral depth versus time for
AlAs and Al0.98Ga0.02As layers at the indicated
temperatures………………….………………………………
39
Figure 3.2 Micrograph of the lateral oxide of Al0.98Ga0.02As layer oxidized at 420℃ for 0, 30, 60, and 90min…....
40
Figure 3.3 EL spectra of E092B oxidized from 0 to 90 minutes……………………………….….…………………….
41
Figure 3.4 EL spectra of E092A oxidized from 0 to 90minutes.... 42
Figure 3.5 EL spectra of E092C oxidized from 0 to 90minutes.... 43
Figure 3.6 The Auger depth profile of RCLED oxidized for 30minutes
44
Figure 3.7 The Auger depth profile of RCLED oxidized for 90minutes
44
Figure 3.8 The Auger depth profile of un-oxidized RCLED 45
Figure 3.9 I-V characteristic of encapsulated RCLED. The RCLED anode on state voltage at 400mA is about 1.8V……………………………………………………..……… 45
Figure 3.10 Total output light power of RCLED versus injection current…………………………………………………….……
46
Figure 3.11 Wall-plug efficiency of RCLED versus injection current………………………….………………………………
46
Figure 3.12 Front and edge EL spectrum of RCLED……………….. 47
Figure 3.13 Screen effect induced by the electrode. Emission from active region is screened by the ring contact. This issuse may be resolved via lateral oxidation……
48
Figure 3.14 Current confinement performed by the lateral oxide……………………………………………………………
48
Figure 3.15 The L-I characteristics of encapsulated E092B at different stages. The optical output power at 400mA is enhanced by 31.5% due to elimination of screen effect…………………………………………………………… 49
Figure 3.16 The L-I characteristics of encapsulated E092C at different stages. The optical output power at 400mA is enhanced by 28.7% due to elimination of screen effect…………………………………………………………… 49
Figure 3.17 The EL spectra of encapsulated E092C……………..... 50
Figure 3.18 The EL spectra of encapsulated E092B………..…...... 51
Figure 3.19 EL spectra of E092A, E092B, and E092C……..……… 52
Figure 3.20 RCLED peak intensity against temperature………….. 53
Figure 3.21 Far field pattern of E092A, E092B, and E092C……… 54
Figure 3.22 Far field pattern before and after package…………..... 55
Figure 3.23 The mask design in our study……..……………………... 55
Figure 3.24 Measured electrical input and optical output signal 56
[1] N.E.J. Hunt, E.F. Schubert, R.A. Logan, and G.J. Zydzik, “Extremely narrow spectral widths from resonant cavity light emitting diodes (RCLEDs) suitable for wavelength division multiplexing at 1.3m and 1.55m,” Appl. Phys. Lett., vol. 61, pp. 2287-2290, 1992.
[2] N.E.J. Hunt, E.F. Schubert, D.L. Sivco, A.Y. Cho, and G.J. Zydzik, “Power and efficiency limits in single-mirror light emitting diodes with enhanced intensity,” Electron. Lett., vol. 28, pp. 2169-2171, 1992.
[3] E.F. Schubert, N.E.J. Hunt, M. Micovic, R.J. Malik, D.L. Sivco, A.Y. Cho, and G.J. Zydzik, “Highly efficient light emitting diodes with microcavities,” Science, vol. 265, pp.943-945, 1994.
[4] J. Lott, R. Schneider, J. Zolper, and J. Malloy, “AlGaInP visible resonant cavity light emitting diodes,” IEEE Photon. Technol. Lett., vol. 5, pp.631-633, 1993.
[5] J. Lott, R. Schneider, G. Vawter, J. Zolper, and J. Malloy, “visible (660nm) resonant cavity light emitting diodes,” Electron Letters., vol. 29, pp.328-329, 1993.
[6] J. Blondelle, H. De Neve, P. Demeester, P. Van Daele, G. Borghs, and R. Baets, “6% external quantum efficiency from InGaAs(Al)GaAs single quantum well planar microcavity LEDs,” Electron. Lett., vol. 30, pp.1787-1789, 1994.
[7] “IrDA serial Infrared physical layer specification,” http://www.irda.org, version 1.4, 2001.
[8] J. H. Juang, “Fabrication of resonant cavity light emitting diode”, Master Thesis. National Taiwan University., 2002.
[9] L. C. Chou, B. L. Yen, J. d. Juang, H. T. Jan, and H. H. Lin, “Resonant cavity light emitting diodes with coupled cavity”, EDMS. Proc., 2003.
[10] C. W. Wilmsen, “Vertical cavity surface emitting lasers,” Cambridge, pp.87, 1999.
[11] B.E. Deal, and A.S. Grove, ”General relationship for the thermal oxidation of silicon,” Appl. Phys. Lett., vol. 36, pp. 3770-3779, 1965.
[12] R. Wirth, C. Karnutsch, S. Kugler, and K. Streubel, “High-efficiency resonant-cavity LEDs emitting at 650nm,” IEEE Photon. Technol. Lett., vol. 13, pp.421-423, 2001.
[13] G.P. Agrawal, and N.K. Dutta, ”Semiconductor lasers,” Van Nostrand Reinhold, New York, 1990.
[14] D. I. Babic, S. W.Corzine, “Analytic Expressions for the Reflection Delay ,Penetration Depth, and absorptance of Quarter-Wave Dielectric Mirrors,” IEEE J. Quantum Electronics, 1992.
[15] G.P. Agrawal, and N.K. Dutta, “Semiconductor lasers,” Van Nostrand Reinhold, 1993.
[16] L.A. Coldren, and S.W. Corzine, “Diode lasers and photonic integrated circuits,” John Wiley & Sons Ltd, 1995.
[17] E.F. Schubert, N.E.J. Hunt, R.J. Malik, M. Micovic, and D.L. Miller, “Temperature and modulation characteristics of resonant-cavity light-emitting diodes,”J.Lightwave Technol., vol. 14, pp.1721-1728, 1996.
[18] J. Hunt, A. Khan, P.N. Stavrinou, and G. Parry, “Systematic study into resonant cavity light emitting diodes,” IEE.Savoy Place, London, vol. 11, pp. 1-5, 1996.
[19] R.L. Naone, and L.A. Coldren, “Surface energy model for the thickness dependence of the lateral oxidation of AlAs,” Appl. Phys. Lett., vol. 82, pp. 2277-2280, 1997.
[20] M. Jalonen, J. Kongas, M. Toivonenr, P. Savolainen, A. Salokatve, and M. Pessa, “Monolithic super-bright red resonant cavity light emitting diode grown br solid source molecular beam epitaxy,” IEEE Photon. Technol. Lett., vol. 10, pp.923-925, 1998.
[21] K. Streubel, U. Helin, V. Oskarsson, E. Backlin, and A. Johansson, “High Brightness visible (660nm) resonant cavity light emitting diode,” IEEE Photon. Technol. Lett., vol. 10, pp.1685-1687, 1998.
[22] R. Bockstaele, J. Blondelle, B. Dhoedt, I. Moerman, P.V.Daele , P.Demeester ,and R. Baets, “Resonant cavity LED’s optimized for coupling to polymer optical fibers,” IEEE Photon. Technol. Lett., vol. 11, pp.158-160, 1999.
[23] M. Guina, S. Orsila, M. Dumitrescu, M. Saarinen, P. Sipila, V. Vilokkinen, B. Roycroft, P. Uusimaa, M. Toivonen, and M. Pessa, “Light emitting diode emitting at 650nm with 200MHz small signal modulation bandwidth,” IEEE Photon. Technol. Lett., vol. 12, pp.786-788, 2000.
[24] F. Sfigakis, P. Paddon, V. Pacradouni, M. Adamcyk, C. Nicoll, A. R. Cowan, T.Tiedje, and J.F. Young, “Near-Infrared refractive index of thick, laterally oxidized AlGaAs cladding layers ,”J.Lightwave Technol., vol. 18, pp.199-202, 2000.
[25] M. de la Fargue, and M. Missous, “ Effects of high index plane on device performances of near-infrared InGaAsGaAsAlGaAs resonant cavity light emitting diodes, ” IEE Proc. Optoelectron., vol. 147, pp.27-30, 2000.
[26] K. Hild, T. E. Sale, T.J.C. Hosea, M. Hirotani, Y. Mizuno, and T. Kato, “Spectral and thermal properties of red AlGaInP RCLEDs for polymer optical fibre applications,” IEE. Proc. Optoelectron., vol. 148, pp. 220-224, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔