1. P. Russell, “Photonic crystal fibers,” Science, vol. 299, pp. 358-362, 2003.
2. S. W. Koch and A. Knorr, “Optics in the nano-world,” Science, vol. 293, pp. 2217-2218, 2001.
3. W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science, vol. 281, pp. 2016-2018, 1998.
4. J. I. Pascual, N. Lorente, Z. Song, H. Conrad, and H. P. Rust, “Selectivity in vibrationally mediated single-molecule chemistry,” Nature, vol. 423, pp. 525-528, 2003.
5. J. Aizenberg, D. A. Muller, J. L. Grazul, and D. R. Hamann, “Direct fabrication of large micropatterned single crystals,” Science, vol. 299, pp. 1205-1208, 2003.
6. Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science, vol. 298, pp. 2176-2179, 2002.
7. H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, and T. H. LaBean, “DNA- templated self-assembly of protein arrays and highly conductive nanowires,” Science, vol. 301, pp. 1882-1884, 2003.
8. C. M. Niemeyer, “Tools for the biomolecular engineer,” Science, vol. 297, pp. 62-63, 2002.
9. G. Y. Tseng and J. C. Ellenbogen, “Toward nanocomputers,” Science, vol. 294, pp. 1293-1294, 2001.
10. R. F. Service, “Assembling nanocircuits from the bottom up,” Science, vol. 293, pp. 782-785, 2001.
11. S. R. Quake and A. Scherer, “From micro to nanofabrication with soft materials,” Science, vol. 290, pp. 1536-1540, 2000.
12. J. Cumings and A. Zettl, “Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes,” Science, vol. 289, pp. 602-604, 2000.
13. S. J. Park, T. A. Taton, and C. A. Mirkin, “Array-based electrical detection of DNA with nanoparticle probes,” Science, vol. 295, pp. 1503-1506, 2002.
14. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science, vol. 292, pp. 1897-1899, 2001.
15. D. L. Huffaker and D. G. Deppe, “Electroluminescence efficiency of 1.3 mm wavelength InGaAs/GaAs quantum dots,” Appl. Phys. Lett., vol. 73, pp. 520-522, 1998.
16. J. C. Johnson, H. Yan, R. D. Schaller, L. H. Haber, R. J. Saykally, and P. Yang, “Single nanowire lasers,” J. Phys. Chem. B, vol. 105, pp. 11387-11390, 2001.
17. E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science, vol. 257, pp. 189-195, 1992.
18. D. Zhang, C. Li, X. Liu, S. Han, T. Tang, and C. Zhou, “Doping dependent NH3 sensing of indium oxide nanowires,” Appl. Phys. Lett., vol. 83, pp. 1845-1847, 2003.
19. H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni, and C. Dekker, “Carbon nanotube single-electron transistors at room temperature,” Science, vol. 293, pp. 76-79, 2001.
20. J. K. Lee, W. K. Koh, W. S. Chae, and Y. R. Kim, “Novel synthesis of organic nanowires and their optical properties,” Chem. Commun., pp. 138-139, 2002.
21. A. N. Krasnov, “High-contrast organic light-emitting diodes on flexible substrates,” Appl. Phys. Lett., vol. 80, pp. 3853-3855, 2002.
22. N. Kumar and K. S. Narayan, “Polarization-dependent discharge in fibers of a semiconducting ladder-type polymer,” Appl. Phys. Lett., vol. 78, pp. 1556-1558, 2001.
23. P. M. Lundquist, W. Lin, H. Zhou, D. N. Hahn, S. Yitzchaik, T. J. Marks, and G. K. Wong, “Frequency doubling in two-component self-assembled chromophoric waveguide structures,” Appl. Phys. Lett., vol. 70, pp. 1941-1943, 1997.
24. N. W. Ashcroft and N. D. Nmermin, Solid State Physics, 2nd Edition, Harcourt, 1976.
25. S. Veprek, “Electronic and mechanical properties of nanocrystalline composites when approaching molecular size,” Thin Solid Films, vol. 297, pp. 145-153, 1997.
26. A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science, vol. 271, pp. 933-937, 1996.
27. C. Tsai, K. H. Li, D. S. Kinosky, R. Z. Qian, T. C. Hsu, J. T. Irby, S. K. Banerjee, A. F. Tasch, and J. C. Campbell, “ Correlation between silicon hydride species and the photoluminescence intensity of porous silicon,” Appl. Phys. Lett., vol. 60, pp. 1700-1702, 1992.
28. M. B. Jr, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science, vol. 281, pp. 2013-2016, 1998.
29. L. T. Canham, “Silicon quantum wire array fabrication by electro- chemical and chemical dissolution of wafers,” Appl. Phys. Lett., vol. 57, pp. 1046-1048, 1990.
30. J. Huang, K. Yang, Z. Xie, B. Chen, H. Jiang, and S. Liu, “Effect of well number on organic multiple-quantum-well electroluminescent device characteristics,” Appl. Phys. Lett., vol. 73, pp. 3348-3350, 1998.
31. H. W. Pollack, Materials science and metallurgy, 4th Edition, Englewood Cliffs N. J. Prentice-Hall, 1988.
32. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible- light photocatalysis in nitrogen-doped titanium oxides,” Science, vol. 293, pp. 269-271, 2001.
33. H. S. Chen, J. J. Chiu, and T. P. Perng, “On the photoluminescence of Si nanoparticles,” Mater. Phys. Mech., vol. 4, pp. 62-66, 2001.
34. S. G. Kim and J. R. Brock, “Formation of primary metal particles in evaporation chambers,” J. Appl. Phys., vol. 60, pp. 509-513, 1986.
35. T. Ohno, S. Yatsuya, and R. Uyeda, “Formation of ultrafine metal particles by gas evaporation technique. III. Al in He, Ar and Xe, and Mg in mixtures of inactive gas and air,” Jpn. J. Appl. Phys., vol. 15, pp. 1213-1217, 1976.
36. M. Miyamura, K. Tachibana, and Y. Arakawa, “High-density and size controlled GaN self-assembled quantum dots grown by metal organic chemical vapor deposition,” Appl. Phys. Lett., vol. 80, pp. 3937-3939, 2002.
37. M. L. Terranova, S. Piccirillo, V. Sessa, S. Botti, and M. Rossi, “Photoluminescence from silicon nanoparticles in a diamond matrix,” Appl. Phys. Lett., vol. 74, pp. 3146-3148, 1999.
38. H. Yang, X. Wang, H. Shi, S. Xie, F. Wang, X. Gu, and X. Yao, “Photoluminescence of Ge nanoparticles embedded in SiO2 glasses fabricated by a sol-gel method,” Appl. Phys. Lett., vol. 81, pp. 5144-5146, 2002.
39. J. Zhang, B. G. Shen, S. Y. Zhang, Y. Q. Wang, and X. F. Duan, “Structure and magnetic properties of nanostructured PrCo7—xTix(x= 0—0.4) prepared by mechanical milling and subsequent annealing,” Appl. Phys. Lett., vol. 80, pp. 1418-1420, 2002.
40. C. G. Granqvist and R. A. Buhrman, “Ultrafine metal particles,” J. Appl. Phys, vol. 47, pp. 2200-2219, 1976.
41. C. Kaito, “Coalescence growth of smoke particles prepared by a gas evaporation technique,” Jpn. J. Appl. Phys., vol. 17, pp. 601-609, 1978.
42. S. Kasukabe, S. Yatsuya, and R. Uyeda, “Habits of metal crystallites formed by gas-evaporation technique,” J. Crystal Growth, vol. 24, pp. 315-318, 1974.
43. D. L. Huffaker and D. G. Deppe, “Electroluminescence efficiency of 1.3mm wavelength InGaAs/GaAs quantum dots,” Appl. Phys. Lett., vol. 73, pp. 520-522, 1998.
44. F. Huisken, B. Kohn, and V. Paillard, “Structured films of light emitting silicon nanoparticles produced by cluster beam deposition,” Appl. Phys. Lett., vol. 74, pp. 3776-3778, 1999.
45. S. J. Park, T. A. Taton, and C. A. Mirkin, “Array-based electrical detection of DNA with nanparticle probes,” Science, vol. 295, pp. 1503-1506, 2002.
46. D. V. Talapin, E. V. Shevchenko, A. Kornowski, N. Gaponik, M. Haase, A. L. Rogach, and H. Weller, “A new approach to crystallization of CdSe nanoparticles into ordered three-dimensional superlattices,” Adv. Mater., vol. 13, pp. 1868, 2001.
47. T. Cassagneau, J. H. Fendler, S. A. Johnson, and T. E. Mallouk, “Self-assembled diode junctions prepared from a ruthenium tris(bipyridyl) polymer, n-Type TiO2 nanoparticles, and graphite oxide sheets,” Adv. Mater., vol. 12, pp. 1363-1366, 2000.
48. A. M. Morales and C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science, vol. 279, pp. 208-211, 1998.
49. C. Li, B. Lei, D. Zhang, X. Liu, S. Han, T. Tang, M. Rouhanizadeh, T. Hsiai, and C. Zhou, “Chemical gating of In2O3 nanowires by organic and biomolecules,” Appl. Phys. Lett., vol. 83, pp. 4014-4016, 2003.
50. Z. H. Wu, X. Mei, D. Kim, M. Blumin, H. E. Ruda, J. Q. Liu, and K. L. Kavanagh, “Growth, branching, and kinking of molecular-beam epitaxial <110> GaAs nanowires,” Appl. Phys. Lett., vol. 83, pp. 3368-3370, 2003.
51. F. G. Tarntair, C. Y. Wen, L. C. Chen, J. J. Wu, K. H. Chen, P. F. Kuo, S. W. Chang, Y. F. Chen, W. K. Hong, and H. C. Cheng, “Field emission from quasi-aligned SiCN nanorods,” Appl. Phys. Lett., vol. 76-78, pp. 2630-2632, 2000.
52. M. E. T. Molares, E. M. Hohberger, C. Schaeflein, R. H. Blick, R. Neumann, and C. Trautmann, “Electrical characterization of electrochemically grown single copper nanowires,” Appl. Phys. Lett., vol. 82, pp. 2139-2141, 2003.
53 . M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature, vol. 415, pp. 617-620, 2002.
54. 柯志忠,「八羥奎林鋁鹽之奈米結構及其場發射性質研究」,清華大學碩士論文,2002。55. X. T. Zhou, N. Wang, F. C. K. Au, H. L. Lai, H. Y. Peng, I. Bello, C. S. Lee, and S. T. Lee, “Growth and emission properties of b-SiC nanorods,” Mater. Sci. Eng. A, vol. 286, pp. 119-124, 2000.
56. J. L. Gole, J. D. Stout, W. L. Rauch, and Z. L. Wang, “Direct synthesis of silicon nanowires, silica nanospheres, and wire-like nanosphere agglomerates,” Appl. Phys. Lett., vol. 76, pp. 2346-2348, 2000.
57. J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, “Control of thickness and orientation of solution-grown silicon nanowires,” Science, vol. 287, pp. 1471-1473, 2000.
58. X. Z. Zhang, L. D. Zhang, G. W. Meng, G. H. Li, N. Y. J. Phillipp, and F. Phillipp, “Synthesis of ordered single crystal silicon nanowire arrays,” Adv. Mater., vol.13, pp. 1238-1241, 2001.
59. W. Han, S. Fan, Q. Li, and Y. Hu, “Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction,” Science, vol. 277, pp. 1287-1289, 1997.
60. L. Cao, Z. Zhang, L. Sun, C. Cao, M. He, Y. Wang, Y. Li, X. Zhang, G. Li, J. Zhang, and W. Wang, “Well-aligned boron nanowire arrays,” Adv. Mater., vol.13, pp. 1701-1704, 2001.
61. Y. Wu, R. Fan and P. Yang, “Block-by-block growth of single crystalline Si/SiGe superlattice nanowires,” Nano Lett., vol. 2, pp. 83-86, 2002.
62. J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowries,” Science, vol. 293, pp. 1455-1457, 2001.
63. Y. Cui, Q. Wei, H. Park, C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science, vol. 293, pp. 1289-1292, 2001.
64. K. W. Wong, X. T. Zhou, F. C. K. Au, H. L. Lai, C. S. Lee, and S. T. Lee, “Field-emission characteristics of SiC nanowires prepared by chemical-vapor deposition,” Appl. Phys. Lett., vol. 75, pp. 2918-2920, 1999.
65. H. L. Lai, N. B. Wong, X. T. Zhou, H. Y. Peng, F. C. K. Au, N. Wang, I. Bello, C. S. Lee, S. T. Lee, and X. F. Duan, “Straight b-SiC nanorods synthesized by using C-Si-SiO2,” Appl. Phys. Lett., vol. 76, pp. 294-296, 2000.
66. Z. Pan, H. L. Lai, F. C. K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C. S. Lee, N. B. Wong, S. T. Lee, and S. Xie, “Oriented silicon carbide nanowires: synthesis and field emission properties,” Adv. Mater., vol. 12, pp. 1186-1190, 2000.
67. X. D. Bai, J. D. Guo, J. Yu, E. G. Wang, J. Yuan, and W. Zhou, “Synthesis and field-emission behavior of highly oriented boron carbonitride nanofibers,” Appl. Phys. Lett., vol. 76, pp. 2624-2626, 2000.
68. F. C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee, “Electron field emission from silicon nanowires,” Appl. Phys. Lett., vol. 75, pp. 1700-1702, 1999.
69. C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Lin, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc., vol. 123, pp. 2791-2798, 2001.
70. Y. H. Tang, X. H. Sun, F. C. K. Au, L. S. Liao, H. Y. Peng, C. S. Lee, S. T. Lee, and T. K. Sham, “Microstructure and field-emission characteristics of boron-doped Si nanoparticle chains,” Appl. Phys. Lett., vol. 79, pp. 1673-1675, 2001.
71. J. Chen, S. Z. Deng, N. S. Xu, S. Wang, X. Wen, S. Yang, C. Yang, J. Wang, and W. Ge, “Field emission from crystalline copper sulphide nanowires arrays,” Appl. Phys. Lett., vol. 80, pp. 3620-3622, 2002.
72. A. Noy, A. E. Miller, J. E. Klare, B. L. Weeks, B. W. Woods, and J. J. DeYoreo, “Fabrication of luminescent nanostructures and polymer nanowires using dip-pen nanolithography,” Nano Lett., vol. 2, pp. 109-112, 2002.
73. L. J. E. Hofer, E. Sterling, and J. T. MacCarthey, “Structure of the carbon deposited from carbon monoxide on iron, cobalt, and nickel,” J. Phys. Chem., vol. 59, pp. 1153-1155, 1955.
74. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene,” Nature, vol. 318, pp. 162-163, 1985.
75. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56-58, 1991.
76. M. S. Dresselhaus, G. Dresselhaus, and R. Saito, “Physics of carbon nanotubes,” Carbon, vol. 33, pp. 883-891, 1995.
77. S. H. Tsai, C. W. Chao, C. L. Lee, and H. C. Shih, “Bias-enhanced nucleation and growth of the aligned carbon nanotubes with open ends under microwave plasma synthesis,” Appl. Phys. Lett., vol. 74, pp. 3462-3464, 1999.
78. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission properties,” Science, vol. 283, pp. 512-514, 1999.
79. Z. P. Huang, J. W. Xu, Z. F. Ren, J. H. Wang, M. P. Siegal, and P. N. Provencio, “Growth of highly oriented carbon nanotubes by plasma- enhanced hot filament chemical vapor deposition,” Appl. Phys. Lett., vol. 73, pp. 3845-3847, 1998.
80. Y. Y. Wei, G. Eres, V. I. Merkulov, and D. H. Lowndes, “Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition,” Appl. Phys. Lett., vol. 78, pp. 1394- 1396, 2001.
81. V. Ivanov, J. B. Nagy, P. Lambin, A. Lucas, X. F. Zhang, D. Bernaerts, G. V. Tendelo, S. Amelinckx, and J. V. Landuyt, “The study of carbon nanotubes produced by catalystic method,” Chem. Phys. Lett., vol. 223, pp. 329-331, 1994.
82. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, “Crystalline ropes of metallic carbon nanotubes,” Science, vol. 273, pp. 483-487, 1996.
83. J. Li, C. Papadopoulos, and J. M. Xu, “Highly-ordered carbon nanotube arrays for electronics applications,” Appl. Phys. Lett., vol. 75, pp. 367-369, 1999.
84. J. S. Suh and J. S. Lee, “Highly-ordered two-dimensional carbon nanotube arrays,” Appl. Phys. Lett., vol. 75, pp. 2047-2049, 1999.
85. Z. H. Yuan, H. Huang, H. Y. Dang, J. E. Cao, B. H. Hu, and S. S. Fan, “Field emission property of highly ordered monodispersed carbon nanotube arrays,” Appl. Phys. Lett., vol. 78, pp. 3127-3129, 2001.
86. H. Nishijima, S. Kamo, S. Akita, Y. Nakayama, K. I. Hohmura, S. H. Yoshimura, and K. Takeyasu, “Carbon-nanotube tips for scanning probe microscopy: preparation by a controlled process and observation of deoxyribonucleic acid,” Appl. Phys. Lett., vol. 74, pp. 4061-4063, 1999.
87. W. H. Knechtel, G. S. Dusberg, W. J. Blau, E. Hernandez, and A. Rubio, “Reversible bending of carbon nanotubes using a transmission electron microscope,” Appl. Phys. Lett., vol. 73, pp. 1961-1963, 1998.
88. P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. deHeer, “Electrostatic deflections and electromechanical resonance of carbon nanotubes,” Science, vol. 283, pp, 1513-1516, 1999.
89. T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, and C. M. Lieber, “Carbon nanotube-based nonvolatile random access memory for molecular computing” Science, vol. 289, pp. 94-97, 2000.
90. S. J. Tans, S. R. M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single carbon nanotube,” Nature, vol. 393, pp. 49-52, 1998.
91. H. G. Craighead, “Nanoelectromechanical systems,” Science, vol. 290, pp. 1532-1535, 2000.
92. J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Guntherodt, C. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science, vol. 288, pp. 316-318, 2000.
93. E. W. Wong, P. E. Sheehan, C. M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanoroads and nanotubes,” Science, vol. 277, pp. 1971-1975, 1997.
94. R. H. Baughman, C. Cui, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. D. Rossi, A. G. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, “Carbon nanotube actuators,” Science, vol. 284, pp. 1340-1344, 1999.
95. R. Stevens, C. Nguyen, A. Cassell, L. Delzeit, M. Meyyappan, and J. Han, “Improved fabrication approach for carbon nanotube probe devices,” Appl. Phys. Lett., vol. 77, pp. 3453-3455, 2000.
96. P. Kim, C. M. Lieber, “Nanotube nanotweezers,” Science, vol. 286, pp. 2148-2150, 1999.
97. W. A. deHeer, A. Chatelain, D. Ugarte, “A carbon nanotube field- emission electron source,” Science, vol. 270, pp. 1179-1180, 1995.
98. H. Murakami, M. Hirakawa, C. Tanaka, and H. Yamakawa, “Field emission from well-aligned, patterned, carbon nanotube emitters,” Appl. Phys. Lett., vol. 76, pp. 1776-1779, 2000.
99. Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science, vol. 291, pp. 1947-1949, 2001.
100. D. N. Mcllroy, D. Zhang, Y. Kranov, and M. G. Norton, “Nano- springs,” Appl. Phys. Lett., vol. 79, pp. 1540-1542, 2001.
101. J. R. Hollahan, “Deposition of plasma silicon oxide thin films in a production planar reactor,” J. Electrochem. Soc., vol. 126, pp. 930- 940, 1979.
102. O. Sanchez, C. G. Aleixandre, F. Agullo, and J. M. Albella, “Study of the plasma discharges in diamond deposition with different O2 concentrations,” Dia. and Rel. Mater., vol. 3, pp. 1183-1189, 1994.
103. Z. Jiang, C. P. Klages, R. Zachai, M. Hartweg, and H. J. Fusser, “Epitaxial diamond thin films on (001) silicon substrate,” Appl. Phys. Lett., vol. 62, pp. 3438-3440, 1993.
104. O. Groning, O. M. Kuttel, P. Groning, and L. Schlapbach, “Field emission properties of nanocrystalline chemical vapor deposited- diamond films,” J. Vac. Sci. Technol. B, vol. 17, pp. 1970-1986, 1999.
105. W. N. Wang, N. A. Fox, T. J. Davis, D. Richardson, G. M. Lynch, J. W. Steeds, and J. S. Lee, “Growth and field emission properties of multiply twinned diamond films with quintuplet wedges,” Appl. Phys. Lett., vol. 69, pp. 2825-2827, 1996.
106. A. Sawabe and T. Inuzuka, “Growth of diamond thin film by electron assisted chemical vapor-deposition,” Appl. Phys Lett., vol. 46, pp. 146-148, 1985.
107. M. Kamo, Y. Sato, S. Matsumoto, and N. Setaka, “Diamond synthesis from gas-phase in microwave plasma,” J. of Crystal Growth, vol. 62, pp. 642-651, 1983.
108. A. Hatta, K. Kadota, Y. Mori, T. Ito, T. Sasaki, A. Hiraki, and S. Okada, “Pulse modulated electron cyclotron resonance plasma for chemical vapor deposition of diamond films,” Appl. Phys. Lett., vol. 66, pp. 1602-1604, 1995.
109. S. T. Lee, Z. Lin, and Z. Jiang, “CVD diamond films: nucleation and growth,” Mater. Sci. and Eng., vol. 25, pp. 123-154, 1999.
110. N. A. Fox, W. N. Wang, T. J. Davis, J. W. Steeds, P. W. May, “Field emission properties of diamond films of different qualities,” Appl. Phys. Lett., vol. 71, pp. 2337-2339, 1997.
111. William D. Callister, Jr., Materials Science and Engineering an Introduction, Jonh Willey & Sons, 1998.
112. Y. H. Chen, C. T. Hu, I. N. Lin, “Defect structure and electron field- emission properties of boron-doped diamond films,” Appl. Phys. Lett., vol. 75, pp. 2857-2859, 1999.
113. A. M. Bonnot, M. N. Semeria, J. F. Boronat, T. Fournier, and L. Pontonnier, “Investigation of the growth mechanism and electron emission properties of carbon nanostructures prepared by hot-filament chemical vapor deposition,” Dia. Rel. Mater., vol. 9, pp. 852-855, 2000.
114. C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., vol. 51, pp. 913-915, 1987.
115. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. D. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes, Nature, vol. 347, pp. 539-541, 1990.
116. D. Braun and A. J. Heeger, “Visible light emission from semiconducting polymer diodes,” Appl. Phys. Lett., vol. 58, pp. 1982-1984, 1991.
117. R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, and H. Wang, “Low-threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett., vol. 73, pp. 3492-3494, 1998.
118. M. D. McGehee, M. A. D. Garcia, F. Hide, R. Gupta, E. K. Miller, D. Moses, A. J. Heeger, “Semiconducting polymer distributed feedback lasers,” Appl. Phys. Lett., vol. 72, pp. 1536-1538, 1998.
119. M. Morimoto, “Trends of marketing and technology in TFT-LCD,” IEEE/CPMT International Electronics Manufacturing Technology Symposium, vol. 1, pp. 384-386, 1994.
120. H. Uchiike and T. Hirakawa, “Color plasma displays,” Proc. of the IEEE, vol. 90, pp. 533-539, 2002.
121. A. Palevsky, “A high brightness field emission display,” IEEE International Conference on Plasma Science, pp. 243, 3-5 June 1996.
122. P. Holm, W. Rhyne, B. Gable, S. P. Rogers, K. Jachimowicz, F. Richard, D. E. Ackley, “Two-dimensional LED arrays for virtual display image sources,” IEEE Transactions on Electron Devices, vol. 46, pp. 897—904, 1999.
123. J. D. Britton, M. E. Traylor, S. Bhaskaran, J. C. McClure, V. P. Singh, “Modification and characterization of insulator-semiconductor interface in a.c. thin film electroluminescent display devices,” Electron Devices Meeting, pp. 689 —692, 13-16 Dec. 1992.
124. A. Wedel and S. Janietz, “Polymer materials for display technology,” Polymers and Adhesives in Microelectronics and Photonics, pp. 46-49, 2001.
125. Z. D. Popovic and H. Aziz, “Reliability and degradation of small molecule-based organic light-emitting devices (OLEDs),” IEEE J. Select. Topics Quantum Electron., vol. 8, pp. 362-371, 2002.
126. N. K. Patel, S. Cina, and J. H. Burroughes, “High-efficiency organic light-emitting diodes,” IEEE J. Select. Topics Quantum Electron., vol. 8, pp. 346-361, 2002.
127. R. J. Curry and W. P. Gillin, “Radiative recombination mechanisms in aluminum tris(8-hydroxyquinoline): evidence for triplet exciton recombination,” J. Appl. Phys, vol. 88, pp. 781-785, 2000.
128. S. Miyata and H. S. Nalwa, Organic Electroluminescence Materials and Devices, Gordon and Breach Science Publishers, chap. 13, 1997.
129. P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. A. Cronin, and M. E. Thompson, “Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices,” J. Appl. Phys, vol. 79, pp. 7991-8005, 1996.
130. L. B. Lin, S. A. Jenekhe, R. H. Young, and P. M. Borsenberger, “Hole injection and transport in tris-(8-hydroxyquinloinato) aluminum,” Appl. Phys. Lett., vol. 70, pp. 2052-2054, 1997.
131. T. Ishida, H. Kobayashi, and Y. nakato, “Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements,” J. Appl. Phys., vol. 73, pp. 4344-4350, 1993.
132. M. Probst and R. Haight, “Diffusion of metals into organic films,” Appl. Phys. Lett., vol. 70, pp. 1420-1422, 1997.
133. S. T. Lee, X. Y. Hou, M. G. Mason, and C. W. Tang, “Energy level alignment at Alq/metal interfaces,” Appl. Phys. Lett., vol. 72, pp. 1593-1595, 1998.
134. H. Aziz, Z. Popovic, S. Xie, A. M. Hor, N. X. Hu, C. Tripp, and G. Xu, “Humidity-induced crystallization of tris (8-hydroxyquinoline) aluminum layers in organic light-emitting divices,” Appl. Phys. Lett., vol. 72, pp. 756-758, 1998.
135. L. S. Liao, J. He, X. Zhou, M. Lu, Z. H. Xiong, Z. B. Deng, X. Y. Hou, and S. T. Lee, “Bubble formation in organic light-emitting diode,” J. Appl. Phys., vol. 88, pp. 2386-2390, 2000.
136. J. McElvain, H. Antoniadis, M. R. Hueschen, J. N. Miller, D. M. Roitman, J. R. Sheats, and R. L. Moon, “Formation and growth of black spots in organic light-emitting diodes,” J. Appl. Phys., vol. 80, pp. 6002-6007, 1996.
137. C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” J. Appl. Phys., vol. 65, pp. 3610-3616, 1989.
138. C. C. Wu, C. W. Chen, Y. T. Lin, H. L. Yu, J. H. Hsu, and T. Y. Luh, “Programmable organic light emitting devices,” Appl. Phys. Lett., vol. 79, pp. 3023-3025, 2001.
139. D. E. Loy, B. E. Koene, and M. E. Thompson, “Asymmetric diamines as thermally stable hole transporters in organic light emitting devices, synthesis and characterization” Lasers and Electro-Optics Society Annual Meeting, vol. 1, pp. 364 -365, 10-13 Nov. 1997.
140. M. G. Abd El Wahed, K. A. El Manakhly, N. El Kososy, Physicochemical studies of hydroxyquinoline sulfonic asid and its transition metal complexes, Mater. Chem. Phys., vol. 41, pp. 117-122, 1995.
141. P. E. Burrows, L. S. Sapochak, D. M. McCarty, S. R. Forrest, and M. E. Thompson, “Metal ion dependent luminescence effects in metal tris- quinolate organic heterojunction light emitting devices,” Appl. Phys. Lett., vol. 64, pp. 2718-2720, 1994.
142. J. Kido and Y. Iizumi, “Fabrication of highly efficient organic electroluminescent devices,” Appl. Phys. Lett., vol. 73, pp. 2721- 2723, 1998.
143. R. L. Martin, J. D. Kress, I. H. Campbell, and D. L. Smith, “Molecular and solid-state properties of tris-(8-hydroxyquinolate)- aluminum,” Phys. Rev. B, vol. 61, pp. 15804-15810, 2000.
144. L. S. Sapochak, A. Padmaperuma, N. Washton, F. Endrino, G. T. Schmett, J. Marshall, D. Fogarty, P. E. Burrows, and S. R. Forrest, “Effect of systematic methyl substitution of metal (III) tris(n-methyl-8- quinolinolato) chelates on material properties for optimum electroluminescence device performance,” J. Am. Chem. Soc., vol. 123, pp. 6300-6307, 2001.
145. K. Naito and A. Miura, “Molecular design for nonpolymeric organic dye glasses with thermal stability: relations between thermodynamic parameters and amorphous properties,” J. Phys. Chem., vol. 97, pp. 6240-6248, 1993.
146. M. Brinkmann, G. Gadret, M. Muccini, C. Tailiani, N. Masciocchi, and A. Sironi, “Correlation between molecular packing and optical properties in different crystalline polymorphs and amorphous thin films of mer-tris(8-hydroxyquinoline)aluminum(III),” J. Am. Chem. Soc., vol. 122, pp. 5147-5157, 2000.
147. S. T. Lee, X. Y. Hou, M. G. Mason, and C. W. Tang, “Energy level alignment at Alq/metal interface,” Appl. Phys. Lett., vol. 72, pp. 1593-1595, 1998.
148. A. Schmidt, M. L. Anderson, and N. R. Armstrong, “Electronic states of vapor deposited electron and hole transport agents and luminescent materials for light-emitting diodes,” J. Appl. Phys., vol. 78, pp. 5619-5625, 1995.
149. H. Murata, C. D. Merritt, and Z. H. Kafafi, “Emission mechanism in rubrene-doped molecular organic light-emitting diodes: direct carrier recombination at luminescent centers,” IEEE J. Select. Topics Quantum Electron., vol. 4, pp. 119-124, 1998.
150. M. D. Halls and R. Aroca, “Vibrational spectra and structure of tris(8-hydroxquinoline)aluminum(III),” Can. J. Chem., vol. 76, pp. 1730-1736, 1998.
151. G. P. Kushto, Y. Iizumi, J. Kido, and Z. H. Kafafi, “A matrix- isolation spectroscopic and theoretical investigation of tris(8- hydroxy-quinolinato)aluminum(III) and tris(4-methyl-8- hydroxy- quinolinato)-aluminum(III),” J. Phys. Chem., vol. 104, pp. 3670- 3680, 2000.
152. X. M. Ding, L. M. Hung, C. S. Lee, and S. T. Lee, “Vibrational structure of untrathin 8-hydroxyquinoline aluminum films studied by high-resolution electron-energy-loss spectroscopy,” Phys. Rev. B, vol. 60, pp. 13291-13293, 1999.
153. J. F. Moulin, M. Brinkmann, A. Thierry, and J. C. Wittmann, “Oriented crystalline films of tris(8-hydroxyquinoline) aluminum (III): growth of the alpha polymorph onto an ultra-oriented poly- (tetrafluoro-ethylene) substrate,” Adv. Mater., vol. 14, pp. 436-439, 2002.
154. Y. Ohmori, H. Ueta, Y. Kurosaka, Y. Hamada, and K. Yoshino, “Enhanced emission from europium complex utilizing quantum-well structure in organic electroluminescent device,” Jpn. J. Appl. Phys. Part 2, vol. 37, pp. L798-L801, 1998.
155. J. Huang, K. Yang, S. Liu, and H. Jiang, “High-brightness organic double-quantum-well electroluminescent devices,” Appl. Phys. Lett., vol. 77, pp. 1750-1752, 2000.
156. Y. Ohmori, A. Fujii, M. Uchida, C. Morishima, and K. Yoshino, “Observation of spectral narrowing and emission energy shift in organic electroluminescent diode utilizing 8-hydroxyquinoline aluminum/aromatic diamine multiplayer structure,” Appl. Phys. Lett., vol. 63, pp. 1871-1873, 1993.
157. S. Kasukabe, S. Yatsuya, and R. Uyeda, “Ultrafine metal particles formed by gas-evaporation technique. II. Crystal habits of magnesium, manganese, beryllium and tellurium,” Jpn. J. Appl. Phys., vol. 13, pp. 1714-1721, 1974.
158. S. G. Kim and J. R. Brock, “Formation of primary metal particles in evaporation chambers,” J. App. Phys., vol. 60, pp. 509-513, 1986.
159. S. Kasukabe, S. Yatsuya, and R. Uyeda, Jpn. J. Appl. Phys., vol. 12, pp. 1675-1680, 1973.
160. N. Wada, “Preparation of fine metal particles by means of evaporation in helium gas,” Jpn. J. Appl. Phys., vol. 6, pp. 553-555, 1967.
161. N. Wada, “Preparation of fine metal particles by means of evaporation in xenon gas,” Jpn. J. Appl. Phys., vol. 7, pp. 1287-1293, 1968.
162. C. Kaito, “Coalescence growth of smoke particles prepared by a gas-evaporation technique,” Jpn. J. Appl. Phys., vol. 17, pp. 601-609, 1978.
163. T. Ohno, S. Yatsuya, and R. Uyeda, “Formation of ultrafine metal particles by gas-evaporation technique. III. Al in He, Ar and Xe, and Mg in mixtures of inactive gas and air,” Jpn. J. Appl. Phys., vol. 15, pp. 1213-1217, 1976.
164. P. K. Wei, S. Y. Chiu, and W. L. Chang, “Determination of mesoscale crystallization by collection-mode polarizataion modulated near-field optical microscopy,” Rev. Sci. Instrum., vol 73, pp. 2624-2628, 2002.
165. S. A. Catledge, Y. Vohra, S. Woodard, and R. Venugopalan, “Structural and mechanical properties of nanostructured metalloceramic coatings on cobalt chrome alloys,” Appl. Phys. Lett., vol. 82, pp. 1625-1627, 2003.
166. E. Betzig and J. K. Trautman, “Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit, Science, vol. 257, pp. 189-195, 1992.
167. D. A. Higgins, D. A. V. Bout, J. Kerimo, and P. F. Barbara, “Polarization-modulation near-field scanning optical microscopy of mesostructured materials,” J. Phys. Chem., vol. 100, pp. 13794- 13803, 1996.
168. P. K. Wei and W. S. Fann, “The correlation between polarization modulated near-field optical images and the anisotropy of the probe,” J. Microscopy, vol. 202, pp. 148-153, 2000.
169. T. Ha, T. Enderle, and D. S. Chemla, “Single molecule dynamics studied by polarization modulation,” Phys. Rev. Lett., vol. 77, pp. 3979-3982, 1996.
170. Charles Kittel, Introduction to Solid State Physics, New York: Wiley, 1971.
171. R. Fowler and L. W. Nordheim, “Electron Emission in Intense Electric Fields,” Proc. R. Soc. London, vol. 119, pp. 173-181, 1928.
172. E. L. Murphy and R. H. Good, “Thermionic Emission, Field Emssion and the Transition Region,” Jr, Phys. Rev., vol. 102, pp. 1464-1472, 1956.
173. R. E. Burgess and H. Kroemer, “Corrected vilues of Fowler-Nordheim Field Emission Function v(y) and s(y),” Phys. Rev., vol. 90, pp. 515, 1953.
174. V. V. Zhirnov, C. L. Rinne, G. J. Wojak, R. C. Sanwald, J. J. Hren, “Standardization" of field emission measurements,” J. Vac. Sci. Technol. B, 19, pp. 87-93, 2001.
175. E. W. Muller, “Work Function of Tungsten Single Crystal Planes Measured by the Field Emission Microscope,” J. Appl. Phys., vol. 26, pp. 732-737, 1955.
176. S. C. Kung, T. F. Kuo, B. J. Li, and H. J. Lai, in press.
177. J. J. Chiu, W. S. Wang, K. K. Kei, and T. P. Perng, “Tris-(8-hydroxy- quinoline)aluminum nanoparticles prepared by vapor condensation,” Appl. Phys. Lett., vol. 83, pp. 347-349, 2003.
178. J. J. Chiu, C. C. Kei, T. P. Perng, and W. S. Wang, “Organic semiconductor nanowires for field emission,” Adv. Mater., vol. 15, 1361-1364, 2003.
179. R. E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, 3rd ed., PWS-Kent Publishing, Boston, pp. 444-447, 1992.
180. J. J. chiu, W. S. Wang C. C. Kei, C. P. Cho, T. P. Perng, P. K. Wei, and S. Y. Chiu, “Room temperature vibrational photoluminescence and field emission of nanoscaled tris-(8-hydroxyquinoline) aluminum crystalline film,” Appl. Phys. Lett., vol. 83, pp. 4607-4609, 2003.