(18.206.177.17) 您好!臺灣時間:2021/04/11 03:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曲建仲
研究生(外文):Jiann Jong Chiu
論文名稱:有機半導體奈米結構之製備及其光電性質之研究
論文名稱(外文):Organic Semiconductor Nanostructures and Their Optoelectronic Properties
指導教授:王維新王維新引用關係
指導教授(外文):Way Seen Wang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:92
語文別:中文
論文頁數:184
中文關鍵詞:奈米科技有機半導體八-羥奎林鋁鹽奈米粒子奈米線奈米帶奈米結晶薄膜場發射
外文關鍵詞:NanotechnologyOrganic semiconductorAlQ3NanoparticlesNanowiresNanobeltsNanoscaled crystalline filmField emission
相關次數:
  • 被引用被引用:1
  • 點閱點閱:531
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:84
  • 收藏至我的研究室書目清單書目收藏:0
由於奈米材料具有全新的特性,可以取代傳統材料應用在各種光電科技產品中,因此近年來成為大家努力研究的主題。早期奈米科技的研究重心在無機材料,但是有機材料具有極佳的光電特性,因此本研究以有機材料八-羥奎林鋁鹽(tris-(8-hydroxyquinolate)-aluminum, AlQ3)製備奈米粒子(零維)、奈米線(一維)與奈米結晶薄膜(二維)等有機奈米結構,研究其光電特性,並嘗試元件之製作。
本實驗使用氣相冷凝法製備AlQ3奈米結構,所得之奈米粒子呈球形,平均大小約為50~500nm,表面非常光滑類似真珠。由X光繞射(X-ray diffraction)分析發現奈米粒子為非晶(amorphous)結構。由奈米粒子的光激發光(photoluminescence, PL)光譜可以看出其發光波長範圍為4500~7000 Å,發光之中心波長為5380Å,而且當奈米粒子的尺寸變小時,其發光強度明顯增強,這是由於尺寸愈小的奈米粒子具有較大的比表面積(specific surface area),增加了激發光源的吸收,而增加了發光強度。
AlQ3奈米線可以直接成長在矽晶圓或鍍有氧化銦錫(indium tin oxide, ITO)的玻璃基板上,奈米線的直徑約為30~50nm,長度超過1m。經由X光繞射與高解析度穿透式電子顯微鏡(high resolution transmission electron microscopy, HRTEM)分析發現奈米線為非晶結構。實驗發現AlQ3奈米線可以製備成場發射元件,其啟動電場(turn-on field)約為8.0~10.0V/m,在外加電場22V/μm時其最大電流密度約為15mA/cm2。實驗結果顯示其場發射增強因子(field enhancement factor)約為275,而且可以持續放電超過1hr,本實驗首次證實有機半導體奈米線與奈米碳管類似,均可以應用在場發射元件。
AlQ3奈米結晶薄膜直接成長在矽晶圓或鍍有氧化銦錫的玻璃基板上,其外觀為柱狀堆疊在基板表面,柱狀物的直徑約為100nm,長度為1 μm,而且其高度起伏約有100nm。實驗發現在室溫下奈米結晶薄膜之光激發光光譜具有起伏振盪的數個峰值,而且具有場發射現象,其啟動電場(turn-on field)約為12.0~15.0V/m,在外加電場22 V/μm時其最大電流密度約為0.8mA/cm2,而且可以持續放電超過0.5hr,本實驗證實有機半導體結晶薄膜與鑽石薄膜類似,均可以用來製作場發射元件。
經由傅氏轉換紅外線光譜(Fourier transfer infrared, FTIR)證實,雖然實驗所使用之製程溫度高達410°C,但是在蒸鍍的過程中AlQ3的分子鍵結並沒有被高溫破壞,顯示AlQ3分子的熱穩定性極高。而且AlQ3奈米結構可以放置在場發射電子顯微鏡(field emission gun scanning electron microscopy, FEGSEM)或是穿透式電子顯微鏡(transmission electron microscopy, TEM)中照射電子束超過3hr以上,其外觀並不會有太大的改變,顯示AlQ3奈米結構的熱穩定性,且將其放置在室溫與空氣中進行時效(aging)超過一週,發現外觀及鍵結變化不大,顯示AlQ3奈米結構確實極為安定,其未來可能的發展與應用極大。

Nanotechnology has become an important and popular research subject recently, because the quantum size effect of nano-structured materials, such as nanowires and nanoparticles, may induce new optical and electronic properties compared with those of conventional materials. Much attention is then turned to nanometer-sized organic materials due to many unique properties such as flexibility, high photoconductivity, and nonlinear optical effects that may offer novel applications in nano-optoelectronic devices. In this study, a widely-used material of organic light emitting diodes, tris-(8-hydroxyquinolate)-aluminum (AlQ3), is employed to fabricate the nanoparticles (zero dimension), nanowires (one dimension), and nanoscaled crystalline films (two dimension).
The AlQ3 nanostructures were synthesized by vapor condensation. The average sizes of the spherical nanoparticles are varying from 50 to 500 nm. The surface of the nanoparticles is quite sleek and smooth like that of pearls. The X-ray diffraction (XRD) patterns reveal that the nanoparticles have an amorphous structure. The photoluminescence spectra of the nanoparticles show a broadened peak varying from 4500 Å to 7000 Å, with the maximum intensity at about 5380 Å. The maximum intensity increases as the particle size decreases, owing to the specific surface area. The larger specific surface area of the smaller nanoparticles increases the optical absorption and further enhances the intensity of luminescence.
The AlQ3 nanowires were grown on the indium tin oxide (ITO) coated glass substrate. The diameter and length of the nanowires are about 30 to 50 nm and over 1 m, respectively. According to the XRD and high resolution transmission electron microscopy (HRTEM) analysis, the nanowires reveal an amorphous structure. The AlQ3 nanowires exhibit a low turn-on field of 8.0-10.0 V/m and a maximum current density of about 15 mA/cm2. The field enhancement factor is estimated to be 275. A stable emission current can be performed, thus the field emission of organic semiconductor nanowires was first demonstrated. It indicates that the application of this organic semiconductor in field emission is quite promising.
The nanoscaled AlQ3 crystalline film was synthesized on the ITO coated glass substrate. It was stacked with nanometer-sized rods, approximately 100 nm wide and 1 μm long, and had a surface roughness of about 100 nm. The vibronic progression with several separated peaks was observed in the photoluminescence spectrum at room temperature. It is attributed to the crystallinity of AlQ3 and the coupling of vibrations of the individual ligands to the fluorescence transition. The emission current was also observed with a turn-on field of 12.0 V/μm, and a current density of about 0.8 mA/cm2 at 22 V/μm. A stable emission current can also be performed. It demonstrates that the electrons emit from the bumps of the AlQ3 crystalline film at high voltages. Therefore, the AlQ3 crystalline film provides a new choice for field emission.
According to the Fourier transfer infrared (FTIR) spectrum, the chemical bonding of AlQ3 is preserved in the nanoparticles even after evaporation at 410°C. Moreover, all the AlQ3 nanostructures remain stable in the field emission gun scanning electron microscopy (FEGSEM) or transmission electron microscopy (TEM) for more than 3hr without any change of the surface morphology, indicating an excellent thermal stability. The chemical bonding and surface morphology of the AlQ3 nanostructures are also preserved after aging in air at room temperature for more than one week.

第一章 緒論 ……………..………………………… 1
1-1 奈米科技 ………………………………….……… 1
1-2 奈米材料的性質 …………………………………. 2
1-2-1 量子局限效應 ………………………………..… 2
1-2-2 表面與介面效應 ……………………………..… 6
1-3 實驗動機與構想 ………………………………..… 7
第二章 奈米材料 ……………...…………………… 9
2-1 奈米粒子 ………………………………………….. 9
2-1-1 奈米粒子的製備 ………………………………… 9
2-1-2 奈米粒子的成長機制 …………………………… 12
2-1-3 奈米粒子的特性與應用 ………………………… 13
2-2 奈米線 ……………………………………………… 15
2-2-1 奈米線的製備 ……………………………………. 15
2-2-2 奈米線的成長機制 ………………………………. 19
2-2-3 奈米線的特性與應用 ……………………………. 20
2-2-4 有機奈米線 ……………..………………………… 26
2-3 奈米碳管 ……………………………………………. 28
2-3-1 奈米碳管的製備 ………………………………….. 28
2-3-2 奈米碳管的成長機制 …………………………… 31
2-3-3 奈米碳管的特性與應用 ………………………… 32
2-3-4 其他一維結構之奈米材料 ……………………… 40
2-4 鑽石薄膜 ………………………………………….. 42
2-4-1鑽石薄膜的製備 ………………………………… 42
2-4-2鑽石薄膜的成長機制 …………………………… 43
2-4-3鑽石薄膜的特性與應用 ………………………… 44
第三章 有機半導體 ……………………..……….… 45
3-1 有機半導體 ……………………………………….. 45
3-1-1 有機半導體的起源 …………….……………….. 45
3-1-2 有機半導體的發光機制 ……….……………….. 46
3-1-3 有機發光二極體的發光機制 ….……………….. 48
3-1-4 有機半導體的種類 …………….……………….. 55
3-2 八-羥奎林鋁鹽(AlQ3)的特性 …………………….. 58
3-2-1 分子結構 …………………….………………….. 58
3-2-2 光學性質 …………………….………………….. 60
3-2-3 電子傳輸性質 ……………….………………….. 62
3-2-4 鍵結性質 …………………….………………….. 64
3-2-5 薄膜性質 …………………….………………….. 66
3-2-6 有機半導體量子井 ………….………………….. 66
第四章 實驗原理與步驟 .………………..………… 69
4-1 氣相冷凝法 …………………….………………….. 69
4-1-1 氣相冷凝法的裝置 ….……….………………….. 69
4-1-2 氣相冷凝法成長奈米粒子 …..………………….. 70
4-2 極化調變近場光學顯微鏡 …..…………………….. 72
4-2-1 極化調變近場光學顯微鏡量測裝置 ….……….... 72
4-2-2雙色性晶體的量測 ………………………………... 74
4-3 光激發光 ……………………………...………….... 77
4-3-1 光激發光量測裝置 .………………...………….... 77
4-3-2 光激發光的機制 ….………………...………….... 79
4-4 電子場發射 …………………………...………….... 81
4-4-1 Fowler-Nordheim方程式 …………...………….... 81
4-4-2 Fowler-Nordheim圖 ………………...………….... 85
4-4-3 場發射增強係數 ….………………...………….... 86
4-4-4 場發射量測裝置 ….………………...………….... 86
4-5 實驗流程 ………….…………………...………….... 89
4-5-1 有機半導體奈米結構製程設備 .…...………….... 89
4-5-2 試片的前處理 ………….…………...………….... 90
4-5-3 AlQ3奈米結構的製備 ……………...………….…. 92
4-5-3 AlQ3奈米結構的量測 ……………...………….…. 96
第五章 實驗結果與討論 ……………….…………. 99
5-1 AlQ3粉末 …………….……………...………….…. 99
5-1-1 粉末的外觀 …………….………………….….…. 99
5-1-2 粉末的結構 ………………….…………….….…. 100
5-2 AlQ3奈米粒子 ….…….……………...………….…. 101
5-2-1 奈米粒子的外觀 …………….…………….….…. 101
5-2-2 奈米粒子的結構 …………….…………….….…. 105
5-2-3 奈米粒子的成長機制 ……….…………….….…. 107
5-2-4 奈米粒子的光激發光特性 ….…………….….…. 108
5-2-5 以多孔性基板製備奈米粒子 .…………….….…. 110
5-3 AlQ3奈米線與奈米帶 ..……………...………….…. 112
5-3-1 奈米線與奈米帶的外觀 …….…………….….…. 112
5-3-2 奈米線的結構 ……………….…………….….…. 118
5-3-3 奈米線的成長機制 ………….…………….….…. 121
5-3-4 奈米線的光激發光特性 …….…………….….…. 123
5-3-5 奈米線的場發射特性 ……….…………….….…. 124
5-4 AlQ3奈米結晶薄膜 …...……………...………….…. 131
5-4-1 奈米結晶薄膜的外觀 …….….…………….….…. 131
5-4-2 奈米結晶薄膜的結晶特性 ….…………….….…. 134
5-4-3 奈米結晶薄膜的光激發光特性 …….…….….…. 136
5-4-5 奈米結晶薄膜的場發射特性 …………….….….. 139
5-5 AlQ3奈米結構與無機奈米結構的比較 ..……….…. 142
5-5-1 AlQ3奈米粒子與無機奈米粒子的比較 ..….….…. 142
5-5-2 AlQ3奈米線與無機奈米線及奈米碳管的比較 …. 142
5-5-3 AlQ3奈米結晶薄膜與鑽石薄膜的比較 ..….….…. 143
第六章 結論 …………………………………..…….. 144
參考文獻 ……..………………………..………..…….. 146

1. P. Russell, “Photonic crystal fibers,” Science, vol. 299, pp. 358-362, 2003.
2. S. W. Koch and A. Knorr, “Optics in the nano-world,” Science, vol. 293, pp. 2217-2218, 2001.
3. W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science, vol. 281, pp. 2016-2018, 1998.
4. J. I. Pascual, N. Lorente, Z. Song, H. Conrad, and H. P. Rust, “Selectivity in vibrationally mediated single-molecule chemistry,” Nature, vol. 423, pp. 525-528, 2003.
5. J. Aizenberg, D. A. Muller, J. L. Grazul, and D. R. Hamann, “Direct fabrication of large micropatterned single crystals,” Science, vol. 299, pp. 1205-1208, 2003.
6. Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science, vol. 298, pp. 2176-2179, 2002.
7. H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, and T. H. LaBean, “DNA- templated self-assembly of protein arrays and highly conductive nanowires,” Science, vol. 301, pp. 1882-1884, 2003.
8. C. M. Niemeyer, “Tools for the biomolecular engineer,” Science, vol. 297, pp. 62-63, 2002.
9. G. Y. Tseng and J. C. Ellenbogen, “Toward nanocomputers,” Science, vol. 294, pp. 1293-1294, 2001.
10. R. F. Service, “Assembling nanocircuits from the bottom up,” Science, vol. 293, pp. 782-785, 2001.
11. S. R. Quake and A. Scherer, “From micro to nanofabrication with soft materials,” Science, vol. 290, pp. 1536-1540, 2000.
12. J. Cumings and A. Zettl, “Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes,” Science, vol. 289, pp. 602-604, 2000.
13. S. J. Park, T. A. Taton, and C. A. Mirkin, “Array-based electrical detection of DNA with nanoparticle probes,” Science, vol. 295, pp. 1503-1506, 2002.
14. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science, vol. 292, pp. 1897-1899, 2001.
15. D. L. Huffaker and D. G. Deppe, “Electroluminescence efficiency of 1.3 mm wavelength InGaAs/GaAs quantum dots,” Appl. Phys. Lett., vol. 73, pp. 520-522, 1998.
16. J. C. Johnson, H. Yan, R. D. Schaller, L. H. Haber, R. J. Saykally, and P. Yang, “Single nanowire lasers,” J. Phys. Chem. B, vol. 105, pp. 11387-11390, 2001.
17. E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science, vol. 257, pp. 189-195, 1992.
18. D. Zhang, C. Li, X. Liu, S. Han, T. Tang, and C. Zhou, “Doping dependent NH3 sensing of indium oxide nanowires,” Appl. Phys. Lett., vol. 83, pp. 1845-1847, 2003.
19. H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni, and C. Dekker, “Carbon nanotube single-electron transistors at room temperature,” Science, vol. 293, pp. 76-79, 2001.
20. J. K. Lee, W. K. Koh, W. S. Chae, and Y. R. Kim, “Novel synthesis of organic nanowires and their optical properties,” Chem. Commun., pp. 138-139, 2002.
21. A. N. Krasnov, “High-contrast organic light-emitting diodes on flexible substrates,” Appl. Phys. Lett., vol. 80, pp. 3853-3855, 2002.
22. N. Kumar and K. S. Narayan, “Polarization-dependent discharge in fibers of a semiconducting ladder-type polymer,” Appl. Phys. Lett., vol. 78, pp. 1556-1558, 2001.
23. P. M. Lundquist, W. Lin, H. Zhou, D. N. Hahn, S. Yitzchaik, T. J. Marks, and G. K. Wong, “Frequency doubling in two-component self-assembled chromophoric waveguide structures,” Appl. Phys. Lett., vol. 70, pp. 1941-1943, 1997.
24. N. W. Ashcroft and N. D. Nmermin, Solid State Physics, 2nd Edition, Harcourt, 1976.
25. S. Veprek, “Electronic and mechanical properties of nanocrystalline composites when approaching molecular size,” Thin Solid Films, vol. 297, pp. 145-153, 1997.
26. A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science, vol. 271, pp. 933-937, 1996.
27. C. Tsai, K. H. Li, D. S. Kinosky, R. Z. Qian, T. C. Hsu, J. T. Irby, S. K. Banerjee, A. F. Tasch, and J. C. Campbell, “ Correlation between silicon hydride species and the photoluminescence intensity of porous silicon,” Appl. Phys. Lett., vol. 60, pp. 1700-1702, 1992.
28. M. B. Jr, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science, vol. 281, pp. 2013-2016, 1998.
29. L. T. Canham, “Silicon quantum wire array fabrication by electro- chemical and chemical dissolution of wafers,” Appl. Phys. Lett., vol. 57, pp. 1046-1048, 1990.
30. J. Huang, K. Yang, Z. Xie, B. Chen, H. Jiang, and S. Liu, “Effect of well number on organic multiple-quantum-well electroluminescent device characteristics,” Appl. Phys. Lett., vol. 73, pp. 3348-3350, 1998.
31. H. W. Pollack, Materials science and metallurgy, 4th Edition, Englewood Cliffs N. J. Prentice-Hall, 1988.
32. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible- light photocatalysis in nitrogen-doped titanium oxides,” Science, vol. 293, pp. 269-271, 2001.
33. H. S. Chen, J. J. Chiu, and T. P. Perng, “On the photoluminescence of Si nanoparticles,” Mater. Phys. Mech., vol. 4, pp. 62-66, 2001.
34. S. G. Kim and J. R. Brock, “Formation of primary metal particles in evaporation chambers,” J. Appl. Phys., vol. 60, pp. 509-513, 1986.
35. T. Ohno, S. Yatsuya, and R. Uyeda, “Formation of ultrafine metal particles by gas evaporation technique. III. Al in He, Ar and Xe, and Mg in mixtures of inactive gas and air,” Jpn. J. Appl. Phys., vol. 15, pp. 1213-1217, 1976.
36. M. Miyamura, K. Tachibana, and Y. Arakawa, “High-density and size controlled GaN self-assembled quantum dots grown by metal organic chemical vapor deposition,” Appl. Phys. Lett., vol. 80, pp. 3937-3939, 2002.
37. M. L. Terranova, S. Piccirillo, V. Sessa, S. Botti, and M. Rossi, “Photoluminescence from silicon nanoparticles in a diamond matrix,” Appl. Phys. Lett., vol. 74, pp. 3146-3148, 1999.
38. H. Yang, X. Wang, H. Shi, S. Xie, F. Wang, X. Gu, and X. Yao, “Photoluminescence of Ge nanoparticles embedded in SiO2 glasses fabricated by a sol-gel method,” Appl. Phys. Lett., vol. 81, pp. 5144-5146, 2002.
39. J. Zhang, B. G. Shen, S. Y. Zhang, Y. Q. Wang, and X. F. Duan, “Structure and magnetic properties of nanostructured PrCo7—xTix(x= 0—0.4) prepared by mechanical milling and subsequent annealing,” Appl. Phys. Lett., vol. 80, pp. 1418-1420, 2002.
40. C. G. Granqvist and R. A. Buhrman, “Ultrafine metal particles,” J. Appl. Phys, vol. 47, pp. 2200-2219, 1976.
41. C. Kaito, “Coalescence growth of smoke particles prepared by a gas evaporation technique,” Jpn. J. Appl. Phys., vol. 17, pp. 601-609, 1978.
42. S. Kasukabe, S. Yatsuya, and R. Uyeda, “Habits of metal crystallites formed by gas-evaporation technique,” J. Crystal Growth, vol. 24, pp. 315-318, 1974.
43. D. L. Huffaker and D. G. Deppe, “Electroluminescence efficiency of 1.3mm wavelength InGaAs/GaAs quantum dots,” Appl. Phys. Lett., vol. 73, pp. 520-522, 1998.
44. F. Huisken, B. Kohn, and V. Paillard, “Structured films of light emitting silicon nanoparticles produced by cluster beam deposition,” Appl. Phys. Lett., vol. 74, pp. 3776-3778, 1999.
45. S. J. Park, T. A. Taton, and C. A. Mirkin, “Array-based electrical detection of DNA with nanparticle probes,” Science, vol. 295, pp. 1503-1506, 2002.
46. D. V. Talapin, E. V. Shevchenko, A. Kornowski, N. Gaponik, M. Haase, A. L. Rogach, and H. Weller, “A new approach to crystallization of CdSe nanoparticles into ordered three-dimensional superlattices,” Adv. Mater., vol. 13, pp. 1868, 2001.
47. T. Cassagneau, J. H. Fendler, S. A. Johnson, and T. E. Mallouk, “Self-assembled diode junctions prepared from a ruthenium tris(bipyridyl) polymer, n-Type TiO2 nanoparticles, and graphite oxide sheets,” Adv. Mater., vol. 12, pp. 1363-1366, 2000.
48. A. M. Morales and C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science, vol. 279, pp. 208-211, 1998.
49. C. Li, B. Lei, D. Zhang, X. Liu, S. Han, T. Tang, M. Rouhanizadeh, T. Hsiai, and C. Zhou, “Chemical gating of In2O3 nanowires by organic and biomolecules,” Appl. Phys. Lett., vol. 83, pp. 4014-4016, 2003.
50. Z. H. Wu, X. Mei, D. Kim, M. Blumin, H. E. Ruda, J. Q. Liu, and K. L. Kavanagh, “Growth, branching, and kinking of molecular-beam epitaxial <110> GaAs nanowires,” Appl. Phys. Lett., vol. 83, pp. 3368-3370, 2003.
51. F. G. Tarntair, C. Y. Wen, L. C. Chen, J. J. Wu, K. H. Chen, P. F. Kuo, S. W. Chang, Y. F. Chen, W. K. Hong, and H. C. Cheng, “Field emission from quasi-aligned SiCN nanorods,” Appl. Phys. Lett., vol. 76-78, pp. 2630-2632, 2000.
52. M. E. T. Molares, E. M. Hohberger, C. Schaeflein, R. H. Blick, R. Neumann, and C. Trautmann, “Electrical characterization of electrochemically grown single copper nanowires,” Appl. Phys. Lett., vol. 82, pp. 2139-2141, 2003.
53 . M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature, vol. 415, pp. 617-620, 2002.
54. 柯志忠,「八羥奎林鋁鹽之奈米結構及其場發射性質研究」,清華大學碩士論文,2002。
55. X. T. Zhou, N. Wang, F. C. K. Au, H. L. Lai, H. Y. Peng, I. Bello, C. S. Lee, and S. T. Lee, “Growth and emission properties of b-SiC nanorods,” Mater. Sci. Eng. A, vol. 286, pp. 119-124, 2000.
56. J. L. Gole, J. D. Stout, W. L. Rauch, and Z. L. Wang, “Direct synthesis of silicon nanowires, silica nanospheres, and wire-like nanosphere agglomerates,” Appl. Phys. Lett., vol. 76, pp. 2346-2348, 2000.
57. J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, “Control of thickness and orientation of solution-grown silicon nanowires,” Science, vol. 287, pp. 1471-1473, 2000.
58. X. Z. Zhang, L. D. Zhang, G. W. Meng, G. H. Li, N. Y. J. Phillipp, and F. Phillipp, “Synthesis of ordered single crystal silicon nanowire arrays,” Adv. Mater., vol.13, pp. 1238-1241, 2001.
59. W. Han, S. Fan, Q. Li, and Y. Hu, “Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction,” Science, vol. 277, pp. 1287-1289, 1997.
60. L. Cao, Z. Zhang, L. Sun, C. Cao, M. He, Y. Wang, Y. Li, X. Zhang, G. Li, J. Zhang, and W. Wang, “Well-aligned boron nanowire arrays,” Adv. Mater., vol.13, pp. 1701-1704, 2001.
61. Y. Wu, R. Fan and P. Yang, “Block-by-block growth of single crystalline Si/SiGe superlattice nanowires,” Nano Lett., vol. 2, pp. 83-86, 2002.
62. J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowries,” Science, vol. 293, pp. 1455-1457, 2001.
63. Y. Cui, Q. Wei, H. Park, C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science, vol. 293, pp. 1289-1292, 2001.
64. K. W. Wong, X. T. Zhou, F. C. K. Au, H. L. Lai, C. S. Lee, and S. T. Lee, “Field-emission characteristics of SiC nanowires prepared by chemical-vapor deposition,” Appl. Phys. Lett., vol. 75, pp. 2918-2920, 1999.
65. H. L. Lai, N. B. Wong, X. T. Zhou, H. Y. Peng, F. C. K. Au, N. Wang, I. Bello, C. S. Lee, S. T. Lee, and X. F. Duan, “Straight b-SiC nanorods synthesized by using C-Si-SiO2,” Appl. Phys. Lett., vol. 76, pp. 294-296, 2000.
66. Z. Pan, H. L. Lai, F. C. K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C. S. Lee, N. B. Wong, S. T. Lee, and S. Xie, “Oriented silicon carbide nanowires: synthesis and field emission properties,” Adv. Mater., vol. 12, pp. 1186-1190, 2000.
67. X. D. Bai, J. D. Guo, J. Yu, E. G. Wang, J. Yuan, and W. Zhou, “Synthesis and field-emission behavior of highly oriented boron carbonitride nanofibers,” Appl. Phys. Lett., vol. 76, pp. 2624-2626, 2000.
68. F. C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee, “Electron field emission from silicon nanowires,” Appl. Phys. Lett., vol. 75, pp. 1700-1702, 1999.
69. C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Lin, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc., vol. 123, pp. 2791-2798, 2001.
70. Y. H. Tang, X. H. Sun, F. C. K. Au, L. S. Liao, H. Y. Peng, C. S. Lee, S. T. Lee, and T. K. Sham, “Microstructure and field-emission characteristics of boron-doped Si nanoparticle chains,” Appl. Phys. Lett., vol. 79, pp. 1673-1675, 2001.
71. J. Chen, S. Z. Deng, N. S. Xu, S. Wang, X. Wen, S. Yang, C. Yang, J. Wang, and W. Ge, “Field emission from crystalline copper sulphide nanowires arrays,” Appl. Phys. Lett., vol. 80, pp. 3620-3622, 2002.
72. A. Noy, A. E. Miller, J. E. Klare, B. L. Weeks, B. W. Woods, and J. J. DeYoreo, “Fabrication of luminescent nanostructures and polymer nanowires using dip-pen nanolithography,” Nano Lett., vol. 2, pp. 109-112, 2002.
73. L. J. E. Hofer, E. Sterling, and J. T. MacCarthey, “Structure of the carbon deposited from carbon monoxide on iron, cobalt, and nickel,” J. Phys. Chem., vol. 59, pp. 1153-1155, 1955.
74. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene,” Nature, vol. 318, pp. 162-163, 1985.
75. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56-58, 1991.
76. M. S. Dresselhaus, G. Dresselhaus, and R. Saito, “Physics of carbon nanotubes,” Carbon, vol. 33, pp. 883-891, 1995.
77. S. H. Tsai, C. W. Chao, C. L. Lee, and H. C. Shih, “Bias-enhanced nucleation and growth of the aligned carbon nanotubes with open ends under microwave plasma synthesis,” Appl. Phys. Lett., vol. 74, pp. 3462-3464, 1999.
78. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission properties,” Science, vol. 283, pp. 512-514, 1999.
79. Z. P. Huang, J. W. Xu, Z. F. Ren, J. H. Wang, M. P. Siegal, and P. N. Provencio, “Growth of highly oriented carbon nanotubes by plasma- enhanced hot filament chemical vapor deposition,” Appl. Phys. Lett., vol. 73, pp. 3845-3847, 1998.
80. Y. Y. Wei, G. Eres, V. I. Merkulov, and D. H. Lowndes, “Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition,” Appl. Phys. Lett., vol. 78, pp. 1394- 1396, 2001.
81. V. Ivanov, J. B. Nagy, P. Lambin, A. Lucas, X. F. Zhang, D. Bernaerts, G. V. Tendelo, S. Amelinckx, and J. V. Landuyt, “The study of carbon nanotubes produced by catalystic method,” Chem. Phys. Lett., vol. 223, pp. 329-331, 1994.
82. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, “Crystalline ropes of metallic carbon nanotubes,” Science, vol. 273, pp. 483-487, 1996.
83. J. Li, C. Papadopoulos, and J. M. Xu, “Highly-ordered carbon nanotube arrays for electronics applications,” Appl. Phys. Lett., vol. 75, pp. 367-369, 1999.
84. J. S. Suh and J. S. Lee, “Highly-ordered two-dimensional carbon nanotube arrays,” Appl. Phys. Lett., vol. 75, pp. 2047-2049, 1999.
85. Z. H. Yuan, H. Huang, H. Y. Dang, J. E. Cao, B. H. Hu, and S. S. Fan, “Field emission property of highly ordered monodispersed carbon nanotube arrays,” Appl. Phys. Lett., vol. 78, pp. 3127-3129, 2001.
86. H. Nishijima, S. Kamo, S. Akita, Y. Nakayama, K. I. Hohmura, S. H. Yoshimura, and K. Takeyasu, “Carbon-nanotube tips for scanning probe microscopy: preparation by a controlled process and observation of deoxyribonucleic acid,” Appl. Phys. Lett., vol. 74, pp. 4061-4063, 1999.
87. W. H. Knechtel, G. S. Dusberg, W. J. Blau, E. Hernandez, and A. Rubio, “Reversible bending of carbon nanotubes using a transmission electron microscope,” Appl. Phys. Lett., vol. 73, pp. 1961-1963, 1998.
88. P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. deHeer, “Electrostatic deflections and electromechanical resonance of carbon nanotubes,” Science, vol. 283, pp, 1513-1516, 1999.
89. T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, and C. M. Lieber, “Carbon nanotube-based nonvolatile random access memory for molecular computing” Science, vol. 289, pp. 94-97, 2000.
90. S. J. Tans, S. R. M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single carbon nanotube,” Nature, vol. 393, pp. 49-52, 1998.
91. H. G. Craighead, “Nanoelectromechanical systems,” Science, vol. 290, pp. 1532-1535, 2000.
92. J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Guntherodt, C. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science, vol. 288, pp. 316-318, 2000.
93. E. W. Wong, P. E. Sheehan, C. M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanoroads and nanotubes,” Science, vol. 277, pp. 1971-1975, 1997.
94. R. H. Baughman, C. Cui, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. D. Rossi, A. G. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, “Carbon nanotube actuators,” Science, vol. 284, pp. 1340-1344, 1999.
95. R. Stevens, C. Nguyen, A. Cassell, L. Delzeit, M. Meyyappan, and J. Han, “Improved fabrication approach for carbon nanotube probe devices,” Appl. Phys. Lett., vol. 77, pp. 3453-3455, 2000.
96. P. Kim, C. M. Lieber, “Nanotube nanotweezers,” Science, vol. 286, pp. 2148-2150, 1999.
97. W. A. deHeer, A. Chatelain, D. Ugarte, “A carbon nanotube field- emission electron source,” Science, vol. 270, pp. 1179-1180, 1995.
98. H. Murakami, M. Hirakawa, C. Tanaka, and H. Yamakawa, “Field emission from well-aligned, patterned, carbon nanotube emitters,” Appl. Phys. Lett., vol. 76, pp. 1776-1779, 2000.
99. Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science, vol. 291, pp. 1947-1949, 2001.
100. D. N. Mcllroy, D. Zhang, Y. Kranov, and M. G. Norton, “Nano- springs,” Appl. Phys. Lett., vol. 79, pp. 1540-1542, 2001.
101. J. R. Hollahan, “Deposition of plasma silicon oxide thin films in a production planar reactor,” J. Electrochem. Soc., vol. 126, pp. 930- 940, 1979.
102. O. Sanchez, C. G. Aleixandre, F. Agullo, and J. M. Albella, “Study of the plasma discharges in diamond deposition with different O2 concentrations,” Dia. and Rel. Mater., vol. 3, pp. 1183-1189, 1994.
103. Z. Jiang, C. P. Klages, R. Zachai, M. Hartweg, and H. J. Fusser, “Epitaxial diamond thin films on (001) silicon substrate,” Appl. Phys. Lett., vol. 62, pp. 3438-3440, 1993.
104. O. Groning, O. M. Kuttel, P. Groning, and L. Schlapbach, “Field emission properties of nanocrystalline chemical vapor deposited- diamond films,” J. Vac. Sci. Technol. B, vol. 17, pp. 1970-1986, 1999.
105. W. N. Wang, N. A. Fox, T. J. Davis, D. Richardson, G. M. Lynch, J. W. Steeds, and J. S. Lee, “Growth and field emission properties of multiply twinned diamond films with quintuplet wedges,” Appl. Phys. Lett., vol. 69, pp. 2825-2827, 1996.
106. A. Sawabe and T. Inuzuka, “Growth of diamond thin film by electron assisted chemical vapor-deposition,” Appl. Phys Lett., vol. 46, pp. 146-148, 1985.
107. M. Kamo, Y. Sato, S. Matsumoto, and N. Setaka, “Diamond synthesis from gas-phase in microwave plasma,” J. of Crystal Growth, vol. 62, pp. 642-651, 1983.
108. A. Hatta, K. Kadota, Y. Mori, T. Ito, T. Sasaki, A. Hiraki, and S. Okada, “Pulse modulated electron cyclotron resonance plasma for chemical vapor deposition of diamond films,” Appl. Phys. Lett., vol. 66, pp. 1602-1604, 1995.
109. S. T. Lee, Z. Lin, and Z. Jiang, “CVD diamond films: nucleation and growth,” Mater. Sci. and Eng., vol. 25, pp. 123-154, 1999.
110. N. A. Fox, W. N. Wang, T. J. Davis, J. W. Steeds, P. W. May, “Field emission properties of diamond films of different qualities,” Appl. Phys. Lett., vol. 71, pp. 2337-2339, 1997.
111. William D. Callister, Jr., Materials Science and Engineering an Introduction, Jonh Willey & Sons, 1998.
112. Y. H. Chen, C. T. Hu, I. N. Lin, “Defect structure and electron field- emission properties of boron-doped diamond films,” Appl. Phys. Lett., vol. 75, pp. 2857-2859, 1999.
113. A. M. Bonnot, M. N. Semeria, J. F. Boronat, T. Fournier, and L. Pontonnier, “Investigation of the growth mechanism and electron emission properties of carbon nanostructures prepared by hot-filament chemical vapor deposition,” Dia. Rel. Mater., vol. 9, pp. 852-855, 2000.
114. C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., vol. 51, pp. 913-915, 1987.
115. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. D. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes, Nature, vol. 347, pp. 539-541, 1990.
116. D. Braun and A. J. Heeger, “Visible light emission from semiconducting polymer diodes,” Appl. Phys. Lett., vol. 58, pp. 1982-1984, 1991.
117. R. Gupta, M. Stevenson, A. Dogariu, M. D. McGehee, J. Y. Park, V. Srdanov, A. J. Heeger, and H. Wang, “Low-threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett., vol. 73, pp. 3492-3494, 1998.
118. M. D. McGehee, M. A. D. Garcia, F. Hide, R. Gupta, E. K. Miller, D. Moses, A. J. Heeger, “Semiconducting polymer distributed feedback lasers,” Appl. Phys. Lett., vol. 72, pp. 1536-1538, 1998.
119. M. Morimoto, “Trends of marketing and technology in TFT-LCD,” IEEE/CPMT International Electronics Manufacturing Technology Symposium, vol. 1, pp. 384-386, 1994.
120. H. Uchiike and T. Hirakawa, “Color plasma displays,” Proc. of the IEEE, vol. 90, pp. 533-539, 2002.
121. A. Palevsky, “A high brightness field emission display,” IEEE International Conference on Plasma Science, pp. 243, 3-5 June 1996.
122. P. Holm, W. Rhyne, B. Gable, S. P. Rogers, K. Jachimowicz, F. Richard, D. E. Ackley, “Two-dimensional LED arrays for virtual display image sources,” IEEE Transactions on Electron Devices, vol. 46, pp. 897—904, 1999.
123. J. D. Britton, M. E. Traylor, S. Bhaskaran, J. C. McClure, V. P. Singh, “Modification and characterization of insulator-semiconductor interface in a.c. thin film electroluminescent display devices,” Electron Devices Meeting, pp. 689 —692, 13-16 Dec. 1992.
124. A. Wedel and S. Janietz, “Polymer materials for display technology,” Polymers and Adhesives in Microelectronics and Photonics, pp. 46-49, 2001.
125. Z. D. Popovic and H. Aziz, “Reliability and degradation of small molecule-based organic light-emitting devices (OLEDs),” IEEE J. Select. Topics Quantum Electron., vol. 8, pp. 362-371, 2002.
126. N. K. Patel, S. Cina, and J. H. Burroughes, “High-efficiency organic light-emitting diodes,” IEEE J. Select. Topics Quantum Electron., vol. 8, pp. 346-361, 2002.
127. R. J. Curry and W. P. Gillin, “Radiative recombination mechanisms in aluminum tris(8-hydroxyquinoline): evidence for triplet exciton recombination,” J. Appl. Phys, vol. 88, pp. 781-785, 2000.
128. S. Miyata and H. S. Nalwa, Organic Electroluminescence Materials and Devices, Gordon and Breach Science Publishers, chap. 13, 1997.
129. P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. A. Cronin, and M. E. Thompson, “Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices,” J. Appl. Phys, vol. 79, pp. 7991-8005, 1996.
130. L. B. Lin, S. A. Jenekhe, R. H. Young, and P. M. Borsenberger, “Hole injection and transport in tris-(8-hydroxyquinloinato) aluminum,” Appl. Phys. Lett., vol. 70, pp. 2052-2054, 1997.
131. T. Ishida, H. Kobayashi, and Y. nakato, “Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements,” J. Appl. Phys., vol. 73, pp. 4344-4350, 1993.
132. M. Probst and R. Haight, “Diffusion of metals into organic films,” Appl. Phys. Lett., vol. 70, pp. 1420-1422, 1997.
133. S. T. Lee, X. Y. Hou, M. G. Mason, and C. W. Tang, “Energy level alignment at Alq/metal interfaces,” Appl. Phys. Lett., vol. 72, pp. 1593-1595, 1998.
134. H. Aziz, Z. Popovic, S. Xie, A. M. Hor, N. X. Hu, C. Tripp, and G. Xu, “Humidity-induced crystallization of tris (8-hydroxyquinoline) aluminum layers in organic light-emitting divices,” Appl. Phys. Lett., vol. 72, pp. 756-758, 1998.
135. L. S. Liao, J. He, X. Zhou, M. Lu, Z. H. Xiong, Z. B. Deng, X. Y. Hou, and S. T. Lee, “Bubble formation in organic light-emitting diode,” J. Appl. Phys., vol. 88, pp. 2386-2390, 2000.
136. J. McElvain, H. Antoniadis, M. R. Hueschen, J. N. Miller, D. M. Roitman, J. R. Sheats, and R. L. Moon, “Formation and growth of black spots in organic light-emitting diodes,” J. Appl. Phys., vol. 80, pp. 6002-6007, 1996.
137. C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” J. Appl. Phys., vol. 65, pp. 3610-3616, 1989.
138. C. C. Wu, C. W. Chen, Y. T. Lin, H. L. Yu, J. H. Hsu, and T. Y. Luh, “Programmable organic light emitting devices,” Appl. Phys. Lett., vol. 79, pp. 3023-3025, 2001.
139. D. E. Loy, B. E. Koene, and M. E. Thompson, “Asymmetric diamines as thermally stable hole transporters in organic light emitting devices, synthesis and characterization” Lasers and Electro-Optics Society Annual Meeting, vol. 1, pp. 364 -365, 10-13 Nov. 1997.
140. M. G. Abd El Wahed, K. A. El Manakhly, N. El Kososy, Physicochemical studies of hydroxyquinoline sulfonic asid and its transition metal complexes, Mater. Chem. Phys., vol. 41, pp. 117-122, 1995.
141. P. E. Burrows, L. S. Sapochak, D. M. McCarty, S. R. Forrest, and M. E. Thompson, “Metal ion dependent luminescence effects in metal tris- quinolate organic heterojunction light emitting devices,” Appl. Phys. Lett., vol. 64, pp. 2718-2720, 1994.
142. J. Kido and Y. Iizumi, “Fabrication of highly efficient organic electroluminescent devices,” Appl. Phys. Lett., vol. 73, pp. 2721- 2723, 1998.
143. R. L. Martin, J. D. Kress, I. H. Campbell, and D. L. Smith, “Molecular and solid-state properties of tris-(8-hydroxyquinolate)- aluminum,” Phys. Rev. B, vol. 61, pp. 15804-15810, 2000.
144. L. S. Sapochak, A. Padmaperuma, N. Washton, F. Endrino, G. T. Schmett, J. Marshall, D. Fogarty, P. E. Burrows, and S. R. Forrest, “Effect of systematic methyl substitution of metal (III) tris(n-methyl-8- quinolinolato) chelates on material properties for optimum electroluminescence device performance,” J. Am. Chem. Soc., vol. 123, pp. 6300-6307, 2001.
145. K. Naito and A. Miura, “Molecular design for nonpolymeric organic dye glasses with thermal stability: relations between thermodynamic parameters and amorphous properties,” J. Phys. Chem., vol. 97, pp. 6240-6248, 1993.
146. M. Brinkmann, G. Gadret, M. Muccini, C. Tailiani, N. Masciocchi, and A. Sironi, “Correlation between molecular packing and optical properties in different crystalline polymorphs and amorphous thin films of mer-tris(8-hydroxyquinoline)aluminum(III),” J. Am. Chem. Soc., vol. 122, pp. 5147-5157, 2000.
147. S. T. Lee, X. Y. Hou, M. G. Mason, and C. W. Tang, “Energy level alignment at Alq/metal interface,” Appl. Phys. Lett., vol. 72, pp. 1593-1595, 1998.
148. A. Schmidt, M. L. Anderson, and N. R. Armstrong, “Electronic states of vapor deposited electron and hole transport agents and luminescent materials for light-emitting diodes,” J. Appl. Phys., vol. 78, pp. 5619-5625, 1995.
149. H. Murata, C. D. Merritt, and Z. H. Kafafi, “Emission mechanism in rubrene-doped molecular organic light-emitting diodes: direct carrier recombination at luminescent centers,” IEEE J. Select. Topics Quantum Electron., vol. 4, pp. 119-124, 1998.
150. M. D. Halls and R. Aroca, “Vibrational spectra and structure of tris(8-hydroxquinoline)aluminum(III),” Can. J. Chem., vol. 76, pp. 1730-1736, 1998.
151. G. P. Kushto, Y. Iizumi, J. Kido, and Z. H. Kafafi, “A matrix- isolation spectroscopic and theoretical investigation of tris(8- hydroxy-quinolinato)aluminum(III) and tris(4-methyl-8- hydroxy- quinolinato)-aluminum(III),” J. Phys. Chem., vol. 104, pp. 3670- 3680, 2000.
152. X. M. Ding, L. M. Hung, C. S. Lee, and S. T. Lee, “Vibrational structure of untrathin 8-hydroxyquinoline aluminum films studied by high-resolution electron-energy-loss spectroscopy,” Phys. Rev. B, vol. 60, pp. 13291-13293, 1999.
153. J. F. Moulin, M. Brinkmann, A. Thierry, and J. C. Wittmann, “Oriented crystalline films of tris(8-hydroxyquinoline) aluminum (III): growth of the alpha polymorph onto an ultra-oriented poly- (tetrafluoro-ethylene) substrate,” Adv. Mater., vol. 14, pp. 436-439, 2002.
154. Y. Ohmori, H. Ueta, Y. Kurosaka, Y. Hamada, and K. Yoshino, “Enhanced emission from europium complex utilizing quantum-well structure in organic electroluminescent device,” Jpn. J. Appl. Phys. Part 2, vol. 37, pp. L798-L801, 1998.
155. J. Huang, K. Yang, S. Liu, and H. Jiang, “High-brightness organic double-quantum-well electroluminescent devices,” Appl. Phys. Lett., vol. 77, pp. 1750-1752, 2000.
156. Y. Ohmori, A. Fujii, M. Uchida, C. Morishima, and K. Yoshino, “Observation of spectral narrowing and emission energy shift in organic electroluminescent diode utilizing 8-hydroxyquinoline aluminum/aromatic diamine multiplayer structure,” Appl. Phys. Lett., vol. 63, pp. 1871-1873, 1993.
157. S. Kasukabe, S. Yatsuya, and R. Uyeda, “Ultrafine metal particles formed by gas-evaporation technique. II. Crystal habits of magnesium, manganese, beryllium and tellurium,” Jpn. J. Appl. Phys., vol. 13, pp. 1714-1721, 1974.
158. S. G. Kim and J. R. Brock, “Formation of primary metal particles in evaporation chambers,” J. App. Phys., vol. 60, pp. 509-513, 1986.
159. S. Kasukabe, S. Yatsuya, and R. Uyeda, Jpn. J. Appl. Phys., vol. 12, pp. 1675-1680, 1973.
160. N. Wada, “Preparation of fine metal particles by means of evaporation in helium gas,” Jpn. J. Appl. Phys., vol. 6, pp. 553-555, 1967.
161. N. Wada, “Preparation of fine metal particles by means of evaporation in xenon gas,” Jpn. J. Appl. Phys., vol. 7, pp. 1287-1293, 1968.
162. C. Kaito, “Coalescence growth of smoke particles prepared by a gas-evaporation technique,” Jpn. J. Appl. Phys., vol. 17, pp. 601-609, 1978.
163. T. Ohno, S. Yatsuya, and R. Uyeda, “Formation of ultrafine metal particles by gas-evaporation technique. III. Al in He, Ar and Xe, and Mg in mixtures of inactive gas and air,” Jpn. J. Appl. Phys., vol. 15, pp. 1213-1217, 1976.
164. P. K. Wei, S. Y. Chiu, and W. L. Chang, “Determination of mesoscale crystallization by collection-mode polarizataion modulated near-field optical microscopy,” Rev. Sci. Instrum., vol 73, pp. 2624-2628, 2002.
165. S. A. Catledge, Y. Vohra, S. Woodard, and R. Venugopalan, “Structural and mechanical properties of nanostructured metalloceramic coatings on cobalt chrome alloys,” Appl. Phys. Lett., vol. 82, pp. 1625-1627, 2003.
166. E. Betzig and J. K. Trautman, “Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit, Science, vol. 257, pp. 189-195, 1992.
167. D. A. Higgins, D. A. V. Bout, J. Kerimo, and P. F. Barbara, “Polarization-modulation near-field scanning optical microscopy of mesostructured materials,” J. Phys. Chem., vol. 100, pp. 13794- 13803, 1996.
168. P. K. Wei and W. S. Fann, “The correlation between polarization modulated near-field optical images and the anisotropy of the probe,” J. Microscopy, vol. 202, pp. 148-153, 2000.
169. T. Ha, T. Enderle, and D. S. Chemla, “Single molecule dynamics studied by polarization modulation,” Phys. Rev. Lett., vol. 77, pp. 3979-3982, 1996.
170. Charles Kittel, Introduction to Solid State Physics, New York: Wiley, 1971.
171. R. Fowler and L. W. Nordheim, “Electron Emission in Intense Electric Fields,” Proc. R. Soc. London, vol. 119, pp. 173-181, 1928.
172. E. L. Murphy and R. H. Good, “Thermionic Emission, Field Emssion and the Transition Region,” Jr, Phys. Rev., vol. 102, pp. 1464-1472, 1956.
173. R. E. Burgess and H. Kroemer, “Corrected vilues of Fowler-Nordheim Field Emission Function v(y) and s(y),” Phys. Rev., vol. 90, pp. 515, 1953.
174. V. V. Zhirnov, C. L. Rinne, G. J. Wojak, R. C. Sanwald, J. J. Hren, “Standardization" of field emission measurements,” J. Vac. Sci. Technol. B, 19, pp. 87-93, 2001.
175. E. W. Muller, “Work Function of Tungsten Single Crystal Planes Measured by the Field Emission Microscope,” J. Appl. Phys., vol. 26, pp. 732-737, 1955.
176. S. C. Kung, T. F. Kuo, B. J. Li, and H. J. Lai, in press.
177. J. J. Chiu, W. S. Wang, K. K. Kei, and T. P. Perng, “Tris-(8-hydroxy- quinoline)aluminum nanoparticles prepared by vapor condensation,” Appl. Phys. Lett., vol. 83, pp. 347-349, 2003.
178. J. J. Chiu, C. C. Kei, T. P. Perng, and W. S. Wang, “Organic semiconductor nanowires for field emission,” Adv. Mater., vol. 15, 1361-1364, 2003.
179. R. E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, 3rd ed., PWS-Kent Publishing, Boston, pp. 444-447, 1992.
180. J. J. chiu, W. S. Wang C. C. Kei, C. P. Cho, T. P. Perng, P. K. Wei, and S. Y. Chiu, “Room temperature vibrational photoluminescence and field emission of nanoscaled tris-(8-hydroxyquinoline) aluminum crystalline film,” Appl. Phys. Lett., vol. 83, pp. 4607-4609, 2003.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔