|
[1] S. Coffa, Si Optoelectronics, Bioelectonics and Nano-Organics, Corporate R&D, ESSDERC 2002, Florence, September 22th, 2002. [2] The International Technology Roadmap for Semiconductors (ITRS), 2001 edition. [3] B. C. Paul, M. Satyam, and A. Selvarajan, “A Novel Method of Optical Detection Using a Capacitive Device,” IEEE Trans. on Electron Devices, vol. 46, pp. 324-328, 1999. [4] C. W. Liu, M. H. Lee, M.-J. Chen, C.-F. Lin and M. Y. Chen, “Roughness -Enhanced Electroluminescence from Metal Oxide Silicon Tunneling Diodes,” IEEE Electron Device Lett., vol. 21, pp. 601-603, 2000. [5] C. W. Liu, M. H. Lee, M.-J. Chen, C.-F. Lin and I. C. Lin, “Room-temperature electroluminescence from electron-hole plasmas in the metal oxide silicon tunneling diodes,” Appl. Phys. Lett., vol. 76, pp. 1516-1518, 2000. [6] K. Misiakos, E. Tsoi, E. Halmagean, and S. Kakabakos, “Monolithic integration of light emitting diodes, detectors and optical fibers on a silicon wafers: a CMOS compatible optical sensor,” in IEDM Tech. Dig., 1998, pp. 25-28. [7] H. S. P. Wong, R. T. Chang, E. Crabbe, and P. D. Agnello, “CMOS active pixel image sensors fabricated using a 1.8, 0.25-μm CMOS technology,” IEEE Trans. Electron Devices, vol. 45, pp. 889-894, 1998. [8] E. R. Fossum, “CMOS image sensors: Electronic camera-on-a-chip,” IEEE Trans. Electron Devices, vol. 44, pp. 1689-1698, 1997. [9] D. Scheffer, B. Diericks, and G. Meynants, “Random addressable 2048×2048 active pixel image sensors,” IEEE Trans. Electron Devices, vol. 44, pp. 1716-1720, 1997. [10] International Technology Roadmap for Semiconductors, 1999 edition. [11] K. F. Schuegraf and C. Hu, “Low Injection SiO2 breakdown Model for Very Low Voltage Lifetime Extrapolation,” IEEE Trans. Electron Devices, vol. 41, no. 5, pp.761-767, 1994. [12] A. Ghetti, C.-T. Liu, M. Mastrapasqua, and E. Sangiorgi, “Characterization of tunneling current in ultra-thin gate oxide,” Solid-State Electron., vol. 44, pp. 1523-1531, 2000. [13] M. Y. Doghish and F. D. Ho, “A comprehensive Analytical Model for Metal-Insulator-Semiconductor (MIS) Devices,” IEEE Trans. Electron Devices, vol. 39, no.12, pp. 2771-2780, 1992. [14] J. Koga, S. Takagi, and A. Toriumi, “A comprehensive study of MOSFET electron mobility in both weak and strong inversion regimes,” in IEDM. Tech. Dig., 1994, pp. 11-14. [15] M. Miyashita, M. Itano, T. Imaoka, I. Kawanabe, and T. Ohmi, “Dependence of thin oxide films quality on surface micro-roughness,” in VLSI Tech. Dig., 1991, pp. 45-46. [16] T. Nakanishi, S. Kishii, A. Ohsawa, and K. Honda, “Degradation of time dependent dielectric breakdown characteristics of MOS capacitors by silicon surface roughness,” in VLSI Tech. Dig., 1989, pp. 79-82. [17] A. S. Grove, Physics and Technology of Semiconductor Devices, New York, NY: Wiley, 1967. [18] G. A. M. Hurkx, D. B. M. Klaassen, and M. P. G. Knuvers, “A New Recombination for Devices Simulation Including Tunneling,” IEEE Trans. Electron Devices, vol. 39, no. 2, pp. 331-338, 1992. [19] G. A. M. Hurkx, H. C. de Graaff, W. J. Kloosterman, and M. P. G. Knuvers, “A New Analytical Diode Model Including Tunneling and Avalanche Breakdown,” IEEE Trans. Electron Devices, vol. 39, no. 9, pp. 2090-2098, 1992. [20] K.-F. You, and C.-Y. Wu, “A New Quasi-2-D Model for Hot-Carrier Band-to-Band Tunneling Current,” IEEE Trans. Electron Devices, vol. 46, no. 6, pp. 1174-1179, 1999. [21] S. M. Sze, Physics of Semiconductor Device, 2nd ed., New York, NY: Wiley, 1981. [22] C. W. Liu, M. H. Lee, M. J. Chen, C.-F. Lin, and M. Y. Chen, “Roughness-enhanced electroluminescence from metal-oxide-silicon tunneling diodes,” IEEE Electron Device Lett., vol. 21, pp. 601-603, 2000. [23] C.-H. Lin, F. Yuan, C.-R. Shie, K.-F. Chen, B.-C. Hsu, M. H. Lee, W. W. Pai, and C. W. Liu, “Roughness-enhanced reliability of MOS tunneling diodes,” IEEE Electron Device Lett., vol. 23, pp. 431-433, 2002. [24] D. Z.-Y. Ting, “Tunneling characteristics of nonuniform ultrathin oxides,” Appl. Phys. Lett., vol. 73, pp. 2769-2771, 1998. [25] J. Sune, I. Placencia, E. Farras, N. Barniol, and X. Aymerich, “On the Si-SiO2 interface roughness in VLSI-MOS structures,” Phys. Stat. Sol. A, vol. 109, pp. 479-491, 1988. [26] S. Zafar, Q. Liu, and E. A. Irene, “Study of tunneling current oscillation dependence on SiO2 thickness and Si roughness at the Si/SiO2 interface,” J. Vac. Sci. Technol. A, Vac. Surf. Films, vol. 13, pp. 47-53, 1995. [27] M. Suzuki, Y. Homma, Y. Kudoh, and N. Yabumoto, “Roughness evaluation of thermally oxidized Si (111) surfaces by scanning force microscopy,” Jpn. J. Appl. Phys., pt. 1, vol. 32, pp. 1419-1422, 1993. [28] G. J. Pietsch, U. Kohler, O. Jusko, M. Henzler, and P. O. Hahn, “Structure of the stepped Si/SiO2 interface after thermal oxidation: Investigations with scanning tunneling microscopy and spot-profile analysis of low-energy electron diffraction,” Appl. Phys. Lett., vol. 60, pp. 1321-1323, 1992. [29] Y. Homma, M. Suzuki, and N. Yabumoto, “Observation of atomic step morphology on silicon oxide surfaces,” J. Vac. Sci. Technol. A, Vac. Surf. Films, vol. 10, pp. 2055-2058, 1992. [30] G. S. Shekhawat, R. P. Gupta, S. S. Shekhawat, D. P. Runthala, P. D. Vyas, P. Srivastava, S. Venkatesh, K. Mamhoud, and K. B. Garg, “Scanning tunneling microscopy of Si/SiO interface roughness and its dependence on growth conditions,” Appl. Phys. Lett., vol. 68, pp. 114-116, 1996. [31] “MEDICI,” Technology Modeling Assoc., Palo Alto, CA. [32] F. W. Smith and G. Ghidini, “Reaction of oxygen with Si (111) and (100): Critical conditions for the growth of SiO2,” J. Electrochem. Soc., vol. 129, pp. 1300-1306, 1982. [33] MEDICI User’s manual, pp. 2-103 ~ 2-109, ver. MD 2000.2. [34] W. Harrison, “Tunneling from an independent-particle point of view,” Phys. Rev., 1961. [35] K. H. Gundlach, “Zur berechnung des tunnelstroms durch eine trapezformige potentialstufe,” Solid State Electron., vol. 9, pp. 949-957, 1966. [36] C.-H. Lin, M. H. Lee, B.-C. Hsu, K.-F. Chen, C.-R. Shie, and C. W. Liu, “Oxide roughness enhanced reliability of MOS tunneling diodes,” in Proc. Int. Semiconductor Device Research Symp., 2001, pp. 46-49. [37] V. Tsai, X.-S. Wang, E. D. Williams, J. Schneir, and R. Dixson, “Conformal oxides on Si surfaces,” Appl. Phys. Lett., vol. 71, pp. 1495-1497, 1997. [38] R. A. Soref, “Silicon-based optoelectronics,” Proc. IEEE, vol. 81, pp. 1687-1706, Dec. 1993. [39] M. R. T. Pearson, P. E. Jessop, D. M. Bruce, S. Wallace, P. Mascher, and J. Ojha, “Fabrication of SiGe optical waveguides using VLSI processing techniques,” Journal of Lighteave Technology, vol. 19, pp. 363-370, 2001. [40] F. Y. Huang, Shawn G. Thomas, Michael Chu, and Kang L. Wang, “Epitaxial SiGeC/Si photodetector with response in the 1.3-1.55 μm wavelength range,” in IEDM Tech. Dig., 1996, pp. 665-668. [41] I. R. Johnston and G. J. Parker, “Silicon-based fabrication process for production of optical waveguides,” IEE Proc.-Optoelectron., vol. 143, pp. 37-40, 1996. [42] Gianlorenzo Masini, Lorenzo Colace, Gaetano Assanto, Hsin-Chiao Luan, and Lionel C. Kimerling, “High-performance p-i-n Ge on Si photodetectors for the near infrared: from model to demonstration,” IEEE Trans. Electron Devices, vol. 48, 1092-1096, 2001. [43] M. Yang et al., “High speed silicon lateral trench detector on SOI substrate,” in IEDM Tech. Dig., 2001, pp. 547-550. [44] C. L. Schow, R. Li, J. D. Schaub, and J. C. Campbell, “Design and implementation of high-speed planar Si photodiodes fabricated on SOI substrates,” IEEE J. Quantum Electron., vol. 35, pp. 1478-1482, Oct. 1999. [45] P. Kringhoj, A. N. Larsen, and S. Y. Shirayev, “Diffusion of Sb in strained and relaxed Si and SiGe,” Phys. Rev. Lett., vol. 76, pp. 3372-3375, 1996. [46] K. Rajendran and W. Schoenmaker, “Studies of boron diffusivity in strained Si1—xGex epitaxial layers,” J. Appl. Phys., vol. 89, pp. 980-987, 2001. [47] F. Sato, T. Hashimoto, T. Tatsumi, and T. Tashiro, “Sub-20 ps ECL circuits with high-performance super self-aligned selectively grown SiGe base (SSSB) bipolar transistors,” IEEE Trans. Electron Devices, vol. 42, pp. 483-488, 1995. [48] Z.-Y. Cheng, M. T. Currie, C. W. Leitz, G. Taraschi, E. A. Fitzgerald, J. L. Hoyt, and D. A. Antoniadas, “Electron mobility enhancement in strained-Si n-MOSFETs fabricated on SiGe-on-insulator (SGOI) substrates,” IEEE Electron Device Lett., vol. 22, pp. 321-323, 2001. [49] T. Mizuno, N. Sugiyama, T. Tezuka, and S.-i. Takagi, “Relaxed SiGe-on -insulator substrates without thick SiGe buffer layers,” Appl. Phys. Lett., vol. 80, pp. 601-603, 2002. [50] T. Homma, T. Katah, Y. Yamada, and Y. Murao, “A Selective SiO2 Film- Formation Technology Using Liquid-Phase Deposition for Fully Planarized Multilevel Interconnections,” J. Electrochem. Soc., vol. 140, pp. 2410-2413, 1993. [51] J.-S. Chou and S.-C. Lee, “The Initial Growth Mechanism of Silicon Oxide by Liquid-Phase Deposition,” J. Electrochem. Soc., vol. 141, pp. 3214-3217, 1994. [52] H. Nagayama, H. Honda, and H. Kawahara, “A New Process for Silica Coating,” J. Electrochem. Soc., vol. 135, pp. 2013-2015, 1988. [53] T. Goda, H. Nagayama, A. Hishinuma, and H. Kawahara, Mater. Res. Soc. Symp.Proc., vol. 105, p. 283, 1988. [54] A. Hishinuma, T. Goda, and M. Kitaoka, “Formation of silicon dioxide films in acidic solutions,” Appl. Surf. Sci., vol. 49, pp. 405-408, 1991. [55] S. Yoshitomi, S. Tomioka, and N. Haneji, Appl. Surf. Sci., vol. 50, p. 22, 1992. [56] C.-F. Yeh, C.-L. Chen, and G.-H. Lin, “The Physicochemical Properties and Growth Mechanism of Oxide (SiO2-xFx) by Liquid Phase Deposition with H2O Addition Only,” J. Electrochem. Soc., vol. 141, pp. 3177-3181, 1994. [57] Jenq-Shiuh Chou and Si-Chen Lee, “Improved process for liquid phase deposition of silicon dioxide,” Appl. Phys. Lett., vol. 64 , pp. 1971-1973, 1994. [58] S. Watanabe, N. Nakayama, and T. Ito, “Homogeneous hydrogen-terminated Si (111) surface formed using aqueous HF solution and water,” Appl. Phys. Lett., vol. 59, pp. 1458-1460, 1991. [59] B.-C. Hsu, C. W. Liu, W. T. Liu, and C.-H. Lin, “A PMOS tunneling photodetector,” IEEE Trans. Electron Devices, vol. 48, pp. 1747-1749, 2001. [60] C. G. Van de Walle and R. M. Martin, “Theoretical calculations of heterojunction discontinuities in the Si/Ge system,” Phys. Rev. B, vol. 34, pp. 5621-5634, 1986. [61] K. F. Brennan and A. S. Brown, Theory of Modern Electronic Semiconductor Devices, p. 436, John Wiley & Sons, New York, 2002. [62] V. Dallacasa and C. Paracchini, “Field-enhanced electronic transport in solids,” Phys. Rev. B, vol. 34, pp. 8967-8970, 1986. [63] C. Paracchini, V. Dallacasa, and L. Romano, “The role of the internal field on the electronic transport in insulators,” IEEE Trans. Electr. Insul., vol. 26, pp. 222-227, 1991. [64] K. J. Yang and C. Hu, “MOS capacitance measurements for high-leakage thin dielectrics,” IEEE Trans. Electron Devices, vol. 46, pp. 1500-1501, 1999. [65] A. Splett, B. Schuppert, K. Petermann, E. Kasper, H. Kibbel, and H. J. Herzog, in Dig. Conf. On Integrated Photonic Research (OSA Tech. Dig. Ser.), vol. 10, p. 122, 1992. [66] B. Jalali, L. Naval, A. F. J. Levi, and P. Waston, SPIE Proc., vol. 94, p.1802, 1992. [67] B. Jalali, L. Naval, and A. F. J. Levi, “Si-based receivers for optical data links,” IEEE J. Lightwave Technol., vol. 12, pp. 930-935, 1994. [68] F. Y. Huang, Shawn G. Thomas, Michael Chu, Kang L. Wang, and N. D. Theodore, “Epitaxial SiGeC/Si photodetector with response in the 1.3-1.55 μm wavelength range,” in IEDM Tech. Dig., 1996, pp. 665-668. [69] Gianlorenzo Masini, Lorenzo Colace, Gaetano Assanto, Hsin-Chiao Luan, and Lionel C. Kimerling, “High-performance p-i-n Ge on Si photodetectors for the near infrared: from model to demonstration,” IEEE Trans. Electron Devices, vol. 48, pp. 1092-1096, 2001. [70] T. I. Kamins, D. A. A. Ohlberg, R. S. Williams, W. Zhang, and S. Y. Chou, “Positioning of self-assembled, single-crystal, germanium islands by silicon nanoimprinting,” Appl. Phys. Lett., vol. 74, pp. 1773-1775, 1999. [71] S. Fama, L. Colace, G. Masini, G. Assanto, and H.-C. Luan, “High performance germanium-on-silicon detectors for optical communications,” Appl. Phys. Lett., vol. 81, no. 4, pp. 586-588, 2002. [72] T. P. Pearsall, CRC Crit. Rev. Solid State Mater. Sci., vol. 15, p. 551, 1989. [73] J. C. Bean, “Recent developments in the strained layer epitaxy of germanium-silicon alloys,” J. Vac. Sci. Technol. B, vol. 4, pp. 1427-1429, 1986. [74] C. A. King, J. L. Hoyt, and J. F. Gibbons, “Bandgap and transport properties of Si1-xGex by analysis of nearly ideal Si/Si1-xGex/Si heterojunction bipolar transistors,” IEEE Trans. Electron Dev., vol. 36, p. 2093, 1989. [75] K. Ismail, B. S. Meyerson, S. Rishton, J. Chu, S. Nelson, and J. Noccra, “High- transconductance n-type Si/SiGe modulation-doped field-effect transistors,” IEEE Electron Dev. Lett., vol. 13, pp. 229-231, 1992. [76] J. Welser, J. L. Hoyt, and J. F. Gibbons, “Electron mobility enhancement in strained-Si n-type metal-oxide-semiconductor field-effect transistors,” IEEE Electron Dev. Lett., vol. 15, pp. 100-102, 1994. [77] T. Mizuno, S. Takagi, N. Sugiyama, H. Satake, A. Kurobe, and A. Toriumi, “Electron and hole mobility enhancement in strained-Si MOSFET''s on SiGe-on-insulator substrates fabricated by SIMOX technology,” IEEE Electron Dev. Lett., vol. 21, pp. 230-232, 2000. [78] U. Konig, and F. Schaffler. “p-type Ge-channel MODFETs with high trans- conductance grown on Si substrates,” IEEE Electron Dev. Lett., vol. 14, pp. 205-207, 1993. [79] O. G. Schmidt and K. Eberl, “Multiple layers of self-asssembled Ge/Si islands: Photoluminescence, strain fields, material interdiffusion, and island formation,” Phys. Rev. B, vol. 61, pp. 13721-13729, 2000. [80] L. Vescan, T. Stoica, O. Chretien, M. Goryll, E. Mateeva, and A. Muck, “Size distribution and electroluminescence of self-assembled Ge dots,” J. Appl. Phys., vol. 87, pp. 7275-7282, 2000. [81] Ming-Kwei Lee, Shuo-Yen Lin, and Jong-Min Shyr, “Characteristics of Oxynitride Prepared by Liquid Phase Deposition,” J. Electrochem. Soc., vol, 148 (1), pp. F1-F4, 2001. [82] C. W. Liu, W. T. Liu, M. H. Lee, W. S. Kuo, and B. C. Hsu, “A novel photodetector using MOS tunneling structures,” IEEE Electron Device Lett., vol. 21, pp. 307-309, 2000. [83] B.-C. Hsu, W. T. Liu, C.-H. Lin, and C. W. Liu, “A PMOS tunneling photodetector,” IEEE Trans. Electron Devices, vol. 48, pp. 1747-1749, 2001. [84] Yuan Taur, Tak H. Ning, “Fundamentals of modern VLSI devices”. [85] Integrated Systems Engineering (ISE) TCAD, ver. 8.0. [86] Weishu Wu, Aaron R. Hawkins, and John E. Bowers, “Frequency response of avalanche photodetectors with separate absorption and multiplication layers,” J. of Lightwave Tech., vol. 14, pp. 2778-2785, 1996. [87] Jin-Wei Shi and Chi-Kuang Sun, “Design and analysis if long absorption- length traveling-wave photodetectors,” J. of Lightwave Tech., vol. 18, pp. 2176-2187, 2000. [88] S. J. Xu, S. J. Chua, T. Mei, X. C. Wang, X. H. Zhang, G. Karunasiri, W. J. Fan, C. H. Wang, J. Jiang, S. Wang, and X. G. Xie, “Characteristics of InGaAs quantum dot infrared photodetectors,” Appl. Phys. Lett., vol. 73, pp. 3153-3155, 1998. [89] Shiang-Feng Tang, Shih-Yen Lin, Si-Chen Lee, and Chieh Hsiung Kuan, “High Temperature Operated (~ 250 K) Photovoltaic-Photoconductive (PV-PC) Mixed-mode InAs/GaAs Quantum Dot Infrared Photodetector,” in IEDM Tech. Dig., 2000, pp. 597-600. [90] Lin Jiang, Sheng S. Li, C. E. Ross, and K. S. Jones, “In0.6Ga0.4As/GaAs quantum-dot infrared photodetector with operating temperature up to 260 K,” Appl. Phys. Lett., vol. 82, pp. 1986-1988, 2003. [91] B.-C. Hsu, S. T. Chang, C.-R. Shie, C.-C. Lai, P. S. Chen, and C. W. Liu, “High efficient 820 nm MOS Ge quantum dot photodetectors for short reach integrated optical receivers,” in IEDM Tech. Dig., 2002, pp. 91-94. [92] C.-H. Lin, B.-C. Hsu, M. H. Lee, and C. W. Liu, “A Comprehensive Study of Gate Inversion Current of Metal-Oxide-Silicon Tunneling diodes,” IEEE Trans. Electron Devices., vol. 48, no. 9, pp. 2125-2130, 2001. [93] J. S. Park, R. P. G. Karunasiri, and K. L. Wang, “Intervalence-subband transition in SiGe/Si multiple quantum wells-normal incident detection,” Appl. Phys. Lett., vol. 61, pp. 681-683, 1992. [94] D. E. Weeks, S. H. Yang, M. R. Gregg, S. J. Novotny, K. D. Greene, and R. L. Hengehold,“ Intersubband infrared absorption spectra of Si/Si1-xGex quantum wells grown in the [110] direction,” Phys. Rev. B, vol. 65, pp. 195314-1-9, 2002. [95] J. L. Liu, W. G. Wu, A. Balandin, G. L. Jin, and K. L. Wang, “Intersubband absorption in boron-doped multiple Ge quantum dots,” Appl. Phys. Lett., vol. 74, pp. 185-187, 1999. [96] Vinh Le Thanh, V. Yam, Lam H. Nguyen, Y. Zheng, P. Boucaud, D. Débarre, and D. Bouchier, “Vertical ordering in multilayers of self-assembled Ge/Si(001) quantum dots,” J. Vac. Sci. Technol. B, vol. 20 (3), pp.1259-1265, 2002. [97] Y. H. Peng, Jen-Hsiang Lu, C. H. Kuan, C. W. Liu, Pang-Shiu Chen, Z. Pei, M.-J. Tsai, S. W. Lee, L. J. Chen, M. H. Ya, and Y. F. Chen, “Schottky Quantum Dots Infrared Photodetector with Far Infrared Response,” in 2003 International SiGe Technology and Device Meeting (ISTDM), Japan, pp. 219-220.
|