(3.215.77.193) 您好!臺灣時間:2021/04/17 02:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許博欽
研究生(外文):Buo-Chin Hsu
論文名稱:金氧半穿隧光偵測器
論文名稱(外文):Metal-Oxide-Semiconductor Tunneling Photodetectors
指導教授:劉致為
指導教授(外文):Chee Wee Liu
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:137
中文關鍵詞:金氧半電容光偵測器矽鍺量子點
外文關鍵詞:MOSphotodetectorSiGequantum dot
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,我們提出利用金氧半穿隧二極體中大閘極電流的特性來製作光偵測器。由於載子會穿隧過薄氧化層形成漏電流,使得元件操作在深空乏狀態。因此元件的暗電流受限於空乏區中所產生的少數載子。利用高溫成長氧化層可使元件暗電流下降。對PMOS元件來說,光電流主要來自於鋁電極中的電子穿隧至半導體區域,因此和NMOS元件相比,光電流提高了許多。
我們也探討了詳細的電流傳導機制,並提出穿隧電流模型。利用SRH載子產生、價帶至傳導帶間穿隧,以及價帶至缺陷的穿隧等模型來完全描述金氧半穿隧二極體偏壓在反轉區下的暗電流機制。此外,我們亦探討薄氧化層表面粗糙度對於元件電流的影響。由於二維電場效應,若增加表面粗糙度則閘極電流亦將大幅增加。
為了增加金氧半光偵測器的截止波長及效率,我們利用鍺及鍺量子點來作為光吸收層。利用液相沈積來成長氧化層可避免高溫製程對矽鍺結構造成損害。而此鍺光偵測器可操作於1.3及1.5微米之下並可應用於光纖通訊。其量子效應達到50 %且響應在1.5微米可達0.5 A/W。而利用五層鍺量子點結構之元件亦可操作於820、1300、1550奈米波段,其對應響應為130、0.16、0.08 mA/W。若利用二十層的鍺量子點作為吸收層,在850奈米之響應更高達600 mA/W。另一方面,我們亦發現在成長液相沈積氧化層時,由於矽覆蓋層上的應力對於成長速率有選擇性的作用。因此能夠成長出二氧化矽量子點結構,並且會和下層的鍺量子點垂直對齊。
對光偵測器來說,除了響應之外,頻寬亦為一重要的指標。為了增加金氧半光偵測器之頻寬,我們提出利用操作於完全空乏下之新型矽在絕緣層上(SOI)金氧半光偵測器結構。對一具有高摻雜濃度緩衝層之元件來說,其頻寬高達 22 GHz,並且完全可整合於ULSI技術。若元件的吸收層夠薄,則頻寬將完全由飄移電流決定。若吸收層太厚,則必須同時考慮擴散電流。
最後,我們提出金氧半光偵測器亦可用於中長波長之紅外光偵測上。利用電洞在價帶間的躍遷,吸收波長可達10微米。利用氮氧化層作為閘極絕緣層,元件最高操作溫度在2 ~ 3微米可達200 K,在3 ~ 10微米亦可達140 K。
這些簡單卻具有發展潛力的矽基金氧半光偵測器可配合其他的光電元件使用,並可作為未來光訊號處理及矽晶片中光電應用功能的基石。
In this thesis, the novel metal-oxide-semiconductor (MOS) tunneling diodes with high leakage current were utilized as photodetectors. The leakage of inversion carrier through ultrathin oxide makes the device to operate in the deep depletion region. The dark current is limited by the thermal generation process and can be reduced by the high growth temperature of oxide. For the PMOS detectors, the direct tunneling electron current from Al electrode to n-type silicon is the main component of the photocurrent, which is one order of magnitude larger than minority generation current in the deep depletion region.
The mechanisms of gate inversion tunneling current in MOS tunneling diode are investigated. The inversion tunneling current model is composed of Shockley- Read-Hall (SRH) generation model, band-to-band tunneling model, and band-to-traps tunneling model. The oxide roughness effect on tunneling current in MOS diodes is also studied. Due to the 2-D electrical effect, the increasing roughness height with fixed roughness period can significantly increase the gate tunneling current, and for a given roughness height, the current increases first and drops a little as the period parameter increases.
To increase the cutoff wavelength and efficiency of the MOS detector, Ge and Ge/Si quantum dots are used as absorption layers. The oxide is directly grown on Ge substrate by liquid phase deposition to reduce thermal budget. This Ge photodetector can operate at 1.3 and 1.5 μm lightwave and can be applied to the fiber-optic communications. The maximum external quantum efficiency is estimated approximately 50 %, and responsivity can reach 0.5 A/W at 1.5 μm. The five-period Ge quantum dot MOS device can detect the wavelengths of 820 nm, 1300 nm, and 1550 nm with the responsivity of 130, 0.16, and 0.08 mA/W, respectively. The responsivity at 850 nm reaches 600 mA/W using a 20-period Ge quantum dot absorption layer.
On the other hand, the strain field on the Si cap of self-assembled quantum dots can have preferential oxide deposition during liquid phase deposition process. The oxide dots are formed on the Si cap with tensile strain, and are aligned vertically with Ge dots embedded in the Si caps.
In order to increase the speed of the MOS tunneling photodetectors, the novel fully-depleted silicon-on-insulator (SOI) MOS photodetector is proposed. For devices with 1020 cm-3 buffer layer doping, the device can reach high bandwidth (22 GHz) and are fully compatible with ultra-large scale integration (ULSI) technology. For thin devices, the transit time can be determined by the drift mechanism. For thick devices, however, the diffusion mechanism is needed to describe the device behavior.
Finally, the MOS Ge/Si quantum dot infrared photodetectors (QDIPs) for 2 ~ 10 μm using hole inter-valance subband transitions are demonstrated. The maximum operating temperature is 140 K for 3 ~ 10 μm and is up to 200 K for 2 ~ 3 μm detection with LPD oxynitride.
These simple and high performance Si-based photodetectors together with other devices can be used as building blocks for the future optical signal process and the optoelectronic applications on Si chips.
Contents
List of Tables VII
List of Figures VIII
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis Organization 5
Chapter 2 Si NMOS and PMOS Photodetectors 8
2.1 Introduction 8
2.2 Device Fabrication 8
2.3 Characteristics of NMOS Photodetectors 9
2.3.1 NMOS Device Operation 9
2.3.2 Numerical Analysis 14
2.4 Characteristics of PMOS Photodetectors 16
2.4.1 PMOS Device Characteristics 16
2.4.2 Second Plateau Theory 18
2.5 Method to Improve Efficiency 21
2.6 Summary 23
Chapter 3 Carrier Generation Models and Oxide Roughness Effect on Tunneling Current in MOS Diodes 24
3.1 Introduction 24
3.2 Device Fabrication and Experimental Setup 25
3.3 Carrier Generation Models in NMOS Tunneling Diodes 26
3.3.1 Shockley-Read-Hall (SRH) Model 26
3.3.2 Band-to-Traps Tunneling Model 27
3.3.3 Band-to-Band Tunneling Model 28
3.4 Comparison of Simulations and Experimental Results 31
3.5 Oxide Roughness Effect on Accumulation Current 33
3.5.1 Experiments 34
3.5.2 Device Simulation Details : Rough Oxide Model 35
3.5.3 Device Simulation Details : Gate Current Models 36
3.6 Results and Discussion 37
3.6.1 Experiment Results 37
3.6.2 Simulation Results and Discussion 39
3.7 Summary 43
Chapter 4 Ge and Ge/Si Quantum Dot MOS Photo- detectors for Optical Communication 45
4.1 Introduction 45
4.2 Growth and Electrical Characteristics of LPD SiO2 on Ge 46
4.2.1 LPD Process Flow 46
4.2.2 Growth Characteristics 49
4.2.3 Electrical Characteristics 53
4.3 Performance of Ge MOS Photodetectors 58
4.3.1 Operated in Fiber Optic Communication Wavelengths 58
4.3.2 Operated in Visible Light Wavelengths 61
4.4 High Efficient 820 nm MOS Ge Quantum Dot Photodetectors 62
4.4.1 Ge/Si Quantum Dot Fabrication 62
4.4.2 Ge/Si Quantum Dot Device Operation 64
4.5 Summary 72
Chapter 5 Strain-induced Growth of Oxide Nano Dots Prepared by Liquid Phase Deposition 74
5.1 Introduction 74
5.2 Strain-induced Oxide Nano Dots 75
5.2.1 Self-assembled Quantum Dot Formation 75
5.2.2 Experiment Results and Discussion 76
5.3 Characteristics of Liquid Phase Deposited Oxynitride Films 82
5.4 Summary 86
Chapter 6 Si-based Fully-depleted Silicon-on-Insulator (SOI) MOS Photodetectors with Ultrahigh Bandwidth 88
6.1 Introduction 88
6.2 Device Simulation Details 89
6.3 Simulation Results and Discussion 91
6.4 Analytical Model 97
6.4.1 Drift Current Model 97
6.4.2 Diffusion Current Model 101
6.5 Summary 107
Chapter 7 Metal-Insulator-Semiconductor Ge/Si Quantum Dot Infrared Photodetectors (QDIP) 109
7.1 Introduction 109
7.2 Device Fabrication 110
7.3 QDIP Performance 111
7.4 Summary 121
Chapter 8 Summary and Future Work 122
8.1 Summary 122
8.2 Future Work 125
Reference 127
[1] S. Coffa, Si Optoelectronics, Bioelectonics and Nano-Organics, Corporate R&D, ESSDERC 2002, Florence, September 22th, 2002.
[2] The International Technology Roadmap for Semiconductors (ITRS), 2001 edition.
[3] B. C. Paul, M. Satyam, and A. Selvarajan, “A Novel Method of Optical Detection Using a Capacitive Device,” IEEE Trans. on Electron Devices, vol. 46, pp. 324-328, 1999.
[4] C. W. Liu, M. H. Lee, M.-J. Chen, C.-F. Lin and M. Y. Chen, “Roughness -Enhanced Electroluminescence from Metal Oxide Silicon Tunneling Diodes,” IEEE Electron Device Lett., vol. 21, pp. 601-603, 2000.
[5] C. W. Liu, M. H. Lee, M.-J. Chen, C.-F. Lin and I. C. Lin, “Room-temperature electroluminescence from electron-hole plasmas in the metal oxide silicon tunneling diodes,” Appl. Phys. Lett., vol. 76, pp. 1516-1518, 2000.
[6] K. Misiakos, E. Tsoi, E. Halmagean, and S. Kakabakos, “Monolithic integration of light emitting diodes, detectors and optical fibers on a silicon wafers: a CMOS compatible optical sensor,” in IEDM Tech. Dig., 1998, pp. 25-28.
[7] H. S. P. Wong, R. T. Chang, E. Crabbe, and P. D. Agnello, “CMOS active pixel image sensors fabricated using a 1.8, 0.25-μm CMOS technology,” IEEE Trans. Electron Devices, vol. 45, pp. 889-894, 1998.
[8] E. R. Fossum, “CMOS image sensors: Electronic camera-on-a-chip,” IEEE Trans. Electron Devices, vol. 44, pp. 1689-1698, 1997.
[9] D. Scheffer, B. Diericks, and G. Meynants, “Random addressable 2048×2048 active pixel image sensors,” IEEE Trans. Electron Devices, vol. 44, pp. 1716-1720, 1997.
[10] International Technology Roadmap for Semiconductors, 1999 edition.
[11] K. F. Schuegraf and C. Hu, “Low Injection SiO2 breakdown Model for Very Low Voltage Lifetime Extrapolation,” IEEE Trans. Electron Devices, vol. 41, no. 5, pp.761-767, 1994.
[12] A. Ghetti, C.-T. Liu, M. Mastrapasqua, and E. Sangiorgi, “Characterization of tunneling current in ultra-thin gate oxide,” Solid-State Electron., vol. 44, pp. 1523-1531, 2000.
[13] M. Y. Doghish and F. D. Ho, “A comprehensive Analytical Model for Metal-Insulator-Semiconductor (MIS) Devices,” IEEE Trans. Electron Devices, vol. 39, no.12, pp. 2771-2780, 1992.
[14] J. Koga, S. Takagi, and A. Toriumi, “A comprehensive study of MOSFET electron mobility in both weak and strong inversion regimes,” in IEDM. Tech. Dig., 1994, pp. 11-14.
[15] M. Miyashita, M. Itano, T. Imaoka, I. Kawanabe, and T. Ohmi, “Dependence of thin oxide films quality on surface micro-roughness,” in VLSI Tech. Dig., 1991, pp. 45-46.
[16] T. Nakanishi, S. Kishii, A. Ohsawa, and K. Honda, “Degradation of time dependent dielectric breakdown characteristics of MOS capacitors by silicon surface roughness,” in VLSI Tech. Dig., 1989, pp. 79-82.
[17] A. S. Grove, Physics and Technology of Semiconductor Devices, New York, NY: Wiley, 1967.
[18] G. A. M. Hurkx, D. B. M. Klaassen, and M. P. G. Knuvers, “A New Recombination for Devices Simulation Including Tunneling,” IEEE Trans. Electron Devices, vol. 39, no. 2, pp. 331-338, 1992.
[19] G. A. M. Hurkx, H. C. de Graaff, W. J. Kloosterman, and M. P. G. Knuvers, “A New Analytical Diode Model Including Tunneling and Avalanche Breakdown,” IEEE Trans. Electron Devices, vol. 39, no. 9, pp. 2090-2098, 1992.
[20] K.-F. You, and C.-Y. Wu, “A New Quasi-2-D Model for Hot-Carrier Band-to-Band Tunneling Current,” IEEE Trans. Electron Devices, vol. 46, no. 6, pp. 1174-1179, 1999.
[21] S. M. Sze, Physics of Semiconductor Device, 2nd ed., New York, NY: Wiley, 1981.
[22] C. W. Liu, M. H. Lee, M. J. Chen, C.-F. Lin, and M. Y. Chen, “Roughness-enhanced electroluminescence from metal-oxide-silicon tunneling diodes,” IEEE Electron Device Lett., vol. 21, pp. 601-603, 2000.
[23] C.-H. Lin, F. Yuan, C.-R. Shie, K.-F. Chen, B.-C. Hsu, M. H. Lee, W. W. Pai, and C. W. Liu, “Roughness-enhanced reliability of MOS tunneling diodes,” IEEE Electron Device Lett., vol. 23, pp. 431-433, 2002.
[24] D. Z.-Y. Ting, “Tunneling characteristics of nonuniform ultrathin oxides,” Appl. Phys. Lett., vol. 73, pp. 2769-2771, 1998.
[25] J. Sune, I. Placencia, E. Farras, N. Barniol, and X. Aymerich, “On the Si-SiO2 interface roughness in VLSI-MOS structures,” Phys. Stat. Sol. A, vol. 109, pp. 479-491, 1988.
[26] S. Zafar, Q. Liu, and E. A. Irene, “Study of tunneling current oscillation dependence on SiO2 thickness and Si roughness at the Si/SiO2 interface,” J. Vac. Sci. Technol. A, Vac. Surf. Films, vol. 13, pp. 47-53, 1995.
[27] M. Suzuki, Y. Homma, Y. Kudoh, and N. Yabumoto, “Roughness evaluation of thermally oxidized Si (111) surfaces by scanning force microscopy,” Jpn. J. Appl. Phys., pt. 1, vol. 32, pp. 1419-1422, 1993.
[28] G. J. Pietsch, U. Kohler, O. Jusko, M. Henzler, and P. O. Hahn, “Structure of the stepped Si/SiO2 interface after thermal oxidation: Investigations with scanning tunneling microscopy and spot-profile analysis of low-energy electron diffraction,” Appl. Phys. Lett., vol. 60, pp. 1321-1323, 1992.
[29] Y. Homma, M. Suzuki, and N. Yabumoto, “Observation of atomic step morphology on silicon oxide surfaces,” J. Vac. Sci. Technol. A, Vac. Surf. Films, vol. 10, pp. 2055-2058, 1992.
[30] G. S. Shekhawat, R. P. Gupta, S. S. Shekhawat, D. P. Runthala, P. D. Vyas, P. Srivastava, S. Venkatesh, K. Mamhoud, and K. B. Garg, “Scanning tunneling microscopy of Si/SiO interface roughness and its dependence on growth conditions,” Appl. Phys. Lett., vol. 68, pp. 114-116, 1996.
[31] “MEDICI,” Technology Modeling Assoc., Palo Alto, CA.
[32] F. W. Smith and G. Ghidini, “Reaction of oxygen with Si (111) and (100): Critical conditions for the growth of SiO2,” J. Electrochem. Soc., vol. 129, pp. 1300-1306, 1982.
[33] MEDICI User’s manual, pp. 2-103 ~ 2-109, ver. MD 2000.2.
[34] W. Harrison, “Tunneling from an independent-particle point of view,” Phys. Rev., 1961.
[35] K. H. Gundlach, “Zur berechnung des tunnelstroms durch eine trapezformige potentialstufe,” Solid State Electron., vol. 9, pp. 949-957, 1966.
[36] C.-H. Lin, M. H. Lee, B.-C. Hsu, K.-F. Chen, C.-R. Shie, and C. W. Liu, “Oxide roughness enhanced reliability of MOS tunneling diodes,” in Proc. Int. Semiconductor Device Research Symp., 2001, pp. 46-49.
[37] V. Tsai, X.-S. Wang, E. D. Williams, J. Schneir, and R. Dixson, “Conformal oxides on Si surfaces,” Appl. Phys. Lett., vol. 71, pp. 1495-1497, 1997.
[38] R. A. Soref, “Silicon-based optoelectronics,” Proc. IEEE, vol. 81, pp. 1687-1706, Dec. 1993.
[39] M. R. T. Pearson, P. E. Jessop, D. M. Bruce, S. Wallace, P. Mascher, and J. Ojha, “Fabrication of SiGe optical waveguides using VLSI processing techniques,” Journal of Lighteave Technology, vol. 19, pp. 363-370, 2001.
[40] F. Y. Huang, Shawn G. Thomas, Michael Chu, and Kang L. Wang, “Epitaxial SiGeC/Si photodetector with response in the 1.3-1.55 μm wavelength range,” in IEDM Tech. Dig., 1996, pp. 665-668.
[41] I. R. Johnston and G. J. Parker, “Silicon-based fabrication process for production of optical waveguides,” IEE Proc.-Optoelectron., vol. 143, pp. 37-40, 1996.
[42] Gianlorenzo Masini, Lorenzo Colace, Gaetano Assanto, Hsin-Chiao Luan, and Lionel C. Kimerling, “High-performance p-i-n Ge on Si photodetectors for the near infrared: from model to demonstration,” IEEE Trans. Electron Devices, vol. 48, 1092-1096, 2001.
[43] M. Yang et al., “High speed silicon lateral trench detector on SOI substrate,” in IEDM Tech. Dig., 2001, pp. 547-550.
[44] C. L. Schow, R. Li, J. D. Schaub, and J. C. Campbell, “Design and implementation of high-speed planar Si photodiodes fabricated on SOI substrates,” IEEE J. Quantum Electron., vol. 35, pp. 1478-1482, Oct. 1999.
[45] P. Kringhoj, A. N. Larsen, and S. Y. Shirayev, “Diffusion of Sb in strained and relaxed Si and SiGe,” Phys. Rev. Lett., vol. 76, pp. 3372-3375, 1996.
[46] K. Rajendran and W. Schoenmaker, “Studies of boron diffusivity in strained Si1—xGex epitaxial layers,” J. Appl. Phys., vol. 89, pp. 980-987, 2001.
[47] F. Sato, T. Hashimoto, T. Tatsumi, and T. Tashiro, “Sub-20 ps ECL circuits with high-performance super self-aligned selectively grown SiGe base (SSSB) bipolar transistors,” IEEE Trans. Electron Devices, vol. 42, pp. 483-488, 1995.
[48] Z.-Y. Cheng, M. T. Currie, C. W. Leitz, G. Taraschi, E. A. Fitzgerald, J. L. Hoyt, and D. A. Antoniadas, “Electron mobility enhancement in strained-Si n-MOSFETs fabricated on SiGe-on-insulator (SGOI) substrates,” IEEE Electron Device Lett., vol. 22, pp. 321-323, 2001.
[49] T. Mizuno, N. Sugiyama, T. Tezuka, and S.-i. Takagi, “Relaxed SiGe-on -insulator substrates without thick SiGe buffer layers,” Appl. Phys. Lett., vol. 80, pp. 601-603, 2002.
[50] T. Homma, T. Katah, Y. Yamada, and Y. Murao, “A Selective SiO2 Film- Formation Technology Using Liquid-Phase Deposition for Fully Planarized Multilevel Interconnections,” J. Electrochem. Soc., vol. 140, pp. 2410-2413, 1993.
[51] J.-S. Chou and S.-C. Lee, “The Initial Growth Mechanism of Silicon Oxide by Liquid-Phase Deposition,” J. Electrochem. Soc., vol. 141, pp. 3214-3217, 1994.
[52] H. Nagayama, H. Honda, and H. Kawahara, “A New Process for Silica Coating,” J. Electrochem. Soc., vol. 135, pp. 2013-2015, 1988.
[53] T. Goda, H. Nagayama, A. Hishinuma, and H. Kawahara, Mater. Res. Soc. Symp.Proc., vol. 105, p. 283, 1988.
[54] A. Hishinuma, T. Goda, and M. Kitaoka, “Formation of silicon dioxide films in acidic solutions,” Appl. Surf. Sci., vol. 49, pp. 405-408, 1991.
[55] S. Yoshitomi, S. Tomioka, and N. Haneji, Appl. Surf. Sci., vol. 50, p. 22, 1992.
[56] C.-F. Yeh, C.-L. Chen, and G.-H. Lin, “The Physicochemical Properties and Growth Mechanism of Oxide (SiO2-xFx) by Liquid Phase Deposition with H2O Addition Only,” J. Electrochem. Soc., vol. 141, pp. 3177-3181, 1994.
[57] Jenq-Shiuh Chou and Si-Chen Lee, “Improved process for liquid phase deposition of silicon dioxide,” Appl. Phys. Lett., vol. 64 , pp. 1971-1973, 1994.
[58] S. Watanabe, N. Nakayama, and T. Ito, “Homogeneous hydrogen-terminated Si (111) surface formed using aqueous HF solution and water,” Appl. Phys. Lett., vol. 59, pp. 1458-1460, 1991.
[59] B.-C. Hsu, C. W. Liu, W. T. Liu, and C.-H. Lin, “A PMOS tunneling photodetector,” IEEE Trans. Electron Devices, vol. 48, pp. 1747-1749, 2001.
[60] C. G. Van de Walle and R. M. Martin, “Theoretical calculations of heterojunction discontinuities in the Si/Ge system,” Phys. Rev. B, vol. 34, pp. 5621-5634, 1986.
[61] K. F. Brennan and A. S. Brown, Theory of Modern Electronic Semiconductor Devices, p. 436, John Wiley & Sons, New York, 2002.
[62] V. Dallacasa and C. Paracchini, “Field-enhanced electronic transport in solids,” Phys. Rev. B, vol. 34, pp. 8967-8970, 1986.
[63] C. Paracchini, V. Dallacasa, and L. Romano, “The role of the internal field on the electronic transport in insulators,” IEEE Trans. Electr. Insul., vol. 26, pp. 222-227, 1991.
[64] K. J. Yang and C. Hu, “MOS capacitance measurements for high-leakage thin dielectrics,” IEEE Trans. Electron Devices, vol. 46, pp. 1500-1501, 1999.
[65] A. Splett, B. Schuppert, K. Petermann, E. Kasper, H. Kibbel, and H. J. Herzog, in Dig. Conf. On Integrated Photonic Research (OSA Tech. Dig. Ser.), vol. 10, p. 122, 1992.
[66] B. Jalali, L. Naval, A. F. J. Levi, and P. Waston, SPIE Proc., vol. 94, p.1802, 1992.
[67] B. Jalali, L. Naval, and A. F. J. Levi, “Si-based receivers for optical data links,” IEEE J. Lightwave Technol., vol. 12, pp. 930-935, 1994.
[68] F. Y. Huang, Shawn G. Thomas, Michael Chu, Kang L. Wang, and N. D. Theodore, “Epitaxial SiGeC/Si photodetector with response in the 1.3-1.55 μm wavelength range,” in IEDM Tech. Dig., 1996, pp. 665-668.
[69] Gianlorenzo Masini, Lorenzo Colace, Gaetano Assanto, Hsin-Chiao Luan, and Lionel C. Kimerling, “High-performance p-i-n Ge on Si photodetectors for the near infrared: from model to demonstration,” IEEE Trans. Electron Devices, vol. 48, pp. 1092-1096, 2001.
[70] T. I. Kamins, D. A. A. Ohlberg, R. S. Williams, W. Zhang, and S. Y. Chou, “Positioning of self-assembled, single-crystal, germanium islands by silicon nanoimprinting,” Appl. Phys. Lett., vol. 74, pp. 1773-1775, 1999.
[71] S. Fama, L. Colace, G. Masini, G. Assanto, and H.-C. Luan, “High performance germanium-on-silicon detectors for optical communications,” Appl. Phys. Lett., vol. 81, no. 4, pp. 586-588, 2002.
[72] T. P. Pearsall, CRC Crit. Rev. Solid State Mater. Sci., vol. 15, p. 551, 1989.
[73] J. C. Bean, “Recent developments in the strained layer epitaxy of germanium-silicon alloys,” J. Vac. Sci. Technol. B, vol. 4, pp. 1427-1429, 1986.
[74] C. A. King, J. L. Hoyt, and J. F. Gibbons, “Bandgap and transport properties of Si1-xGex by analysis of nearly ideal Si/Si1-xGex/Si heterojunction bipolar transistors,” IEEE Trans. Electron Dev., vol. 36, p. 2093, 1989.
[75] K. Ismail, B. S. Meyerson, S. Rishton, J. Chu, S. Nelson, and J. Noccra, “High- transconductance n-type Si/SiGe modulation-doped field-effect transistors,” IEEE Electron Dev. Lett., vol. 13, pp. 229-231, 1992.
[76] J. Welser, J. L. Hoyt, and J. F. Gibbons, “Electron mobility enhancement in strained-Si n-type metal-oxide-semiconductor field-effect transistors,” IEEE Electron Dev. Lett., vol. 15, pp. 100-102, 1994.
[77] T. Mizuno, S. Takagi, N. Sugiyama, H. Satake, A. Kurobe, and A. Toriumi, “Electron and hole mobility enhancement in strained-Si MOSFET''s on SiGe-on-insulator substrates fabricated by SIMOX technology,” IEEE Electron Dev. Lett., vol. 21, pp. 230-232, 2000.
[78] U. Konig, and F. Schaffler. “p-type Ge-channel MODFETs with high trans- conductance grown on Si substrates,” IEEE Electron Dev. Lett., vol. 14, pp. 205-207, 1993.
[79] O. G. Schmidt and K. Eberl, “Multiple layers of self-asssembled Ge/Si islands: Photoluminescence, strain fields, material interdiffusion, and island formation,” Phys. Rev. B, vol. 61, pp. 13721-13729, 2000.
[80] L. Vescan, T. Stoica, O. Chretien, M. Goryll, E. Mateeva, and A. Muck, “Size distribution and electroluminescence of self-assembled Ge dots,” J. Appl. Phys., vol. 87, pp. 7275-7282, 2000.
[81] Ming-Kwei Lee, Shuo-Yen Lin, and Jong-Min Shyr, “Characteristics of Oxynitride Prepared by Liquid Phase Deposition,” J. Electrochem. Soc., vol, 148 (1), pp. F1-F4, 2001.
[82] C. W. Liu, W. T. Liu, M. H. Lee, W. S. Kuo, and B. C. Hsu, “A novel photodetector using MOS tunneling structures,” IEEE Electron Device Lett., vol. 21, pp. 307-309, 2000.
[83] B.-C. Hsu, W. T. Liu, C.-H. Lin, and C. W. Liu, “A PMOS tunneling photodetector,” IEEE Trans. Electron Devices, vol. 48, pp. 1747-1749, 2001.
[84] Yuan Taur, Tak H. Ning, “Fundamentals of modern VLSI devices”.
[85] Integrated Systems Engineering (ISE) TCAD, ver. 8.0.
[86] Weishu Wu, Aaron R. Hawkins, and John E. Bowers, “Frequency response of avalanche photodetectors with separate absorption and multiplication layers,” J. of Lightwave Tech., vol. 14, pp. 2778-2785, 1996.
[87] Jin-Wei Shi and Chi-Kuang Sun, “Design and analysis if long absorption- length traveling-wave photodetectors,” J. of Lightwave Tech., vol. 18, pp. 2176-2187, 2000.
[88] S. J. Xu, S. J. Chua, T. Mei, X. C. Wang, X. H. Zhang, G. Karunasiri, W. J. Fan, C. H. Wang, J. Jiang, S. Wang, and X. G. Xie, “Characteristics of InGaAs quantum dot infrared photodetectors,” Appl. Phys. Lett., vol. 73, pp. 3153-3155, 1998.
[89] Shiang-Feng Tang, Shih-Yen Lin, Si-Chen Lee, and Chieh Hsiung Kuan, “High Temperature Operated (~ 250 K) Photovoltaic-Photoconductive (PV-PC) Mixed-mode InAs/GaAs Quantum Dot Infrared Photodetector,” in IEDM Tech. Dig., 2000, pp. 597-600.
[90] Lin Jiang, Sheng S. Li, C. E. Ross, and K. S. Jones, “In0.6Ga0.4As/GaAs quantum-dot infrared photodetector with operating temperature up to 260 K,” Appl. Phys. Lett., vol. 82, pp. 1986-1988, 2003.
[91] B.-C. Hsu, S. T. Chang, C.-R. Shie, C.-C. Lai, P. S. Chen, and C. W. Liu, “High efficient 820 nm MOS Ge quantum dot photodetectors for short reach integrated optical receivers,” in IEDM Tech. Dig., 2002, pp. 91-94.
[92] C.-H. Lin, B.-C. Hsu, M. H. Lee, and C. W. Liu, “A Comprehensive Study of Gate Inversion Current of Metal-Oxide-Silicon Tunneling diodes,” IEEE Trans. Electron Devices., vol. 48, no. 9, pp. 2125-2130, 2001.
[93] J. S. Park, R. P. G. Karunasiri, and K. L. Wang, “Intervalence-subband transition in SiGe/Si multiple quantum wells-normal incident detection,” Appl. Phys. Lett., vol. 61, pp. 681-683, 1992.
[94] D. E. Weeks, S. H. Yang, M. R. Gregg, S. J. Novotny, K. D. Greene, and R. L. Hengehold,“ Intersubband infrared absorption spectra of Si/Si1-xGex quantum wells grown in the [110] direction,” Phys. Rev. B, vol. 65, pp. 195314-1-9, 2002.
[95] J. L. Liu, W. G. Wu, A. Balandin, G. L. Jin, and K. L. Wang, “Intersubband absorption in boron-doped multiple Ge quantum dots,” Appl. Phys. Lett., vol. 74, pp. 185-187, 1999.
[96] Vinh Le Thanh, V. Yam, Lam H. Nguyen, Y. Zheng, P. Boucaud, D. Débarre, and D. Bouchier, “Vertical ordering in multilayers of self-assembled Ge/Si(001) quantum dots,” J. Vac. Sci. Technol. B, vol. 20 (3), pp.1259-1265, 2002.
[97] Y. H. Peng, Jen-Hsiang Lu, C. H. Kuan, C. W. Liu, Pang-Shiu Chen, Z. Pei, M.-J. Tsai, S. W. Lee, L. J. Chen, M. H. Ya, and Y. F. Chen, “Schottky Quantum Dots Infrared Photodetector with Far Infrared Response,” in 2003 International SiGe Technology and Device Meeting (ISTDM), Japan, pp. 219-220.
電子全文 電子全文(限國圖所屬電腦使用)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔