(3.238.174.50) 您好!臺灣時間:2021/04/18 17:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡建瑩
研究生(外文):Chien-Ying Tsai
論文名稱:多層金奈米粒子暨電極式DNA雜合檢測晶片之研究
論文名稱(外文):Electrical Detection of DNA Hybridization with Multilayer Gold Nanoparticles between Nanogap electrodes
指導教授:陳炳煇陳炳煇引用關係
指導教授(外文):Ping-Hei Chen
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:216
中文關鍵詞:DNA detectiongold nanoparticlesself-assemblytarget DNA hybridizationSingle mismatch DNA DenaturedCoulomb blockademonolayer and multilayer
外文關鍵詞:DNA檢測金奈米粒子自組裝目標DNA雜合單一鹼基錯位庫侖阻塞單層及多層
相關次數:
  • 被引用被引用:2
  • 點閱點閱:183
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
本論文係利用電子束微影來製作奈米間隙金電極,研究以DNA接合於化學還原之金奈米粒子,並固著於奈米間隙電極內,產生電性變化來判別DNA雜合之有無。可調整製程參數完成不同尺度之金粒子,製備完成之金粒子可應用自組裝(self-assembly)方式,將目標DNA、抓取DNA及探測DNA雜合於基層(baselayer)金奈米粒子上後,再由探測DNA將最上層金奈米粒子固著於電極間隙內。
實驗結果顯示,當金粒子還原反應溫度愈高時,所得的粒徑愈小。由UV-vis測得粒徑可與Mie理論及Maxwell方程式作驗證,所得金奈米粒子之體積對電漿吸收係數為一線性關係。反應升溫速率對粒徑的影響性較低,而速率極快會形成粒徑較小的奈米顆粒。反應時間對粒子影響,遠比反應溫度對粒子的影響性低,若反應時間超過25 min,會使粒子產生聚集而沈澱。氯金酸濃度對粒徑影響極大,也會使粒徑分佈不均情形產生。
利用DNA雜合並接合金奈米粒子之多層自組裝結構,其導電度變動可經電性偵測出,當目標DNA濃度0.1 μM時,電流強度可達mA,而偵測出的電流強度與目標DNA濃度呈線性關係。此處若增電極厚度,也會增加電流強度,但目標DNA濃度變化對電流強度影響遠較電極厚度來的大。將DNA晶片加熱至70 oC以上,再以去離水沖洗,此時雜合DNA形成裂解,產生之電流強度與單層金粒子相似。本研究採用之奈米電極與自組裝薄膜進行單一鹼基錯位DNA分析,可採用鹽析的方法使DNA裂解再測量電流強度,並判別目標DNA是否有錯位存在。另外以300 nm寬、65 nm 厚之電極間隙,進行100 pM以下目標DNA檢測是可行的。若使用較厚的電極產生的電流強度較強,電阻值較低,但改變電阻之幅度,較不同濃度目標DNA的影響性來的低。
金粒子尺度在5 nm以下,形成之雙層自組裝結構之I-V曲線,在0 V附近,電流變動值接近0 A,此處之電阻值遠大於霍爾電阻,顯示此為庫侖阻塞效應。此因電子內層中介帶共振穿遂進入量子點,形成一量子點效應。15 nm金粒子自組裝薄膜,於50 K時,庫侖階梯現象非常明顯。

The purpose of this thesis is to employ electrical detection on DNA hybridization through multi-layer gold nanoparticles that are immobilized on a silicon wafer between nano-gap gold electrodes. The nano-gap electrodes are fabricated by an E-beam Lithography. Gold nanoparticles are synthesized by a chemical reduction method. Various conditions in the synthesis process are introduced to obtain gold nanoparticles at different sizes. A base layer of gold nanoparticles is established by using chemical compounds to immobilize gold nanoparticles on the surface between electrodes. Over the top of base layer, capture DNA is attached to the surface of gold nanoparticles. The formation of additional layer of gold nanoparticles over the base layer depends on hybridaztion that occurs between capture DNA and target and probe DNAs in the test solution. The hybridization between DNAs can then be identified from a change in measured current through electrodes with additional layer of gold nanoparticles.
The experimental results show the size of synthesized gold nanoparticles decreases with an increase in the reaction temperature. According to Mie’s theory and Maxwell’s equation, a linear relationship can be found between the particle volume and optical absorption of UV-vis spectrum. The temperature ramping rate is found to have little influence on the particle size. The influence of reaction time on particle size is much less than the reaction temperature. When the reaction time is longer than 25 min. at all reaction temperatures, particles start to aggregate and to precipitate in the solution. The particle size is strongly affected by the concentration of HAuCl4.
A change in measured current through multiplayer gold nanoparticle can provide an electrical detection of DNA hybridization. A linear I-V curve with a current up to mA can be detected at a tDNA concentration of 0.1 μM. The measured current decreases linearly with the concentration of target DNA in the test solution. The detected current increases with the thickness of the electrode. However, the concentration of target DNA has a much greater effect on the measured current than the electrode thickness.
A thermal stringency of DNA hybridization is also tested in this thesis. The chip was immersed into a buffer solution and was heated to 70 oC to dehybridize the DNA duplexes. The measured current returns to the same current without additional layer of gold nanoparticles through DNA hybridization. A single-base match on DNA hybridization can also be distinguished by immersing the test chip in a salt solution. When the electrode gap decreases to 300 nm and the thickness of electrodes increases to 65 nm, the proposed chip can detect a concentration of target DNA less than 100-pM.
At room temperature, multi-layer gold nanoparticles with a diameter less than 5nm exhibits the phenomenon of Coulomb blockade because of the quantum size effect. The feature indicates an electron tunneling through the gold nanoparticles one at a time. The tunneling current of self-assembly 5-nm gold nanoparticles at 0V is closer to 0 A. Hence, the calculated tunneling resistance is much larger than the quantum hall resistance. Once the chip is cooled to 50K and 150K, the single electron charging energy is greater than the thermal energy of electron. Thus, the Coulomb staircase is observed for multi-layer gold nanoparticles with a diameter of 15 nm at a cryogenic temperature less than 150K.

目錄
致謝……………………………………………………………………………………i
中文摘要……………………………………………………………………………..iii
英文摘要……………………………………………………………………………...v
目錄………………………………………………………………………………….vii
圖表索引…………………………………………………………………………... xiv
符號說明…………………………………………………………………………... xix
第一章 緒論………………………………………………………………….………1
1.1 研究背景……………………………………………………………………...1
1.2 研究目的……………………………………………………………………...7
第二章 文獻回顧…………………………………………………………….……..10
2.1 DNA暨奈米金粒子之二維及三維自組裝結構…………………………...10
2.2 金奈米粒子的製備與應用…………………………………………………..14
2.3 單一粒子與多體理論………………………………………………………..16
第三章 理論分析………………………………………………………….………..24
3.1 金奈米粒子成核與成長…………………………………………………….25
3.1.1粒子成核機制…………………………………………………………..25
3.1.2 成核速率分析………………………………………………………….29
3.1.3 顆粒成長動力理論分析……………………………………………….30
3.1.4 粒子成長動力理論分析……………………………………………….33
3.1.5 核界面成長的控制因素分析………………………………………….35
3.2 量子尺寸效應 …………………………………………………………...38
3.3 庫侖阻塞效應 ……………………………………………………….…..42
3.3.1 基本理論……………………………………………………………….42
3.4 量子穿遂效應 ……………………………………………………….……46
3.4.1 基本理論……………………………………………………………….46
3.4.2 量子機械限能………………………………………………………….46
3.4.3 容電式電荷能……………………………………………………….…47
3.4.4 量子點之庫侖阻塞效應………………………………………………...48
3.4.5 基礎態之穿遂現象……………………………………………….……..49
3.4.6 激發態之穿遂現象……………………………………………….……..51
第四章 實驗方法…………………………………………………….……………..71
4.1實驗設備……………………………………………………………………..71
4.1.1電子束微影製程………………………………………………………..71
4.1.2奈米粒子量測…………………………………………………………..73
4.1.3自組裝薄膜量測 ……………………………………………………...80
4.2 實驗步驟…………………………………………………………………….83
4.2.1 金奈米粒子合成 ……………………………………………………...83
4.2.2 金奈米電極製作……………………………………………………….84
4.2.3 金奈米粒子自組裝薄膜與電訊號量測 …………………………...85
第五章 實驗結果與討論…………………………………………….……………..94
5.1 金奈米粒子合成…………………………………………………………….95
5.1.1 粒子成長與溫度關係………………………………………………….95
5.1.2 奈米顆粒成長之條件………………………………………………….98
5.1.3 粒子成長動力理論分析……………………………………………….99
5.2 金奈米粒子自組裝薄膜分析……………………………………………...102
5.2.1 奈米電極製作之結構觀察…………………………………………...102
5.2.2 沈積不同層金奈米粒子自組裝薄膜比較……………………………103
5.2.3以不同尺寸之金奈米粒子自組裝薄膜比較…………………………106
5.2.4 DNA自組裝薄膜沈積於不同間距電極之影響性…………………..108
5.2.5 目標DNA濃度不同時對電流強度之影響效應…………….……....110
5.2.6 DNA裂解反應之確認實驗………………………………………………111
5.2.7 DNA含單一錯位鹼基之檢驗分析……………………………………112
5.2.8 目標DNA濃度100 pM以下時對電流強度之影響效應…………..113
5.2.9 不同電極厚度對電流強度之影響效應………………………………114
5.3 金奈米粒子自組裝薄膜之庫侖阻塞效應…………………………….…..115
5.3.1 小尺寸金奈米粒子自組裝薄膜之庫侖阻塞效應…………………...115
5.3.2金奈米粒子薄膜之庫侖振盪……………………………………….…122
5.3.3金奈米粒子薄膜之量子穿遂效應……………………………….……123
5.3.4十五奈米之金粒子庫侖阻塞效應……………………………….……124
第六章 結論…………………………………………….…………………………179
6.1 研究結果摘要…………………………….………………………………..179
6.2 未來展望…………………………….……………………………………..184
參考文獻…………………………………………….……………………………..185

Alivisatos, A. P., (1996) "Perspectives on the physical chemistry of semiconductor nanocrystals", J. Phys. Chem., Vol. 100, pp. 13226-13239.
Altshuler, B. L., Gefen, Y., Kamenev, A., and Levitov, L. S., (1997) "Quasiparticle lifetime in a finite system: A nonperturbative approach", Phys. Rev. Lett., Vol. 78, pp. 2803—2806.
Alvarez, M. M., Khoury, J. T., Schaaff, T. G., Shafigullin, M. N., Vezmer, I., and Whetten, R. L., (1997) "Optical absorption spectra of nanocrystal gold molecules", J. Phys. Chem. B, Vol. 101, pp.3706 - 3712.
Andrei, Ed., (1997) Two-Dimensional Electron System, Kluwer Academic Publishers, The Netherland.
Ashcroft, N. W., and Mermin, N. D., (1976) Solid State Physics, Saunders College, Philadelphia.
Averin, D. V., and likharev, K. K., (1991) In: Mesoscopic Phenomena in Solids, Ch. 6, North-Holland.
Bakhvalov, N. S., Kazacha, G. S., Likharv, K. K. and Serdyukova, S. I., (1989) "Electrochemical properties of colloidal Au-based surfaces: multilayer assemblies and seeded colloid films", Sov. Phys. Tetp, Vol. 68, pp. 844-850.
Becker, R., (1940) "On the formation of nuclei during precipitation", Proc. Soc., Vol. 52, pp.71-76.
Beenakker, C. W. J., (1991) "Theory of Coulomb-blockade oscillations in the conductance of a quantum dot", Phys. Rev. B., Vol. 44, pp. 1646-1656.
Bohren, C. F., and Huffman, D. R., (1983) Absorption and Scattering of Light by Small Particles, Wiley, New York.
Brain, C., (1980) Glow Discharge Process, John Wiley & Sons, Inc., New York.
Bright, R. M., Musick, M. D., and Natan, M. J., (1998) "Preparation and characterization of Ag colloid monolayers", Langmuir, Vol. 14, pp. 5695-5701.
Brown, K. R., Fox, A. P., and Natan, M. J., (1996) "Morphology-dependent electrochemistry of Cytochrome C at Au colloid-modified SnO2 electrodes", J. Am. Chem. Soc. Vol. 118, pp. 1154-1157.
Brown, K. R., Walter, D. G., and Natan, M. J., (2000) "Seeding of colloidal Au nanoparticle solutions. Improved control of particle size and shape", Chem. Mater., Vol. 12, pp. 306-313.
Cai, H., Wang, Y., He, P., and Fang, Y., (2002) "Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label", Anal. Chim. Acta, Vol. 469, pp. 165-172.
Chen, C. C., Tsai, C. Y., Ko, F. H., Pun, C. C., Chen, H. Li., and Chen, P. H., (2003) "Room Temperature Operation of Coulomb Blockade Sensor Fabricated by the Self-Assembled Gold Nnaoparticles utilizing DNA Hybridization", Jap. J. Appl. Phy., To be published, Jun, Vol. 43, No. 6B.
Chen, C. C., Tsai, C. Y., Pun, C. C., Cheng, Y. T., Lee, D. S., Ko, F. H., and Chen, P. H., (2003) "Observation of Coulomb Blockade at room temperature made by the self-assembly gold particles nanostructure utilizing DNA hybridization ", Taiwan NEMS/MEMS conference, Section D, No. 5.
Chen, F. F., (1984) Introduction to Plasma Physics and Controlled Fusion Plasma Physics, 2d Ed., Plenum Press, New York, Vol. 1.
Chapman, B., (1980) Glow Discharge Process, John Wiley & Sons, Inc., New York.
Christian, J. W., (1965) The Theory of Transformation in Metals and Alloys, Pergamon Press, London.
Ci, Y. X., Zheng, Y. G., Tie, J. K., and Chang, W. B., (1993) "Chemiluminescence investigation of the interaction of metalloporphyrins with nucleic acids", Anal. Chim. Acta, Vol. 282, pp. 695-701.
Creighton, J. A., Blatchford, C. G., and Albrecht, M. G., (1979) "Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength", J. Chem. Soc., Faraday Trans., 2 , Vol. 75, pp. 790-798.
Cullity, B. D., (1987) Elements of X-ray diffraction, 2nd ed., Addison-Wesley, California, Chap. 3.
Curtis, A. C., Duff, D. G., Edwards, P. P., Jefferson, D. A., Johnson, B. F. G., Kirkland, A. I., and Wallace, A. S., (1988) "Phosphaalkynes - syntheses, reactions, coordination behavior [New Synthetic Methods]", Angew. Chem., Int. Ed. Engl., Vol. 27, pp. 1530-1533.
Edelstein, A. S., and Cammarata, R. C., (1996) Nanoparticles: Synthesis, Properties and Applications; Institute of Physics Publishing, Bristol.
Erdem, A., Kerman, K., Meric, B., Akareca, U.S., and Ozsoz, M., (1999) "DNA electrochemical biosensor for the detection of short DNA sequences related to the Hepatitis B Virus", Electroanalysis (NY), Vol. 11, pp. 586-587.
Evans, C. W., (1989) ” Engineering mathematics : a programmed approach”, Van Nostrand Reinhold (International), London.
Faraday, M., (1857) "Experimental relations of gold (and other metals ) to Light", Philos. Trans. R. Soc. London, Vol. 147, pp. 145-147.
Faulk, W. P., and Taylor G. M., (1971) "An Immunocolloid method for the electron microscope", Immunochemistry, Vol. 8, pp.1081-1083.
Ferri, E., and Girotti, S., (1991) "Direct quantitative chemiluminescent assays for the detection of Viral DNA", Anal. Chim. Acta, Vol. 255, pp. 387-394.
Fink, J., Kiely, C. J., Bethell, D., and Schiffrin, D. J., (1998) "Self-organization of nanosized gold particles", Chem. Mater., Vol. 10, pp. 922-926.
Freeman, R. G., Grabar, K. G., Allison, K. J., Bright, R. M., Pavis, J. A.,Guthrie, A. P., Hommer, M. B., Jackson, M. A., Smith, P. C., Walter, D. G., and Natan, M. J., (1995) "Self-assembled metal colloid monolayers: an approach to SERS substrates", Science, Vol. 267, pp. 1629-1632.
Frens, G., (1973) "Controlled nucleation for the regulation of the particle size in monodisperse gold solutions", Nature Phys. Sci., Vol. 241, pp. 20-22.
Geoghegan, W. D., and Ackerman, G. A., (1977) "Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of concanavalin A, wheat germ agglutinin and goat anti-human immunoglobulin G on cell surfaces at the electron microscopic level: a new method, theory and application", J. Histochem. Cytochem., Vol. 25, pp. 1187 - 1200.
Glazman L. L., and Shekhter, R. L., (1989) "Coulomb oscillations of the conductance in a laterally confined heterostructure", J. Phys. Condens. Matter, Vol. 1 (33), pp. 5811-5815.
Goodman, S. L., Hodges, G. M., Trejdosiewicz, L. K., and Livingston, D. C (1981) "Colloidal gold markers and probes for routine application in microscopy", J. Microsc. (oxford), Vol. 123, pp. 201-205.
Grabar, K. C., Freeman, R. G., Hommer, M. B., and Natan, M. J., (1995) "Preparation and characterization of Au colloid monolayers", Anal. Chem., Vol. 67, pp. 735-743.
Grabar, K. C., Smith, P. C., Musick, M. D., Davis, J. A., Walter, D. G.,Jacken, M. A., Guthrie, A. P., and Natan, M. J., (1996) "Kinetic control of interparticle spacing in Au colloid-based surfaces: rational nanometer-scale architecture", J. Am. Chem. Soc., Vol. 118, pp. 1148-1153.
Green, M., and O'Brien, P., (2000) "A simple one phase preparation of organically capped gold nanocrystals ", Chem. Commun., No. 3, pp. 183-184.
Gutzwiller, L., (1990) Chaos in Classical and Quantum Mechanics, Springer-Verlag, New York.
Handley, D. A., and Chien, S., (1987) "Colloidal gold labeling studies related to vascular and endotheial function, hemostasis and receptor-mediated processing of plasma macromolecules", Eur. J. Cell Biol., Vol. 43, pp. 163-169.
Hannah, L., and Vetterl, V., (1998) "Adsorption of single-stranded and double-helical polyadenylic acid at the mercury drop electrode", Bioelectrochem. Bioenerg., Vol. 46, pp. 7-13.
Hayat, M. A., (1991) Colloidal Gold: Principles, Methods, and Applications; Academic Press, San Diego.
Henglein, A., (1989) "Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles", Chem. Rev., Vol. 89, pp. 1861-1873.
Henglein, A., and Giersig, M., (1993) "Reduction of Pt(II) by H2: effects of citrate and NaOH and reaction mechanism", J. Phys. Chem. B., Vol. 104 (9), pp. 6767-6772.
Henglein, A., Ershov, B. G., and Malow, M., (1995) "Absorption spectrum and some chemical reactions of colloidal platinum in aqueous solution", J. Phys. Chem., Vol. 99, pp. 14129-14136.
Hermann, G., and Devoret, M. H., (1992) "Single charge tunneling coulomb blockade phenomena in nanostructures", Nato. Asi. Series B: Physics, Vol. 294, Chap 7, pp. 249-275.
Horisberger, M., (1981) Colloidal gold: Acytochemical marker for light and fluorescent microscopy and for transmission and scanning electron microscopy, Scanning Electron Microsc. Ⅱ, Chapman & Hall, London, Chap. 9.
Houten, H. V., and Beenakker, C. W. J., (1989) "Conductance oscillations periodic in the density of a one-dimensional electron gas", Phys. Rev. lett., Vol. 63, pp. 1893-1898.
Hughes, A. E., and Jain, S. C., (1979) "Metal colloids in ionic crystals", Adv. Phys., Vol. 28 (6), pp. 717-729.
Hyatt, M. A., (1989) Colloidal Gold: Principles, Methods and Applications, Academic Press, New York, Vol. 3.
Ingold, G. I., and Grabert, H., (1991) "Finite-temperature current-voltage characteristics of ultrasmall tunnel junctions", Europhys. Lett., Vol. 14, pp. 371-376.
Johnson, N. F., (1995) “Reviews quantum dots: few-body, low-dimensional systems", J. Phys.: Condense. Matter, Vol. 7, pp. 965-969.
Kamat, P. V., and Meisel, D., (1997) Semiconductor NanoclusterssPhysical, Chemical, and Catalytic Aspects; Studiesin Surface Science and Catalysis, Elsevier, Amsterdam , Vol. 103.
Kawabata, A., and Kubo, R. J., (1966) "The behaviour of the temperature dependence can partly be explained by thermal lattice contraction", Phys. Soc. Jpn., Vol. 21, pp. 1765-1770.
Kerker, M., (1985) "Estimation of surface-enhanced Raman scattering from surface-averaged electromagnetic intensities", J. Colloid Interface Sci., Vol. 118, pp. 417-421.
Kittel, C., (1996) Introduction to Solid State Physics; Wiley, New York.
Kouwenhoven, E. A., (1997) In Proceeding of the Advanced study institute on mesoscopic electron transport, Kluwer, Dordrecht, Netherlands.
Kreibig, U., and Vollmer, M., (1995) Optical Properties of Metal Clusters; Springer, Berlin.
Kreibig, U., and Genzel, U., (1985) " Optical absorption of small metallic particles", Surf. Sci., Vol. 156, pp. 678-700.
Kubo, R. J., (1962) "Non-trivial properties of small metal particles were predicted due to a discreteness of electron spectra", Phys. Soc. Jpn., Vol. 17, pp. 975-981.
Kuz'min, A. G., (1987) "Some boundary-value problems for equations of mixed type // Differential Equations", Consultants Bureau, Vol. 21, pp. 62-67.
Kuzmin, L. S., Delsing, P., Claeson, T., and Likharev, K. K., (1989) "Single-electron charging effects in one-dimensional arrays of ultrasmall tunnel junctions", Phys. Rev. Lett., Vol. 62, pp. 2539-2542.
Labuda, J., Buckowva, M., Vanickova, M., Mattusch, J., and Wennrich, R., (1999) "Voltammetric detection of the DNA interaction with copper complex compounds and damage to DNA", Electroanalysis, Vol. 11, pp. 101-107.
Lieberman, M. A., and Lichtenberg, A. J., (1994) Principle of Plasma Discharges and Materials Processing, John Wiley & Sons, Inc., New York.
Likharev, K. K., (1999) "Single-electron devices and their applications", Proc. of the IEEE, Vol. 87, No. 4, pp. 606-632.
Link, S., and El-Sayed, M. A., (1999) "Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods" , J. Phys. Chem. B, Vol. 103, pp. 8410-8426.
Liu, S. H., Sun, C. L., He, P. G., and Fang, Y. Z., (1999) "Bis (3,5-dimethylpyrazole-N2) bis(thiocyanato-N) cobalt(II) monohydrate", Acta Cryst., Chap. 55, pp. 22-24.
Livache, T., Fouque, B., Roget, A., Marchand, J., Bidan, G., Teoule, R., and Mathis, G., (1998) "Polypyrrole DNA chip on a silicon device: example of Hepatitis C Virus genotyping ", Anal. Biochem., Vol. 255, pp. 188-194.
Lyon, L.A., Musick, M. D., and Natan, M.J., (1998) "Colloidal Au-enhanced surface plasmon resonance immunosensing", Anal. Chem., Vol. 70, pp. 5177-5183.
Lyon, L. A., Musick, M. D., Smith, P. C., Reiss, B. D., Pena, D.J., and Natan, M. J., (1999) "Surface plasmon resonance of colloidal Au-modified gold films ", Sens. Actuators B, Vol. 54, pp. 118-125.
Mahan, M., (1990) Many-Body Physics, Plenum Press, New York.
Marcus, H. M., (1997) Chaos, Solutions and Fractals 8, 1261, Academic Press, New York.
Marrazza, G., Chianella, I., and Mascini, M., (1999) "Disposable DNA electrochemical biosensors for environmental monitoring ", Anal. Chim. Acta, Vol. 387, pp. 297-307.
Marrazza, G., Chianella, I., and Mascini, M., (1999) "Disposable DNA electrochemical sensor for hybridization detection", Mascini, Biosens. Bioelectron., Vol. 14, pp. 43-51.
Martin, J. E., Wilcoxon, J. P., Ddinek, J., and Provencio, P., (2000) "Control of the interparticle spacing in gold nanoparticle superlattices", J. Phys. Chem. B, Vol. 104, pp. 9475-9486.
Mie, G., (1908) "Beitrage zur optik trueber medienspeziell kolloidaler metalloesungen", Ann. Phys., Vol. 25, pp. 377-445.
Millan, K.M., Saraullo, A., and Mikkalsen, S.R., (1994) "Voltammetric DNA biosensor for cystic fibrosis based on a modified carbon paste electrode", Anal. Chem., Vol. 66, pp. 2943-2948.
Mirkin, C. A., Letsinger, R. L., Mucic, R. C., and Storhoff, J. J., (1996) "A DNA-based method for rationally assembling nanoparticles into macro-scopic materials", Nature, Vol. 382, pp. 607-609.
Mooij, J. E., (1984) In: Percolation, localization and superconductivity, Goldman & Wolf, London.
Mooij, J. E., Van Wees, B. J., Geerligs, L. J., Peters, M., Fazio, R., and Schon, G., (1990) "Unbinding of charge-anticharge pairs in two-dimensional arrays of small tunnel junctions", Phys. Rev. Lett., Vol. 65, pp. 645-648.
Motte, L., Billouder, F., Lacaze, E., Douin, J., and Pileni, M. P., (1997) "Self-organization into 2D and 3D superlattices of nanosized particles differing by their size", J. Phys.Chem. B, Vol. 101, pp. 138-144.
Murray, C. B., Kagan, C. R., and Bawendl, M. G., (1995) "Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices", Science, Vol. 270, pp. 1335-1339.
Murray, C. B., Norris, D. J., and Bawendi, M.G., (1993) "Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites", J. Am. Chem. Soc., Vol. 115, pp. 8760-8715.
Musick, M. D., Pena, D. J., Botsko, S. L., Mctvoy, T. M., Richardson, J. N., and Natan, M. J., (1996) "Electrochemical properties of colloidal Au-based surfaces: multilayer sssemblies and seeded colloid films", Langmuir, Vol. 15, pp. 844-850.
Nie, S., and Emory, S. R., (1997) "Probing single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering", Science, Vol. 275, pp. 1102-1106.
Olejnik, J., Olejnik, E.K., and Rothschild, K.J., (1998) "Photocleavable aminotag phosphoramidites for 5'-termini DNA/RNA labeling", Nucleic Acids Res., Vol. 26, pp. 3572-3576.
Palanti, S., Marrazza, G., and Mascini, M., (1996) "Electrochemical DNA probes", Anal. Lett., Vol. 29, pp. 2309-2331.
Pang, D.W., Zhang, M., and Wang, Z.L., (1996) "Modification of glassy carbon and gold electrodes with DNA", J. Electroanal. Chem., Vol. 403, pp. 183-188.
Papavassiliou, G. C., (1980) "Applications of electron microscopy to organic solid-state chemistry", Prog. Solid State Chem., Vol. 12, Issue 2, pp. 101-124.
Park, S. J., Taton, T. A., and Mirkin, C. A., (2002) "Array-based electrical detection of DNA with nanoparticles probes," Science, Vol. 295, pp. 1503-1506.
Perenboom, J. A. A. J., Wyder, P., and Meier, P., (1981) "Electronic properties of small metallic particles", Phys. Rep., Vol. 78, pp. 173-292.
Persson, N. J., (1993) "Polarizability of small spherical metal particles: influence of the matrix environment", Surf. Sci., Vol. 281, pp. 153-162.
Pfannkuche, D., (1995) "Selection rules for transport excitation spectroscopy of few-electron quantum dots", Phys. Rev. Lett., Vol. 74 (7), pp. 1194-1197.
Pines, E. A., (1989) The theory of quantum fluid, Addison-Wesley Inc USA.
Robertson, B. C., (1981) 1941-Modern physics for applied science, Wiley, New York.
Sarathy, K. V., Thomas, P. J., Kulkarni, G. V., and Rao, C. N. R., (1999) "Superlattices of metal and metal-semiconductor quantum dots obtained by layer-by-layer deposition of nanoparticle arrays", J. Phys. Chem. B, Vol. 103, pp. 399-401.
Schmid, G., (1994) Clusters and Colloids: From Theory to Application, VCH, Weinheim.
Schmid, G., Barbenheim, G., Boese, R., and Naturforsch, Z., (1985) "Reaction of coordinated diphosphorus with metal carbonyl fragments crystal Structure of [(Co)5Cr][(Co)5W]P2Co2(CO)6 ", Prog. Colloids Polymers, Vol. 40b, pp. 787-793.
Schon, G., and Simon, U., (1995a) "Boundary-layer model of pattern formation in solidification", J. Colloid Polymer Sci., Vol. 202, pp. 155-159.
Schon, G., and Simon, U., (1995b) "Room-temperature Coulomb-Blockade- dominated transport in gold", J. Colloid Polymer Sci., Vol. 273, pp. 101-104.
Scott-Thomas, J. H. F., Field, S. B., Kastner, M. A., Smith, H. I., and Antoniadis, D. A., (1989) "Conductance oscillations periodic in the density of a one-dimensional electron gas", Phys. Rev. Lett., Vol. 62, pp. 583-586.
Simon, U., Flesh, R., Wiggers, H., Schon, G., and Schmid, G., (1998) "Synthesis of phthalocyanine-doped silica mesostructured materials by ferrocenyl surfactant ", J. Mater. Chem., Vol. 8, pp. 517-518.
Staring, A. A. M., Houten, H. V., Beenakker, C. W. J., and Foxon, C. T., (1991) In: High Magnetic Field In Semiconductor Physics Ⅲ, Springer, Berlin.
Stathis, J. H., Tischler, M. A., Collins, R. T., and Tsang, J. C., (1992) "Luminescence degradation in porous silicon," Appl. Phys. Lett., Vol. 60, pp. 639-645.
Storhoff, J. J., Elghanian, R., Mucic, R. C., Mirkin, C. A., and Letsinger, R. L., (1998) "One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold Nanoparticle Probes", J. Am. Chem. Soc., Vol. 120, pp. 1959-1964.
Sun, X. Y., He, P. G., Liu, S. H., Ye, J. N., and Fang, Y. Z., (1998) "Immobilization of single-stranded deoxyribonucleic acid on gold electrode with self-assembled aminoethanethiol monolayer for DNA electrochemical sensor applications", Talanta, Vol. 47, pp. 487-495.
Taton, T. A., Mucic, R. C., Mirkin, C. A., and Robert, L. L., (2000) "The DNA-mediated formation of supramolecular mono- and multilayered nanoparticle structures" J. Am. Chem. Soc., Vol. 122, pp. 6305-6306.
Teranishi, T., Hosoe, M., Tanaka, T., and Miyake, M., (1999) "Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition", J. Phys. Chem. B, Vol. 103, pp. 3818-3827.
Tsai, C. Y., Chen, C. C., Pun, C. C., Cheng, Y. T., Lee, D. S., Ko, F. H., and Chen, P. H., (2003) "Nano-electrical DNA detection with multilayer gold nanoparticles ", Taiwan NEMS/MEMS conference, Poster, No. P16.
Tsai, C. Y., Chen, C. C., Pun, C. C., Cheng, Y. T., Lee, D. S., Ko, F. H., and Chen, P. H., (2003) "Observation of coulomb blockade at room temperature made by the self-assembly gold particles nanostructure utilizing DNA hybridization", International Microsystem Conference in Hawaii (Received in December 2003).
Tsai, C. Y., Tsai, Y. H., Pun, C. C., Chan, B., Luh, T. Y., Chen, C. C., Ko, F. H., Chen, P. J., Chen, P. H., (2003) "Electrical detection of DNA hybridization with multilayer gold nanoparticles between nanogap electrodes," Microsystem Technologies, (Has been accepted for publication in November 2003).
Ulloa, S. E., and Pfannkuche, D., (1994) "Electronic correlations and the non-linear conductance of quantum dots ", Supetlatt. and Microstruct., Vol. 15(3), pp. 269-275.
Volmer, M., and Weber, A., (1926) "Nuclei formation in supersaturated states", Phys. Chem., Vol. 119, pp. 227-301.
Wang, J., Cai, X.H., Rivas, G., Shiraishi, H., Farias, P.A.M., and Dontha, N., (1996) "DNA electrochemical biosensor for the detection of short DNA sequences related to the human immunodeficiency Virus", Anal. Chem., Vol. 68, pp. 2629-2634.
Warchol, J. B., Brelinska, R., and Herbert, D.C., (1982) "Analysis of colloid gold methods for labbelling proteins", Histochemistry, Vol. 76, pp. 567-575.
Watson, G. N., (1922) 1886 - A treatise on the theory of bessel functions, The University Press, Cambridge.
Weiser, B. L., (1933) Inorganic colloid chemistry, Wiley, New York., Vol. 1, pp. 21-57.
Xiao, H., (2001) : Introduction to Semiconductor Manufacturing Technology, Prentice Hall, Upper Saddle River, New Jersey.
Xiao, Y., Ju, H. X., and Chen, H.Y., (1999) "Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cysteamine monolayer", Anal. Chim. Acta, Vol. 391, pp. 73-82.
Yokota, S., (1988) " Effect of practicle size on labeling density for catalase in protein A-gold immunochemistry", J. Histochem. Cytochem., Vol. 36, pp. 107-119.
Zener, C., (1949) "Theory of Phase Transformations", J. Appl. Phys., Vol. 20, pp. 950-953.
Zhao, Y.D., Pang, D.W., Hu, S., Wang, Z.L., Cheng, J. K., and Dai, H. P., (1999) "DNA-modified electrodes; part 4: optimization of covalent immobilization of DNA on self-assembled monolayers", Talanta, Vol. 49, pp. 751-756.
Zhou, Y., Wang, C. Y., Zhu, Y. R., and Chen, Z. Y., (1999) "A novel Ultraviolet irradiation technique for shape-controlled synthesis of gold nanoparticles at room temperature", Chem. Mater., Vol. 11, pp. 2310-2312.
蔡宜樺" 應用奈米電極檢測之單一核酸多型性生物晶片",碩士論文,2003。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔