(3.237.20.246) 您好!臺灣時間:2021/04/15 09:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李宜璉
研究生(外文):I-Lien Lee
論文名稱:全域三維暫態應變量測系統之設計與建構
論文名稱(外文):Design and Construction of a Full-field Three-dimensional Transient Strain Metrology System
指導教授:吳光鐘李世光李世光引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:80
中文關鍵詞:脈衝雷射壓電變壓器非破壞檢測電子斑點干涉術三維量測暫態量測全域量測
外文關鍵詞:Pulse LaserPiezoelectroic transformerNon-destructive testingESPINon-contact testingThree-dimension measurenentTransient measurenentFull-field measurenent
相關次數:
  • 被引用被引用:4
  • 點閱點閱:163
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
物體表面的波傳行為可提供如物體內部缺陷檢測、阻抗分析、振動模態分析等許多有用的資訊,然而,準確的全域波傳行為卻無法藉由數值計算與模擬分析來瞭解與 驗證,所以由實驗來正確的量測出因多種影響因素而導致相當複雜的波傳行為就顯的益發重要。為了要能夠量測物體在高速變形下的波傳現象,本論文發展了一套創新的光學量測系統,並同時能達到非接觸式、高解析度及量測時間相當短等特性。
本論文所開發完成之全域三維暫態應變量測系統利用電子斑點干涉術為基礎,使用脈衝寬度10 ns、兩個脈衝間距100 ns ~ 6000 ms的Nd:YAG脈衝雷射做為光源,提供MHz等級的量測頻寬,再配合五一相移法、中位數濾波法及加權式迭代離散傅立葉轉換演算法將三臺CCD攝影機所取得之三套干涉斑點圖轉化重建出物體在不同時間點的三維變形資訊。
壓電變壓器為電源供應器相關技術中與當前液晶顯示器息息相關之技術,如何迅速提高其在高功率下之效率為當前研發重點,所以在本論文中採用壓電變壓器作為量測的試件來驗證此套量測系統。由於在高頻高功率下的非線性行為是影響壓電變壓器設計的重要因子之一,而本實驗的量測結果可提供一些資訊來改進此創新型的電源供應器。研究過程中同時藉由多組不同時間點的瞬時變形資訊,逐步重建出壓電變壓器在高頻高功率下的振動應變行為。
Valuable information such as defect position, impedance analysis, and vibration mode shapes, etc. can be revealed by observing the wave propagation behaviors in an object. However, accurate full-field wave propagation behaviors can neither be obtained by numerical simulation nor by experimental implementations. To truly verify the full-field wave propagation behavior, experimental implementation is even more important when considering the many factors that may affect the intricate wave propagation details. With an attempt to measure high-speed wave propagation phenomenon, a novel optical instrument was developed during the course of this dissertation. This newly developed system possesses characteristics such as non-contact, high-resolution, and short measuring time, etc.
This newly developed full-field three-dimensional transient strain metrology system was based on Electronic Speckle Pattern Interferometer (ESPI) technique, which adopted a Nd:YAG pulsed laser with 10 ns pulse duration, 100 ns ~ 6000 μs pulse to pulse separation capabilities as the light source to achieve MHz measurement bandwidth. The (5,1) phase-shifting algorithm, median filter technology, and weighted iterative DFT phase unwrap algorithm were all integrated to convert the 3-D speckle intensity maps acquired from three CCD cameras into 3-D deformation data of each instance.
As piezoelectric transformer is a technology currently being studied by many leading research groups due to its close tie to the power-supplier technology of future LCD displays, it was taken as the specimen to demonstrate the performance of the newly developed metrology system. Furthermore, since the nonlinear effect of piezoelectric transformers working at high frequency and high power conditions is the key point to improve performance of today’s piezoelectric transformers, experimental data obtained can provide some insight into the improvement of this type of innovative power supplies. Using the time sequences of deformation data obtained, the strain behavior of piezoelectric transformers operating at high power and frequency can be reconstructed step by step.
目錄 i
圖目錄 iv
表目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 文獻探討 2
1.3 論文架構 4
第二章 電子斑點干涉術之理論分析 6
2.1 光學干涉基本原理 6
2.2 變形對相位的影響 8
2.3 電子斑點干涉術 10
2.3.1 電子斑點干涉術之基本原理 10
2.3.2 電子斑點干涉術面外變形量測架構 12
2.3.3 電子斑點干涉術面內變形量測架構 14
第三章 影像處理 17
3.1 相移干涉術 17
3.1.1 五步相移法 18
3.1.2 五一相移法 19
3.1.2 相關係數法結合五一相移法 22
3.2 濾波處理 26
3.3 相位重建 32
3.3.1以離散傅立葉轉換為基礎之未加權式非迭代演算法 32
3.3.2 以離散傅立葉轉換為基礎之加權式迭代演算法 38
3.4 曲面擬合 41
3.5 影像契合 43
第四章 實驗設備及架構 45
4.1 實驗設備 45
4.1.1 光源 45
4.1.2 影像擷取系統 47
4.2 實驗架構 49
4.2.1 壓電變壓器驅動架構 50
4.2.2 系統架構 56
4.2.3 光場架構 57
第五章 實驗結果與討論 60
5.1 實驗步驟 60
5.2 實驗結果 61
5.3 討論 71
5.4 結論 74
5.5 未來展望 75
參考文獻 77
圖目錄
圖2- 1光學干涉示意圖 7
圖2- 2 干涉條紋之可視度 8
圖2- 3 物體變形導致光程差改變 9
圖2- 4 靈敏向量示意圖 10
圖2- 5 ESPI 面外變形量測架構 13
圖2- 6 面外變形量測示意圖 14
圖2- 7 ESPI面內變形量測架構 15
圖2- 8 方向入射光造成光程差示意圖 16
圖3- 1使用一般濾波器濾波處理前後之比較 26
圖3- 2 相位與相位差的幾何表示圖 33
圖3- 3 DCT鏡射本質之幾何表現 34
圖3- 4 DFT對函數作週期性之延伸 36
圖3- 5 執行DFT時先將相位值進行鏡射 36
圖3- 6 DFT鏡射的幾何示意圖 37
圖4- 1 PIV-400-15 Nd:YAG脈衝雷射之內部結構圖 46
圖4- 2 CCD擷取影像時序圖 47
圖4- 3 觸發式取像模式[28] 48
圖4- 4 非同步取像模式 49
圖4- 5 壓電變壓器之驅動架構 51
圖4- 6 接受觸發訊號後壓電變壓器的輸出與輸入電壓變化 53
圖4- 7 壓電變壓器輸出與輸入電壓變化 53
圖4- 8 負載100KΩ下,固定輸入峰值至峰值100V、200V之下壓電變壓器輸入功率對頻率圖 54
圖4- 9負載100KΩ下,固定輸入峰值至峰值100V、200V之下壓電變壓器輸出電壓(峰值至峰值)對頻率圖 55
圖4- 10 100V定電壓量測效率對頻率圖 55
圖4- 11 系統架構圖 56
圖4- 12 時序示意圖 57
圖4- 13 光場架構圖XZ平面 58
圖4- 14 光場架構圖YZ平面 58
圖5- 1 壓電變壓器 61
圖5- 2 資料處理 62
圖5- 3壓電變壓器在Z軸及Y軸的變形量 68
圖5- 4 壓電變壓器表面的應變量 71
圖5- 5 Rosen 型壓電變壓器第二模態之振形 72
圖5- 6 變形圖 72
圖5- 7 應變圖 72
圖5- 8 實驗結果200V和300V比較 73
圖5- 9 100KΩ負載下100V、200V、300V驅動電壓之振動速度與位移對頻率實驗結果 73
圖5- 10 電子斑點干涉術對微機電元件量測架構 76
表目錄
表3- 1 中位數濾波器相位值計算表 31
表4- 1 PIV-400-15 Nd:YAG脈衝雷射之特性參數 46
1.吳文中,高功率力電轉換系統之模擬與驗正,國立台灣大學應用力學 研究所博士論文,2003。
2.吳文中,高性能量測系統之高速訊號處理平台,國立台灣大學應用力學研究所碩士論文,1998。
3.D. Gabor, “Microscopy by reconstructed wavefronts,” Proceedings of the Royal Society of London, Ser. A, No. 197, pp.454-487, 1947.
4.D. Gabor, “A new microscopic principles,” Nature, Vol. 161, pp.777-778, May 1948.
5.A. J. Decker, “Holographic interferometry with an injection seeded Nd:YAG laser and two reference beams,” Appl. Opt., Vol. 29, No. 18. pp. 2696-2700, June 1990.
6.陳怡君,全域波傳量測系統之理論與實驗:以穩頻雙共振腔脈衝雷射為電子斑點干涉及全像記錄/重建光源之架構開發,國立台灣大學應用力學研究所碩士論文,2000。
7.黃元甫,即時動態全域量測系統之研究:全像與脈衝雷射之創新應用, 國立台灣大學應用力學研究所碩士論文,2001。
8.J. Liou, C.K. Lee, K.C. Wu, U.F. Huang, and I.L. Lee, “Two full-field wave propagation measurement techniques based on pulse laser holographic interferometry,” Proceeding of International Symposium on Experimental Mechanics, The First Asian Conference on Experimental Mechanics, Dec. 2002.
9.R. Jones and C. Wykes, Holographic and speckle interferometry, Cambridge Univ. Press, Cambridge, UK, 1989.
10.G. Pedrini, B. Pfister, and H. J. Tiziani, “Double pulse-electronic speckle interferometry,” Journal of modern Optics, Vol. 40, pp. 89-96, 1993.
11.G. Pedrini, and H. J. Tiziani, “Double pulse-electronic speckle interferometry for vibration analysis,” Appl. Opt., Vol. 33, pp. 7857-7863, 1994.
12.G. Pedrini, and H. J. Tiziani, “Digital Double Pulse-Holographic Interferometry using Fresnel and Image Plane Holograms,” Measurement, Vol. 15, pp. 251-260, 1995.
13.G. Pedrini, H. J. Tiziani, and Y. Zou, “Digital Double Pulse-TV-Holography,” Optics and Laser Engineering, Vol. 26, pp. 199-219, 1997.
14.D. Cernadas, C. Trillo, A. F. Doval, J. C. Lopez, B. V. Dorrio, J. L. Fernandez, and M. Perez-Amor, “Non-destructive testing with surface acoustic waves using double-pulse TV holography,” Measurement Science and Technology, Vol. 10, pp.438-444, 2002.
15.L. Frank, S.J. Pedrotti, and L. S. Pedrotti, Introduction to Optics, 2nd. ed. , Prentice Hall, NJ. U.S.A. 1993.
16.Y. Y. Cheng, and J. C. Wyant, “Phase-shifter calibration in phase-shifting interferometry,” App. Opt., Vol. 24, pp. 3049-3052, 1985.
17.P. Hariharan, B. F. Orbel, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation,” Appl. Opt., Vol. 26, pp. 2504-2507, 1987.
18.C. C. Kao, G. B. Yeh, S. S Lee, C. K. Lee, C. S Yang, K. C. Wu, “Phase-Shifting Algorithms for Electronic Speckle Pattern Interferometry,” Appl. Opt., Vol. 41, No. 1, pp. 46-54, Jan. 2002.
19.D. R. Schmitt, and R. W. Hunt, “Optimization of fringe pattern calculation with direct correlations in speckle interferometry,” Appl. Opt., Vol. 36, No. 34, pp. 8848-8857, Dec. 1997.
20.A. Capanni, L. Pezzati, D. Bertani, M. Cetica, and F. Francini, “Phase-shifting speckle interferometry: a noise reduction filter for phase unwrapping,” Opt. Eng., Vol. 36, No. 9, pp. 2466-2472, Sep. 1997.
21.D. W. Robinson, and G. T. Reid, Interferogram Analysis: Digital Fringe Pattern Measurement Techniques, IOP Publishing Ltd., Bristol, Great Britain, 1993.
22.D. Malacara, M. Servín, and Z. Malacara, Interferogram Analysis for Optical Testing, Marcel Dekker, Inc., New York, USA, 1998.
23.H. Takajo, and T. Takahashi, “Least-squares phase estimation from the phase difference,” J. Opt. Soc. Am. A, Vol. 5, No. 3, pp. 416-425, March 1988.
24.H. Takajo, and T. Takahashi, “Noniterative method for the exact solution for the normal equation in least-squares phase estimation from the phase difference,” J. Opt. Soc. Am. A, Vol. 5, No. 11, pp. 1818-1827, Nov. 1988.
25.D. C. Ghiglia, and L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” J. Opt. Soc. Am. A, Vol. 11, No. 1, pp. 107-117, Jan. 1994.
26.Quanta-Ray PRO-Series: Pulsed Nd:YAG Lasers User’s Manual, Spectra-Physics, California, USA, Jan. 1999.
27.PIV: Pulsed Nd:YAG Laser for Particle Image Velocemetry User’s Manual, Spectra-Physics, California, USA, Aug. 1997.
28.National Instrument, NI Developer Zone, http://zone.ni.com/devzone/conceptd.nsf/webmain/
29.NF Corporation Japan, Ltd., “High Speed Bipolar Amplifier HAS 4012/4014/4015/4051/4052 Operation Manual,” 6-3-20, Tsunashima-higashi, Kohoku-ku, Yokohama, 223-8508 Japan, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔