(3.230.76.48) 您好!臺灣時間:2021/04/12 16:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:施應慶
研究生(外文):Ying-Ching Shih
論文名稱:Four-ChannelCWDM光學次模組之設計模擬與實驗量測
論文名稱(外文):Design, Simulation and Experimental Measurements of Four-Channel CWDM Optical Subassembly Module
指導教授:吳恩柏
指導教授(外文):Enboa Wu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:113
中文關鍵詞:光學次模組分波多工主動對位被動對位最佳化
外文關鍵詞:OSACWDMWDMActive alignmentPassive alignmentDie on headeroptimization
相關次數:
  • 被引用被引用:2
  • 點閱點閱:368
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:65
  • 收藏至我的研究室書目清單書目收藏:0
摘要
光收發模組(Optical Transceiver)為光纖通訊中之光電轉換的重要元件,其必須符合高速、寬頻、整合性功能、高密度及低成本的需求。在區域網路的應用上,因為在成本上受限於昂貴的高頻電路設計,所以如何設計出一低成本、高穩定性與高製程良率的分波多工光收發模組將越來越受矚目。
本論文即針對高良率及低成本的訴求,以具有價格及熱穩定性優勢的薄膜濾波片(Thin Film Filter、TFF)作為分波多工(Wavelength Division Multiplexing、WDM)的基礎,搭配新穎的光路設計,分別設計出SC型光纖連接器之MSA XENPAK、X2及XPAK規範的光學次模組與LC型光纖連接器之MSA XFP規範的光學次模組。
在符合MSA XENPAK、X2及XPAK規範的光學次模組方面,新穎的光路設計,配合上Die-On-Header的雷射設計,使此分波多工式光學次模組具有一主動對位的補償機制,模擬與實驗的結果顯示,不管是在光纖橫向錯位或是薄膜濾波片角度的偏差上,此主動對位的補償機制都能大大提高其元件錯位的容忍度,也由於此特殊的結構設計搭配上玻璃對金屬的燒結技術(Glass-To-Metal Seals),將會使此模組猶如四個罐型封裝之雷射所組成,所以使得此光學次模組亦具有氣密性(Hermetic Sealing)的效果。受環境溫度變化之穩定性的模擬方面,結果也顯示當主結構之材質為工具鋼或是光學塑膠(Ultem)時,均有不錯的熱穩定性,尤以工具鋼為佳,此材質之光學次模組的光耦合效率幾乎不會受溫度的影響而有所折減。
在符合MSA XFP規範的光學次模組方面,改進先前的光路設計,以達小體積之效果,符合小型之光纖連接器的尺寸(Small Form Factor、SFF)需求,同時也提出另一主動對位的補償概念,提高元件錯位容忍度,減低組裝時所需之嚴苛精度的限制,模擬的結果也如同前一設計,都能有效的將元件之錯位容忍度予以提高,而達到光耦合效率最佳化的效果。
目錄
摘要..........................................................................................................................A-1
目錄..........................................................................................................................A-2
表目錄......................................................................................................................A-4
圖目錄......................................................................................................................A-5
第一章 緒論........................................................................................................1-1
1-1 研究動機.....................................................................................................1-1
1-2 研究目的與範疇.........................................................................................1-2
第二章 光乙太網路介紹及光收發模組封裝技術暨文獻回顧...........2-1
2-1 引言.............................................................................................................2-1
2-2 光乙太網路(10Gbps乙太網路).................................................................2-2
2-3 光收發模組.................................................................................................2-4
2-4 平行光收發模組.........................................................................................2-8
2-5 分波多工式光收發模組...........................................................................2-10
2-6 結語...........................................................................................................2-23
第三章 符合MSA XENPAK、XPAK、X2規範之CWDM光學次模
組設計....................................................................................................3-1
3-1 引言.............................................................................................................3-1
3-2 MSA XENPAK、XPAK、X2 光收發模組之規格剖析...........................3-2
3-3 符合MSA XENPAK、XPAK、X2規範的光學次模組之設計...............3-3
3-4 最佳化設計 -- 主動對位的方法(Active alignment method) ................3-26
3-5 光學實驗驗證...........................................................................................3-31
3-6 有限元素之結構穩定性分析...................................................................3-42
3-7 結語...........................................................................................................3-47
第四章 符合MSA XFP規範的CWDM光學次模組之光學設計與分
析.............................................................................................................4-1
4-1 引言.............................................................................................................4-1
4-2 MSA XFP 光收發器之規格剖析..............................................................4-2
4-3 符合MSA XFP規範的光學次模組之設計..............................................4-6
4-4 最佳化設計 -- Active alignment method.................................................4-20
4-5 結語...........................................................................................................4-24
第五章 結論與展望...........................................................................................5-1
5-1 結論.............................................................................................................5-1
5-2 未來展望.....................................................................................................5-3
參考文獻.................................................................................................................R-1
表目錄
表2-1 光二極體之材料與其相對應之工作波長範圍[4]......................................2-7
表3-1 TOSA之各頻道光路長................................................................................3-9
表3-2 ROSA之各頻道光路長................................................................................3-9
表3-3 TOSA與ROSA之最佳的光耦合效率......................................................3-14
表3-4 元件錯位容忍度分析.................................................................................3-22
表3-5 容忍度放大倍率.........................................................................................3-28
表3-6 實驗與模擬之光耦合效率比較圖.............................................................3-34
表3-7 tool steel、Ultem和Kovar之材料參數.....................................................3-43
表3-8 濾波片位置的角度偏移與雷射二極體之位置偏移之分析結果(85℃) .3-44
表3-9 光耦合效率的折減結果.............................................................................3-44
表3-10 濾波片位置的角度偏移與雷射二極體之位置偏移之分析結果(-40℃).3-44
表3-11 光耦合效率的折減結果.............................................................................3-45
表3-12 濾波片位置的角度偏移與雷射二極體之位置偏移之分析結果(85℃)..3-46
表3-13 濾波片位置的角度偏移與雷射二極體之位置偏移之分析結果(-40℃).3-46
表3-14 光耦合效率的折減結果.............................................................................3-46
表4-1 各頻道的光路長...........................................................................................4-8
表4-2 各標號之尺寸...............................................................................................4-9
表4-3 TOSA之光耦合效率..................................................................................4-14
表4-4 薄膜濾波片到光纖的距離.........................................................................4-19
表4-5 容忍度放大倍率........................................................................................4-23
圖目錄
圖2-1 IBM的光學次模組結構專利[3]....................................................................2-6
圖2-2 平行光收發模組[6]........................................................................................2-9
圖2-3 分波多工技術...............................................................................................2-10
圖2-4 布拉格光纖光柵示意圖...............................................................................2-11
圖2-5 陣列式波導光柵示意圖...............................................................................2-12
圖2-6 薄膜濾波片示意圖圖...................................................................................2-13
圖2-7 摻鉺光纖放大器示意圖...............................................................................2-14
圖2-8 摻鉺光纖放大器之放大被率與波長比較圖[8]..........................................2-15
圖2-9 分波多工模組[10]........................................................................................2-19
圖2-10 分波多工模組[11]......................................................................................2-19
圖2-11 解多工模組[12]..........................................................................................2-19
圖2-12 分波多工模組[13]......................................................................................2-20
圖2-13 美商Blaze所發表的CWDM光學次模組專利[18]................................2-21
圖2-14 美商安捷倫所發表的解多工光學次模組專利[20]................................2-22
圖2-15 分波多工模組[22]......................................................................................2-22
圖3-1 (a)(b) XENPAK模組之外觀與尺寸圖,(c)(d) XPAK模組之外觀與尺寸,
(e)(f) X2模組之外觀與尺寸圖......................................................................3-2
圖3-2 (a) TOSA的光路設計,(b)ROSA的光路設計..............................................3-6
圖3-3 channel 1 細部光路圖....................................................................................3-7
圖3-4 channel 2細部光路圖.....................................................................................3-7
圖3-5 channel 3細部光路圖......................................................................................3-8
圖3-6 channel 4細部光路圖......................................................................................3-8
圖3-7 具罐型封裝雷射之形狀的光路設計圖.........................................................3-9
圖3-8 Die-On-Header雷射......................................................................................3-10
圖3-9 Die-On-Header 光檢測器.............................................................................3-11
圖3-10 (a)主結構實體圖 (b)主結構剖面圖 (c)主結構尺寸圖............................3-12
圖3-11 雷射軸向位置之容忍度.............................................................................3-16
圖3-12 雷射橫向位移之容忍度.............................................................................3-17
圖3-13 雷射角度偏差之容忍度.............................................................................3-17
圖3-14 光纖軸向位移的容忍度.............................................................................3-18
圖3-15 光纖橫向位移的容忍度.............................................................................3-19
圖3-16光纖角度偏差的容忍度..............................................................................3-19
圖3-17 (TOSA)薄膜濾波片角度偏差之容忍度(a)channel 2(b)channel 3(c)channel 4
...................................................................................................................................3-22
圖3-18 光檢測器橫向位移之容忍度.....................................................................3-23
圖3-19 光纖橫向位移之容忍度.............................................................................3-24
圖3-20 (ROSA)薄膜濾波片角度偏差之容忍度(a)channel 2(b)channel 3(c)channel 4
...................................................................................................................................3-25
圖3-21 (a)雷射無橫向位移之光路圖 (b)雷射向上橫向位移50μm之光路圖....3-26
圖3-22 主動對位之方法示意圖.............................................................................3-27
圖3-23 光纖橫向位移的主動對位補償.................................................................3-29
圖3-24 光纖角度偏差之主動對位補償結果 (a)channel 2 (b)channel 3 (c)channel 4
...................................................................................................................................3-30
圖3-25 TOSA之實驗架構圖...................................................................................3-31
圖3-26光路簡化結構..............................................................................................3-32
圖3-27主結構實體圖..............................................................................................3-32
圖3-28 ROSA之實驗架構圖...................................................................................3-33
圖3-29 實驗照片(a)TOSA (b)ROSA......................................................................3-34
圖3-30 channel 1之模擬值與實驗值的比較 (雷射軸向位移之容忍度) ............3-36
圖3-31 channel 2之模擬值與實驗值的比較 (雷射軸向位移之容忍度) ............3-36
圖3-32 channel 3之模擬值與實驗值的比較 (雷射軸向位移之容忍度) ............3-37
圖3-33 channel 4之模擬值與實驗值的比較 (雷射軸向位移之容忍度) ............3-37
圖3-34 channel 1之光纖橫向主動對位補償..........................................................3-38
圖3-35 channel 2之光纖橫向主動對位補償..........................................................3-38
圖3-36 channel 3之光纖橫向主動對位補償..........................................................3-39
圖3-37 channel 4之光纖橫向主動對位補償..........................................................3-39
圖3-38 主結構之光纖橫向主動對位補償.............................................................3-40
圖3-39 channel 1之光檢測器橫向位移容忍度......................................................3-41
圖3-40 channel 4之光檢測器橫向位移容忍度......................................................3-41
圖3-41 ANSYS模型圖............................................................................................3-43
圖4-1 LC與MT-RJ之纖蕊間距示意圖....................................................................4-3
圖4-2 XFP 光收發模組之外觀圖與尺寸圖.............................................................4-4
圖4-3 光學次模組尺寸圖.........................................................................................4-5
圖4-4 光學次模組[1] ...............................................................................................4-7
圖4-5 符合MSA XFP規範之光路(TOSA) (a)下視圖(b)上視圖............................4-8
圖4-6 channel 1 細部光路圖....................................................................................4-9
圖4-7 channel 2 細部光路圖....................................................................................4-9
圖4-8 channel 3細部光路圖....................................................................................4-10
圖4-9 channel 4細部光路圖....................................................................................4-10
圖4-10 receptacle結構示意圖.................................................................................4-11
圖4-11 主結構示意圖.............................................................................................4-11
圖4-12 雷射基板示意圖.........................................................................................4-11
圖4-13 光學次模組組裝完成圖.............................................................................4-12
圖4-14 主動對位之45度反射鏡............................................................................4-12
圖4-15 尺寸相容性示意圖.....................................................................................4-13
圖4-16 OSA與ESA之連接示意圖........................................................................4-14
圖4-17 雷射基板之對位卡榫示意圖.....................................................................4-15
圖4-18 雷射橫向位移的錯位容忍度.....................................................................4-16
圖4-19 光纖橫向位移的錯位容忍度.....................................................................4-17
圖4-20 薄膜濾波片角度偏差的容忍度(channel 2) ..............................................4-17
圖4-21 薄膜濾波片角度偏差的容忍度(channel 3) ..............................................4-18
圖4-22 薄膜濾波片角度偏差的容忍度(channel 4) ..............................................4-18
圖4-23 光纖橫向位移之主動對位補償.................................................................4-20
圖4-24 薄膜濾波片角度偏差之主動對位 (channel 2) ........................................4-21
圖4-25 薄膜濾波片角度偏差之主動對位 (channel 3) ........................................4-21
圖4-26 薄膜濾波片角度偏差之主動對位 (channel 4) ........................................4-22
圖4-27 雷射橫向位移之主動對位.........................................................................4-23
參考文獻
[1]高誌廷, “10 Gb/s CWDM光學次模組之設計模擬與分析,” 國立台灣大學應用力學研究所碩士論文, 2002.
[2]Carrier Sense Multiple Access with Collision Detection (SMA/CD) Access Method and Physical Layer Specifications — Media Access Control (MAC) Parameters, Physical Layers, and Management Parameters for 10-Gb/s Operation, IEEE Draft Std. 802.3ae/D5.0, 2002.
[3]M. S. Cohen, D. P. Gaio, W. K. Hogan, P. D. Isaacs, P. E. McKnite, M. Swain and J. M. Trewhella, “Small Form Factor Optoelectronic Transceivers,” Oct. 16, 2001, U.S. Patent#6,302,596 B1.
[4]張維群, “光纖通訊,” 高立圖書有限公司, 2000.
[5]A. R. Mickelson, N. R. Basavanhally and Y. C. Lee, “Optoelectronic Packaging,” a Wiley-Interscience publication, 1997.
[6]L. Buckman, A. Yuen, K. Giboney, P. Rosenberg, J. Straznicky, K. Wu and D. Dolfi, “Parallel Optical Interconnects,” Hewlett-Packard Laboratories.
[7]G. Levesque and V. Oliver, “Guide to WDM Technology and Testing,” EXFO Electro-Optical Engineering Inc., Quebec City, Canada, 2000.
[8]G. Martin, “Chirped fiber Bragg gratings equalize gain,” WDM solutions, March 2001, p.p.77-82.
[9]M. Nebeling, “CWDM:Lower Cost for More Capacity in The Short Haul,” Fiber Network Engineering, Inc., July 3, 2002.
[10]M. A. Scobey, “Optical Multiplexing Device,” U.S. Patent#5,583,683.
[11]V. Jayaraman and F. H. Peters, “WDM Multiplexer-Demultiplexer Using Fabry-Perot Filter Array,” Nov. 10, 1998, U.S. Patent#5,835,517.
[12]G. S. Duck, Y. C. Si and N. Teitelbaum, “Optical Demultiplexer,” Sep. 15, 1998, U.S. Patent#5,808,763.
[13]K. D. Hendrix, “Multiple Channel Multiplexer/Demultiplexer Devices,” Dec. 28, 1999, U.S. Patent#6,008,920.
[14]B. Glance, “Method and Apparatus for Realizing an Optical Multiplexer/Demultiplexer,” Sep. 18, 2001, U.S. Patent#6,292,298 B1.
[15]L. B. Aronson, B. E. Lemoff, L. A. Buckman and D. W. Dolfi, “Low-Cost Multimode WDM for Local Area Networks up to 10 Gb/s,” IEEE Photonics Technology Letters, Vol.10, No.10, Oct.1998, pp.1489 —1491.
[16]E. B. Grann, “Low cost CWDM optical transceivers,” Electronic Components and Technology Conference, 2001. Proceedings, 51st, 2001, pp. 26 —29
[17]E. B. Grann and S. Ramon, “Optical Wavelength Division Multiplexer/Demultiplexer Having Preformed Passive Aligned Optics,” Mar. 13, 2001, U.S. Patent#6,201,908 B1.
[18]B. E. Lemoff, L. B. Aronson and J. A. Buckman, “Zigzag Waveguide Demultiplexer for Multimode WDM LAN,” Electronics Letters, Vol.34, No.10, May 14, 1998, pp.1014—1016.
[19]B. E. Lemoff, L. A. Buckman, A. J. Schmit and D. W. Dolfi, “A Compact, Low-Cost WDM Transceiver for the LAN,” Electronic Components and Technology Conference, 2000. Proceedings, 50st, 2000, pp.21 —24.
[20]B. E. Lemoff and L. B. Aronson, “Optical Wavelength Demutiplexer,” U.S. Mar. 6, 2001, Patent#6,198,864 B1.
[21]L. A. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella and W. Gong, “Demonstration of a Small-Form-Factor WWDM Transceiver Module for 10-Gb/s Local Area Networks,” IEEE Photonics Technology Letters, Vol.14, No.5, May 2002, pp.702 —704.
[22]Yutaka Okabe and Hironori Sasaki, “A Simple Wide Wavelength Division Multi/Demultiplexer Consisting of Optical Elements,” OFC 2002, pp.322 —323.
[23]XENPAK MSA, a cooperation agreement for 10Gbit/s Ethernet transceiver package, issue 3.0, September 18, 2002.
[24]X2 MSA, a cooperation agreement for small versatile 10Gbit/s transceiver package, issue 1.0, January 30, 2003.
[25]XPAK MSA, a cooperation agreement for small form factor pluggable 10Gbit/s transceiver package, revision 2.3, April 23, 2003.
[26]ZEMAX-EE optical design program, version 10.0, April 2001.
[27]Schott Electronic Packaging, “Glass-To-Metal Seals,” http://www.schott.com/german/.
[28]R. C. Hibbeler, “Mechanics of Materials,” Prentice Hall, Inc., 2000.
[29]R. R. Shannon, “Optimization of Waveguide Coupling Lenses with Optical Design Software,” Applied optics, Vol.35, No. 31, November, 1998.
[30]J. M. Trewhella, “Performance Comparison of Small Form Factor Fiber Optic Connectors,” Electronic Components and Technology Conference, 1999.
[31]C. Schwantes, “Small Form Factor : High Density for Fiber Based High Speed Networking,” Electronic Components and Technology Conference, 1999.
[32]M. Iwase, T. Nomura, A. Izawa, H. Mori, S. Tamura, T. Shirai and T. Kamiya, “Single Mode Fiber MT-RJ Transceiver Module using Optical Sub Assembly with a New Shielded Silicon Optical Bench,” Electronic Components and Technology Conference, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔