(3.227.208.0) 您好!臺灣時間:2021/04/20 14:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊中豪
研究生(外文):Zhong-Hao Yang
論文名稱:質子交換膜燃料電池中陰極半電池之準二維解析解
論文名稱(外文):A Quasi-Two Dimensional Analytic Solution for the Cathode Side Half-Cell Model of Proton Exchange Membrane Fuel Cells
指導教授:陳發林陳發林引用關係
指導教授(外文):Falin Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:78
中文關鍵詞:孔隙度氣體擴散層質子交換膜燃料電池
外文關鍵詞:prosityGDLPEM fuel cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:84
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對質子交換膜燃料電池陰極側的內部傳輸現象進行分析與研究。論文中假設操作條件為等溫、穩態,燃料的變化情形在流道部分僅隨沿著流道方向做改變,當進入氣體擴散層後的傳輸則僅考慮擴散效應所以分布只隨穿越薄膜方向而改變。最後解出一套可描述電池內部傳輸現象的解析解以供討論。而本文更利用此解析解,進而改變不同的操作條件參數來探討其對電池性能的影響性。
在本文中得知,氣體擴散層的孔隙度分布愈大,則可以傳輸至觸媒層的燃料增加,所以可提升電池性能。而氣體擴散層的厚度上則是愈薄愈好,因為過厚的電極裝置對使得燃料傳輸路徑變長,因而減少了可供觸媒層反應的燃料量,因此電池性能會降低。對於觸媒層的考慮上,太厚或太薄的觸媒含量對於電池性能都不好,因為厚度過厚會造成較大的歐姆阻抗產生,而太薄時又會使得反應速率變慢,無法有效提升性能,所以對於燃料電池中觸媒層的含量問題,應該經由嚴謹的討論設計,以便找出最佳化範圍可供相關人員參考。而質子交換膜應該盡量設計的愈薄愈好,因為其厚度增加,電池也會因為歐姆阻抗的增加造成性能下降的情形。最後由局部位置分析傳輸現象得知,氣體流道的設計往往也會影響到電池性能的好壞,例如在流道長度的最佳化設計上、流道類型的使用、或是檔板的應用情形等,都有待相關單位進一步的探討。由於本文中並不考慮水的效應對於電池的影響,所以所提供的結果僅在排除水的情形下才適用。
The principle concern of this study is about the oxygen transport situation in the cathode side of PEM fuel cells. A steady state and isothermal half-cell model is considered in the present study. It is assume that the oxygen concentration in the gas channel changes in the channel direction. While in the gas diffuser layer, the oxygen concentration varies across the membrane in the membrane direction. We successfully obtain an analytical solution that describe the phenomenon relate to oxygen transport and membrane phase potential. This solution can be used to analyze fuel cell performance with variable operating parameter.
It shows that increasing the porosity of gas diffuser layer allows more oxygen to diffuse across the catalyst layer and improves the cell performance. A thin gas diffuser layer thickness is better than a thick one, because too thick gas diffuser layer makes the transport route longer and resulting in less oxygen could participate in the catalyst and then reduce the cell performance. Considering catalyst layer thickness, catalyst layers that are either too thin or too thick do not give satisfactory results, because a thin layer would lead to lower reaction rate, while a thick layer would form higher Ohm resistance. Therefore, there exists an optimum thickness of catalyst layer. Considering the membrane thickness, it is found that a thick layer would increase cell resistance and eventually reduce the cell performance. Finally, base on the results at different locations it is discovered that oxygen distribution in the gas channel always influences the cell performance. Hence, the discussions and analysis of gas channel design for fuel cells are necessary.
Since the cell present study does not consider water effect, all result presented in this work were based on the situation without water.
中文摘要…………………………………………………………………I
英文摘要………………………………………………………………..III
表目錄…………………………………………………………………...V
圖目錄…………………………………………………………………...V
符號說明……………………………………………………………...VIII
第一章 序論……………………………………………………………..1
1.1 燃料電池的發展………………………………………………….1
1.2 燃料電池的本原理……………………………………………….2
1.3 燃料電池種類…………………………………………………….3
1.4 文獻回顧………………………………………………………….5
1.5 研究主題…...……………………………………………………10
第二章 理論分析………………………...…………………………….12
2.1 基本假設………………………………………………………...12
2.2 統御方程式……………………………………………………...13
2.2.1 氧氣傳輸現象…………………………………….………...13
2.2.2 薄膜相電位....…………………………………….………...15
2.2.3 電流密度………………………………………….………...17
2.2.4 電池電壓………………………………………….………...18
第三章 結果與討論……………………………………………………20
3.1 基本操作條件(base case)下之結果分析…………...………...20
3.1.1 濃度分布之結果….………………………………………...20
3.1.2 薄膜相電位分布之結果….………………………………...21
3.1.3 電流密度分布之結果….…………………………………...22
3.1.4 I-V、I-P性能曲線之分布…………………………………...23
3.2 氣體擴散層之分析……………………………………………...23
3.2.1氣體擴散層孔隙度對濃度影響之分析……………………..23
3.2.2氣體擴散層孔隙度對薄膜相電位影響之分析...…………...24
3.2.3氣體擴散層孔隙度對電池性能影響之分析……………......25
3.2.4氣體擴散層厚度對濃度影響之分析………………………..26
3.2.5氣體擴散層厚度對薄膜相電位影響之分析………………..26
3.2.6氣體擴散層厚度對電池性能影響之分析…………………..27
3.3陰極觸媒層之分析………………………………..……………...27
3.3.1陰極觸媒層厚度對濃度影響之分析………………………..27
3.3.2陰極觸媒層厚度對電池性能影響之分析…………………..28
3.4質子交換膜之分析……………………………..………………...29
3.5水平x方向之局部特性分析……………………………………..29
3.5.1不同x位置下的濃度分析………………….………………..29
3.5.2在x=0時的特性分析…………….……………………………..30
第四章 結論與建議……………………………………………………56
4.1 總結……………………………………………………………...56
4.2未來研究方向與建議……………….…………………………...57
參考文獻………………………………………………………………..58
Appendix....…………………………………………………………….61
1. J. Larminie, A. Dicks, “Fuel Cell Systems Explained,” John Wiley & Sons, Chichester, UK, 2000.
2. Costamagna, P., and Srinivasan, S., 2001,“ Quantum Jumps in the PEMFC Science and Technology from the 1960s to the Year 2000 Part I. Fundamental Scientific Aspects,” J. Power Sources, 102(1-2), pp. 242-252.
3. Costamagna, P., and Srinivasan, S., 2001,“ Quantum Jumps in the PEMFC Science and Technology from the 1960s to the Year 2000 Part II. Engineering, Technology Development and Application Aspects,” J. Power Sources, 102(1-2), pp. 253-269.
4. G.A. Eisman, 1990 “The Application of Dow Chemicals Perfluorinated Membranes in Proton-Exchange Membrane Fuel-Cells,” J. Power Sources 29, pp.389-398.
5. D.M. Bernardi, M.W. Verbrugge, 1992 “A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell,” J. Electrochem. Soc. 139 , pp.2477-2490.
6. T.E. Springer, T.A. Zawodzinski, S. Gottesfeld, 1991 “Polymer Electrolyte Fuel Cell Model,” J. Electrochem. Soc. 138 , 2334-2342.
7. T.V. Nguyen, R.E. White, “A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells,” 1993 J. Electrochem. Soc. 140, pp.2178-2186.
8. Xie, G., and Okada, T., 1995, “Water Transport Behavior in Nafion 117 Menbranes,” J. Electrochem. Soc., 142(9), pp. 3057-3062.
9. Xie, G., and Okada, T., 1996, “Pumping Effects in Water Movement Accompanying Cation Transport Across Nafion 117 Membranes,” Electrochimica Acta, 41(9), pp. 1569-1571.
10. Okada, T., Xie, G., and Meeg, M., 1998, “Simulation for Water Management in Membranes for Polymer Electrolyte Fuel Cells,” Electrochimica Acta, 43(14-15), pp. 2141-2155.
11. Okada, T., Xie, G., Gorseth, O., Kjelstrup, S., Nakamura, N., and Arimura, T., 1998, “Ion and Water Transport Characteristics of Nafion Membranes as Electrolytes,” Electrochimica Acta, 43, pp. 3741-3747.
12. Okada, T., 1999, “Theory for Water Management in Membranes for Polymer Electrolyte Fuel Cells-Part 1. The Effect of Impurity Ions at the Anode Side on the Membrane Performances,” J. Electroanal. Chem., 465, pp. 1-17.
13. Okada, T., 1999, “Theory for Water Management in Membranes for Polymer Electrolyte Fuel Cells-Part 2. The Effect of Impurity Ions at the Cathode Side on the Membrane Performances,” J. Electroanal. Chem., 465, pp. 18-29.
14. Gurau, V., Barbir, F., and Liu, H., 2000,“ An analytical Solution of a Half-Cell Model for PEM Fuel Cells,” J. Electrochem. Soc., 147(7), pp. 2468-2477.
15. Hsin-Sen Chu, Chung Yeh and Falin Chen, 2003 “Effects of porosity change of gas diffuser on performance of proton exchange membrane fuel cell,” Journal of Power Sources 123(1), pp.1-9
16. Paganin, V. A., Ticianelli, E. A. and Gonzalez, E. R., 1996, “Development and Electrochemical Studies of Gas Diffusion Electrodes for Polymer Electrolyte Fuel Cells,” J. Appl. Electrochem., 26, pp. 297-304.
17. Jordan, L.R., Shukla, A. K., Behrsing, T., Avery, N. R., Muddle, B. C. and Forsyth, M., 2000, “ Diffusion Layer Parameters Influencing Optimal Fuel Cell Performance,” J. Power Source, 86(1-2), pp. 250-254..
18. Eikerling, M., Kharkats, Y. I., Kornyshev, A. A. and Volfkovich, Y. M., 1998,“Phenomenological Theory of Electro-osmotic Effect and Water Management in Polymer Electrolyte Proton-Conducting Membranes,” J. Electrochem. Soc., 145(8), pp. 2684-2699.
19. Divisek, J., Eikerling, M., Mazin, V., Schmitz, H., Stimming, U. and Volfkovich, Y. M., 1998, “A Study of Capillary Porous Structure and Sorption Properties of Nafion Proton-Exchange Membranes Swollen in Water,” J. Electrochem. Soc., 145(8), pp. 2677-2683.
20. Kong, C. S., Kim, D. Y., Lee, H. K., Shul, Y. G. and Lee, T. H., 2002, “Influence of Pore-Size Distribution of Diffusion Layer on Mass-Transport Problems of Proton Exchange Membrane Fuel Cells,” J. Power Sources, 108, pp. 185-191.
21. Yi, J. S., and Nguyen, T. V., 1998, “An along-the-channel model for proton exchange membrane fuel cells,” J. Electrochem. Soc., 145(4), pp. 1149-1159.
22. Yi, J. S., and Nguyen, T. V., 1999, “Multi-component transport in porous electrodes of proton exchange membrane fuel ce- lls using the interdigitated gas distributors,” J. Electrochem. Soc.,146(1), pp. 38-45.
23. H. Dohle, A.A. Kornyshev, A.A. Kulikovsky *,1, J. Mergel, D. Stolten,2001”The current voltage plot of PEM fuel cell with long feed channels” Electrochemistry Communications No.3, pp.73-80
24. Gurau, V., Liu, H., and Kakac, S., 1998, “Two-Dimensional Model for Proton Exchange Membrane Fuel Cells,” AIChE Journal, Vol. 44, No. 11, pp. 2410-2422.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔