(3.238.250.105) 您好!臺灣時間:2021/04/20 05:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何俊明
研究生(外文):Chun-Ming Ho
論文名稱:利用自營性薄膜生物反應槽進行除氮之研究
論文名稱(外文):Nitrogen removal via a novel autotrophic membrane bioreactor
指導教授:曾四恭曾四恭引用關係
指導教授(外文):Szu-Kung Tseng
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:131
中文關鍵詞:氨氮硝酸鹽自營性薄膜生物反應槽氫氣
外文關鍵詞:ammonianitrateautotrophicmembrane bioreactorhydrogen
相關次數:
  • 被引用被引用:6
  • 點閱點閱:364
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:108
  • 收藏至我的研究室書目清單書目收藏:0
近來,由於人為污染日益嚴重,造成水源中之氨氮及硝酸鹽有逐漸增加之趨勢,過高之氨氮及硝酸鹽除會增加淨水處理之困擾外,亦會對人體健康造成不良影響。因此,如何將過多之氨氮及硝酸鹽加以去除,以確保用水之品質,已成為一重要之課題。傳統生物除氮多採用異營性生物脫硝之方式進行,需外加有機碳源,因而有殘留碳源之問題。本研究結合「薄膜生物反應槽」及「自營性生物脫硝」之概念,開發一「自營性薄膜生物反應槽」以去除氨氮及硝酸鹽。
研究結果顯示,利用開放式矽膠管作為「氫氣自營性生物脫硝反應槽」之供氣系統時,其氫氣利用率雖然仍低,然而氫氣係於矽膠管中流動,除可增加其安全性外,亦可增加其回收再利用之可行性。而利用封閉式矽膠管作為供氣系統時,其氫氣利用率則很高。因此,利用透氣性良好之矽膠管作為「氫氣自營生物脫硝反應槽」之供氣系統確實可行並深具應用之潛力。另於矽膠管中同時通入適量二氧化碳及氫氣作為氫氣自營脫硝菌Alcaligenes eutrophus所需碳源及能源之「薄膜式基質添加生物反應槽」具有良好之脫硝能力,二氧化碳除可作為碳源外,亦可有效中和脫硝過程產生之鹼度,避免反應槽之pH值上升,影響其脫硝速率。最後,本研究亦利用Polyvinyl Alcohol(PVA)-褐藻膠共聚包埋法,將自營性硝化及脫硝菌固定於矽膠管表面,開發一可同時硝化、脫硝之「自營性薄膜生物反應槽」以去除氨氮。且利用分子生物技術(Cloning-DGGE)分析反應槽中生物膜之菌相顯示,經過長時間之馴養及操作後,生物膜之菌相較為單純且會有分層之情形產生,外層生物膜之微生物以Nitrospira 等硝化菌屬為主,而內層生物膜則以Thauera及Xanthomonas等脫硝菌屬為主。
Widespread ammonia and nitrate pollution is a serious concern because of causing the problem of drinking water treatment, the link between nitrate and the blue-baby syndrome, and also the possible formation of carcinogenic compounds in the digestive tract. For the sake of public health, a special treatment process is required to remove ammonia and nitrate. Biological denitrification of wastewater with heterotrophic microorganisms has been a widely applied treatment because of its high efficiency and low cost. However, residual carbon from this process causes many problems in drinking-water treatment. These problems make autotrophic denitrification by hydrogen oxidizing bacteria a good alternative.
This study presents a novel autotrophic membrane bioreactor combining the concepts of hydrogenotrophic denitrification and membrane bioreactor to remove ammonia and nitrate. Results in this study have demonstrated that a gas-permeable silicone tube is an efficient and convenient method for supplying hydrogen in a hydrogenotrophic denitrification bioreactor. Besides bubbleless hydrogen diffusion, the silicone tube also provides a high specific surface for biofilm attachment, in which the transfer and uptake of hydrogen to the bacteria highly efficient. Both the open-ended and dead-ended configurations are applicable to practical situations. This study also demonstrated that a gas-permeable silicone tube is a convenient and efficient method to feed Alcaligenes eutrophus for autotrophic denitrification. Supplying a suitable amount of carbon dioxide into the silicone tube together with hydrogen prevented alkalinity formation during denitrification, because the carbon dioxide that diffused from the lumen side of the silicone tube acted as an inorganic acidity to neutralize the alkalinity. The pH of the bioreactor was maintained at about 7 to avoid the nitrite accumulation, and then the nitrogen removal rate was increased. By using PVA crosslinked with sodium nitrate to entrap nitrifying and denitrifying sludge on the surface of a silicone tube, a novel bioreactor for simultaneous nitrification and denitrification was developed. In addition to performing as an immobilizing agent to strengthen the biofilm, PVA protected the denitrifying microorganisms to reduce the inhibition by dissolved oxygen under aerobic condition. Therefore, nitrification and denitrification occurred simultaneously within the biofilm. Furthermore, the immobilization technique shortened the acclimation period of the bioreactor. Finally, a molecular technology (Cloning-DGGE) was used to investigate the microbial community of the biofilm. After a long period of operation, Thauera and Xanthomonas-like were the dominant species of the inner biofilm, whereas Nitrospira was the dominant of the outer biofilm.
目錄
第一章 緒論
1-1研究緣起……………………………………………………………1-1
1-2研究流程……………………………………………………………1-3
第二章 文獻回顧
2-1氨氮及硝酸鹽之來源及其影響……………………………………2-1
2-2生物除氮之原理……………………………………………………2-2
2-2-1硝化作用之原理……………………………………………2-3
2-2-2影響硝化作用之因素………………………………………2-3
2-2-3脫硝作用之原理……………………………………………2-5
2-2-4影響脫硝作用之因素………………………………………2-6
2-2-5 自營脫硝……………………………………………………2-8
2-3薄膜生物反應槽之種類……………………………………………2-11
2-4生物包埋劑之應用…………………………………………………2-15
2-5分子生物技術於微生物分類之應用………………………………2-16
2-5-1 DNA之萃取…………………………………………………2-20
2-5-2聚合酶連鎖反應……………………………………………2-20
2-5-3基因選殖……………………………………………………2-23
2-5-4變性梯度明膠電泳法………………………………………2-25
2-5-5定序…………………………………………………………2-26
2-5-6資料庫之比對………………………………………………2-27
2-5-7 親緣樹之建立………………………………………………2-28
2-6分子生物技術於生物反應槽菌群結構分析之應用………………2-29
第三章 利用矽膠管作為「氫氣自營性生物脫硝反應槽」之供氣系統
3-1前言……………………………………………………………………3-1
3-2材料與方法……………………………………………………………3-4
3-2-1反應槽之配置…………………………………………………3-4
3-2-2人工合成廢水…………………………………………………3-6
3-2-4分析方法………………………………………………………3-7
3-3結果與討論……………………………………………………………3-7
3-3-1氫氣擴散試驗…………………………………………………3-7
3-3-2氫氣自營脫硝菌之馴養與生物膜之生成……………………3-10
3-3-3批次試驗之結果………………………………………………3-12
3-3-4連續試驗之結果………………………………………………3-13
3-4結論與建議…………………………………………………………3-16
第四章 薄膜式基質添加之氫氣自營性生物脫硝反應槽
4-1前言…………………………………………………………………4-1
4-2材料與方法…………………………………………………………4-3
4-2-1反應槽之配置………………………………………………4-3
4-2-2反應槽之操作………………………………………………4-4
4-2-3數學模式之模擬……………………………………………4-5
4-3結果與討論…………………………………………………………4-12
4-3-1反應槽二氧化碳之擴散試驗………………………………4-13
4-3-2馴養與生物膜之生成………………………………………4-14
4-3-3不同碳源添加方式對脫硝之影響…………………………4-16
4-3-4矽膠管中不同二氧化碳濃度對反應槽脫硝效率之影響…4-17
4-3-5不同硝酸鹽負荷對反應槽脫硝速率之影響………………4-19
4-3-6矽膠管長度對硝酸鹽去除率之影響………………………4-20
4-3-7模式模擬之結果……………………………………………4-21
4-4結論與建議…………………………………………………………4-29
第五章 同時硝化脫硝之自營性薄膜生物反應槽
5-1前言…………………………………………………………………5-1
5-2材料與方法…………………………………………………………5-6
5-2-1反應槽之配置………………………………………………5-6
5-2-2人工合成廢水………………………………………………5-7
5-2-3反應槽之操作………………………………………………5-7
5-3結果與討論…………………………………………………………5-15
5-3-1反應槽硝化、脫硝能力之評估……………………………5-15
5-3-2反應槽硝化、脫硝速率之比較……………………………5-18
5-3-3溶氧對反應槽硝化、脫硝作用之影響……………………5-18
5-3-4溶氧對總氮去除量之影響…………………………………5-21
5-5-5不同碳源添加方式對反應槽硝化、脫硝能力之影響……5-22
5-5-6不同鹼度添加量對反應槽之影響…………………………5-25
5-5-7磷酸鹽對反應槽之影響……………………………………5-26
5-5-8氨氮負荷對反應槽之影響…………………………………5-27
5-5-9不同水力停留時間對反應槽之影響………………………5-28
5-5-10反應槽菌相分析結果………………………………………5-29
5-4結論與建議…………………………………………………………5-35
第六章 結論與建議
6-1結論……………………………………………………………………6-1
6-2 建議……………………………………………………………………6-2
附錄一、水質檢測方法……………………………………………………a-1
附錄二、DNA之萃取………………………………………………………a-3
附錄三、聚合酶連鎖反應…………………………………………………a-6
附錄四、DNA之純化…………………………………………………………a-7
附錄五、基因選殖……………………………………………………………a-9
附錄六、變性梯度明膠電泳……………………………………………a-11
Altmann, D. Stief, P. Amann, R. de Beer, D. and Schramm, A. (2003) In situ distribution and activity of nitrifying bacteria in freshwater sediment Environmental Microbiology 5 (9): 798-803
APHA, AWWA, and WEF, (1995) Standard Methods for the Examination of Water and Wastewater, 19th edn. Washington, D. C.: American Public Health Association.
Bertanza, G. (1997) Simultaneous nitrification-denitrification process in extended aeration plants: pilot and real scale experience, Water Science and Technology. 35, 53-61.
Biesterfeld, S. Figueroa, L. Hernandez, M. and Russell, P. (2001) Quantification of nitrifying bacterial populations in a full-scale nitrifying trickling filter using fluorescent in situ hybridization. Water environment research, 73,329-338.
Brenda D. Spangler (2002) Methods in molecular biology and protein chemistry, Montana State University, USA
Brindle, K. and Stepheson, T. (1996) Nitrification in a Bubbleless Oxygen Mass Transfer Membrane Bioreactor, Water Science and Technology. 34, 261-267.
Brindle, K. and Stepheson, T. (1996). Mini-Review: The application of membrane biological reactors for the treatment of wastewater. Biotechnology and Bioengineering, 49, 601-610.
Brindle, K. Stephensen, T. and Semen, M. J. (1998). Nitrification and oxygen utilization in a membrane aeration bioreactor. Journal of membrane science, 144, 197-209.
Briones, A.M. Okabe, S. Umemiya, Y. Ramsing, N.B. Reichardt, W. and Okuyama, H.(2003) Ammonia-oxidizing bacteria on root biofilms and their possible contribution to N use efficiency of different rice cultivars Plant and Soil 250 (2): 335-348
Cantafio, A.W. Hagen K.D. Lewis, G.E. Bledsoe, T.L. Nunan, K.M. and Macy, J.M. (1996) Pilot-scale selenium bioremediation of San Joaquin drainage water with Thauera selenatis Applied and Environmental Microbiology. 62 (9): 3298-3303
Chang, C.C. Tseng, S.K. and Huang, S.K. (1999). Hydrogenotrophic denitrification with immobilized Alcaligenes eutrophus for drinking water treatment. Bioresource Technology, 69, 53-58.
Chang, Y.J. and Tseng, S.K. (1998) A new method for carbon addition in an anoxic denitrification bioreactor. Biotechnology Techniques, 12, 367-371.
Chang, Y.J. and Tseng, S.K.(1999) A novel double-membrane system for simultaneous nitrification and denitrification in a single tank. Letters in Applied Microbiology. 28, 453-456.
Chen, G.H. Wong, M.T. Okabe, S. Watanabe, Y. (2003) Dynamic response of nitrifying activated sludge batch culture to increased chloride concentration Water Research 37 (13): 3125-3135
Chen, K.C. and Lin, Y.F. (1994) Immobilization of microorganisms with phosporylated polyvinyl alcohol (PVA) gel. Enzyme Microbial Technology. 16, 79-83.
Chen, K.C., Chen, S.J. and Houng, J.Y. (1996) Improvement of gas permeability of denitrifying PVA gel beads. Enzyme Microbial Technology. 18, 502-506.
Chen, W.C. and Cheng, S.S. (1996) Characterization of immobilized cells in biodegradation of ABS resin manufacturing wastewater, Water Science and Technology. 34, 51-58.
Cheneby, D. Philippot, L. Hartmann, A. Henault, C. Germon, J.C. (2000) 16S rDNA analysis for characterization of denitrifying bacteria isolated from three agricultural soils Ferms Microbiology ecology 34 (2): 121-128
Chui, P.C., Terashima, Y., Tay, J.H. (1999) Nitrogen removal in a submerged Filter with no effluent recirculation, IAWQ Conference.
Clapp, L.W., Regan, J. M., Ali, F., Newman, J. D., Park, J. K. and Noguera, D.R. (1999) Activity, structure, and stratification of membrane-attached methanotrophic biofilms cometabolically degradation trichloroethylene., Water Science and Technology. 39(7),153-161.
Claus, G. and Kutzner, H.J. (1985). Autotrophic denitrification by Thiobacillus denitrificans in a packed bed reactor, Applied microbiology and biotechnology., 22, 289-296.
Cote, P. Bersillon, J. Huyard, A. and Faup, G. (1988). Bubble-free aeration using membranes: process analysis. J. WPCF, 60, 1986-1992.
Debus, O. (1995). Transport and reaction of aromatics, O2 and CO2 within a membrane bound Biofilm in competition with suspended biomass. Waer. Science and Technology., 31, 129-141.
Debus, O. and Wanner, O. (1992). Degradation of xylene by a biofilm growing on a gas-permeable membrane. Water Science and Technology., 26(3-4), 607-616.
Dries, D. Liessens, J. Verstraete, W. Stevens, P. de Vos, P. and de Ley, J. (1988). Nitrate removal from drinking water by means of hydrogenotrophic denitrifiers in a polyurethane carrier reactor, Water Supply, 6,181-192.
Drolc A. Koncan J.Z. and Cotman M. (2001) Evaluation of total nitrogen pollution reduction strategies in a river basin: a case study, Water Science and Technology, 44 (6): 55-62
Etchebehere, C. Errazquin, I. Barrandeguy, E. Dabert, P. Moletta, R. and Muxi, L. (2001) Evaluation of the denitrifying microbiota of anoxic reactors Fems Microbiology Ecology 35 (3): 259-265
Etchebehere, C. Errazquin M.I. Dabert, P. Moletta, R. and Muxi, L. (2001) Comamonas nitrativorans sp nov., a novel denitrifier isolated from a denitrifying reactor treating landfill leachate International Journal of Systematic and Evolutionary Microbiology 51: 977-983
Fang, H.H.P, Zhang, T. and Liu, Y. (2002) Characterization of an acetate-degrading sludge without intracellular accumulation of polyphosphate and glycogen Water Research 36 (13): 3211-3218
Finkmann, W. Altendorf, K. Stackebrandt, E. Lipski, A (2000)Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp nov., Luteimonas mephitis gen. nov., sp nov and Pseudoxanthomonas broegbernensis gen. International Journal of Systematic and Evolutionary Microbiology 50: 273-282
Foss, S. and Harder, J. (1998) Thauera linaloolentis sp. nov. and Thauera terpenica sp. nov., isolated on oxygen-containing monoterpenes (linalool, menthol, and eucalyptol) and nitrate Systematic and Applied Microbiology 21 (3): 365-373
Fouratt, M.A. Rhodes, J.S. Smithers, C.M. Love, N.G. Stevens AM (2003) Application of temperature gradient gel electrophoresis to the characterization of a nitrifying bioaugmentation product Fems Microbiology Ecology 43 (2): 277-286
Gayle, B.P. Boardman, G.D. Sherrard, J.H. and Benoit, R. E. (1989). Biological denitrification of water, Journal of Environmental Engineering. ASCE, 115, 930-943.
Germonpre, R., Liessens, J., Verstraete, W. and Beernaert, S. (1992). Methylotrophic and hydrogenotrophic denitrification at the Blankart Plant, Water Supply, 10,53-64.
Gieseke, A. Bjerrum, L. Wagner, M. and Amann, R. (2003) Structure and activity of multiple nitrifying bacterial populations co-existing in a biofilm Environmental Microbiology (5): 355-369
Ginocchio, J. (1984). Nitrate levels in drinking water are becoming too high, Water Treatment, 88, 143-147.
Gros, H. Schnoor, G. and Rutten, P. (1986). Nitrate removal from groundwater by autotrophic microorganisms, Water Supply, 4, 11-21.
Gros, H., Schnoor, G. and Rutten, P. (1988). Biological denitrification process with Hydrogen-Oxidizing bacteria for drinking water treatment, Water Supply, 6, 193-198.
Haggblom, M.M. Young, L.Y. (1999) Anaerobic degradation of 3-halobenzoates by a denitrifying bacterium Archives of Microbiology 171 (4): 230-236
Han, D.W. Chang, J.S. and Kim, D.J. (2003) Nitrifying microbial community analysis of nitrite accumulating biofilm reactor by fluorescence in situ hybridization Water science and technology 47 (1): 97-104
Harder, J. (1997) Anaerobic degradation of cyclohexane-1,2-diol by a new Azoarcus species Archives of Microbiology 168 (3): 199-204
Hu, T.L. and Kung, K.T. (2000) Study of heterotrophic nitrifying bacteria from wastewater treatment systems treating acrylonitrile, butadiene and styrene resin wastewater Water science and Technology 42 (3-4): 315-321
Juretschko, S. Timmermann, G. Schmid, M. Schleifer, K.-H. Pommerening-Roser, A. Koops, H.-P. and Wagner, M. (1998) Combined molecular and conventional analysiss of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobiles and nitrospira-like bacteria as dominant populations. Applied and Environmental Microbiology., 64, 3042
Kalmbach, S. Manz, W. and Szewzyk, U. (1997) Isolation of new bacterial species from drinking water biofilms and proof of their in situ dominance with highly specific 16S rRNA probes Applied and Environmental Microbiology. 63 (11): 4164-4170
Kikuchi, T. Saito, T. and Tanaka K. (1999) Study on simutaneous nitrification and denitrification using immobilized pellets, 1999 IAWQ Conference.
Klatt, C.G. LaPara, T.M. (2003) Aerobic biological treatment of synthetic municipal wastewater in membrane-coupled bioreactors Biotechnology and Bioengineering. 82 (3): 313-320
Knowles, G., Downing, A. L. and Barrett, M.T. (1965) Determination of Kinetics Constants for nitrifying bacteria in mixed culture with the aid of electronic computer, The Journal of general microbiology, 38, 263-278.
Knowles, R. (1982). Denitrification, Micr obiological Reviews, 46,43-70.
Kurt, M. Dunn, I.J. and Bourne, J.R. (1987). Biological denitrification of drinking water using autotrophic organisms with H2 in a fluidized-bed biofilm reactor, Biotechnology and Bioengineering., 29, 493-501.
Lazarova, V. Bellahcen, D. Manem, J. Stahl D.A. and Rittman, B. (1999) Influence of operating conditions on population dynamics in nitrifying biofilm, Water Science and Technology., 39, 7, 5.
Lee, Y.K. Kim, H.W. Liu C.L. and Lee, H.K. (2003) A simple method for DNA extraction from marine bacteria that produce extracellular materials Journal of Microbiology Methods. 52 (2): 245-250
Lee, K-C and Rittmann B.E. (2000) A novel hollow-fibre membrane biofilm reactor for autohydrogenotrophic denitrification of drinking water. Water Science and Technology .41(4-5), 219-226.
Lewandowski, Z., Bakke, R. and Characklis, W. G. (1987) Nitrification and autotrophic denitrification in Calcium alginate beads, Water Science and. Technology. 19, 175-182.
Lin, Y. F. and Chen, K. C. (1993) Denitrification by immobilized sludge with polyvinyl alcohol gels. Water Science and Technology. 28, 159-164.
Livingston, A.G. (1993a). A novel membrane bioreactor for detoxifying industrial wastewater (I): Biodegradation of phenol in a synthetically concocted wastewater. Biotechnology and Bioengineering., 41, 915-926.
Livingston, A.G. (1993b). A novel membrane bioreactor for detoxifying industrial wastewater (II): Biodegradation of 3-Chloronitrobenzene in a industrially produced wastewater. Biotechnology and Bioengineering., 41, 927-936.
Lozinsky, V.I. Zubov, A. L. and Titova, E. F. (1997) Poly (vinyl alcohol) cryogels employed as matrices for cell immobilization. 2. Entrapped cells resemble porous fillers in their effects on the properties of PVA-cryogel carrier. Enzyme and Microbial Technology. 20, 182-190.
Manz, W., Wendt-Potthoff, K.; Neu,T.R.; Szewzyk, U., and Laurence, J.R.(1999) Phylogenetics composition , spatial structure, and dynamics of lotic bacterial biofilms investigated by fluorescence in situ hybridization and confocal laser scanning microscopy, Microbiology and Ecology., 62, 2156.
Mateju, V. Cizinska, S. krejci, J. and Janoch, T. (1992). Biological water Denitrification - a Review, Enzyme and Microbial Technology., 14, 170-183.
McCleaf, P.R. and Schroeder, E.D. (1995). Denitrification using a membrane-immobilized biofilm. J. Am. Water Works Assn. 87, 77-86.
Meiklejohn, J. (1940). Aerobic Denitrification, Annals of applied biology, 558-573
Mergaert, J. Boley, A. Cnockaert, M.C. Muller, W.R. and Swings, J. (2001) Identity and potential functions of heterotrophic bacterial isolates from a continuous-upflow fixed-bed reactor for denitrification of drinking water with bacterial polyester as source of carbon and electron donor Systematic and applied Microbiology. 24 (2): 303-310
Merzouki, M. Delgenes, J.P. Bernet, N. Moletta, R. Benlemlih, M. Polyphosphate-accumulating and denitrifying bacteria isolated from anaerobic-anoxic and anaerobic-aerobic sequencing batch reactors Current Microbiology 38 (1): 9-17 JAN 1999
Metcalf and Eddy (2003) Wastewater Engineering, 4th edition, Mc Graw Hill
Mivish, S. S., (1985) Science 315, 461-462.
Nishimura, F. (1999) Treatment characters of a reactor with both sludge separation filter and airlift pump nitrogen removal, 1999 IAWQ Conference.
Okabe, S. Satoh, H. and Watanabe, Y. (1999) In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Applied and environmental microbiology., 65, 3182.
Ortega, N. Busto, M.D. and Perez-Mateos, M. (1998) Optimization of beta -glucosidase entrapment in alginate and polyacrylamide gels. Bioresource Technology. 64, 105-111.
Prakasam, and Loether, R. C. (1972) Microbial nitrification and denitrification in concentrated waste, Water Research. 6, 859-869.
Raskin, L. Stromley, J.M. Rittmann, B.E. and Stahl, D.A. (1994) Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens, Applied and environmental microbiology., 60, 1232.
Rittmann, B.E. and McCarty P.L. (2001) Environmental Biotechnology: Principles and Applications, International edition, Mc Graw Hill.
Rivera, ING. Lipp, E.K. Gil, A. Choopun, N. Huq, A. and Colwell, R.R. (2003) Method of DNA extraction and application of multiplex polymerase chain reaction to detect toxigenic Vibrio cholerae O1 and O139 from aquatic ecosystems Environmental Microbiology. 5 (7): 599-606
Rott, U. and Lamberth, B. (1992). Subterranean Denitrification for the Treatment of Drinking Water, Water Supply, 10,111-120.
Rutten, P. and Schnoor, G. (1992) Five year’s experience of nitrate removal from drinking water. Water Supply 10(3), 183-190.
Satoh H, Okabe S, Yamaguchi Y, Watanabe Y (2003) Evaluation of the impact of bioaugmentation and biostimulation by in situ hybridization and microelectrode Water Rearch 37 (9): 2206-2216
Schlotelburg, C. von Wintzingerode, F. Hauck, R. Hegemann, W. and Gobel, U.B. (2000) Bacteria of an anaerobic 1,2-dichloropropane-dechlorinating mixed culture are phylogenetically related to those of other anaerobic dechlorinating consortia International Journal of Systematic and Evolutionary Microbiology 50: 1505-1511
Schoberl, R. F. and Ahlert, R. C. (1975) Kinetics response of pure bed marine nitrification system, J. WPCF. 47(3), 472.
Scholten, E. Lukow, T. Auling, G. Kroppenstedt, R.M. Rainey, F.A. and Diekmann, H. (1999) Thauera mechernichensis sp nov., an aerobic denitrifier from a leachate treatment plant International Journal of Systematic and Evolutionary Microbiology 49: 1045-1051
Schramm, A. (2003) In situ analysis of structure and activity of the nitrifying community in biofilms, aggregates, and sediments Geomicrobiology Journal 20 (4): 313-333
Schramm, A. Debeer, D. Wagner, M. and Amann, R. (1998) Indentification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. Applied and environmental microbiology., 64, 3840.
Schramm, A.; debeer, K.; and Amann, R. (1999) Microscale distribution of populations and activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor: Quantification by in situ hybridization and the use of microsensors. Applied and environmental microbiology., 65, 3690.
Song, B, Kerkhof, L.J. and Haggblom, M.M. (2002) Characterization of bacterial consortia capable of degrading 4-chlorobenzoate and 4-bromobenzoate under denitrifying conditions Fems Microbiology Letters 213 (2): 183-188
Song, B, Young, L.Y. and Palleroni, N.J. (1998) Identification of denitrifier strain T1 as Thauera aromatica and proposal for emendation of the genus Thauera definition International Journal of Systematic Bacteriology 48: 889-894
Song, B.K. Ward, BB (2003) Nitrite reductase genes in halobenzoate degrading denitrifying bacteria Fems Microbiology Ecology 43 (3): 349-357
Stenstorm, M. K. and Podusaka, P. A. (1979) The effect of dissolved oxygen on nitrification, Water Research. 14, 643-649.
Su J.J. Kafkewitz, D. (1996) Toluene and xylene degradation by a denitrifying strain of Xanthomonas maltophilia with limited or no oxygen.Chemosphere 32 (9): 1843-1850
Tam, N. F. Y., Wong, Y. S. and Leung, G. (1992). Effect of exogenous carbon sources on removal of inorganic nutrient by the nitrification-denitrification process. Water. Research., 26, 1229-1236.
Tanaka, J. Syutsubo, K. Watanabe, K. Izumida, H. and Harayama, S. (2003) Activity and population structure of nitrifying bacteria in an activated-sludge reactor containing polymer beads Environmental Microbiology 5 (4): 278-286
Uemoto H., and Saiki, H. (2000) Distribution of Nitrosomonas europaea and Paracoccus denitrificans immobilized in tubular polymeric gel for nitrogen removal. Applied and Environmental microbiology, 66(2), 816-819.
White, G.F. and Thomas, R.T. (1990) Immobization of the surfactant-degrading bacterium Pseudomonas C12B n polyacrylamide gel beads: I. Effect of immobilization on the primary and ultimate biodegradation of SDS, and redistribution of bacteria within beads during use. Enzyme and Microbial Technology. 12, 697-705.
Wilkes, H. Rabus, R. Fischer, T. Armstroff, A. Behrends, A. Widdel, F. (2002) Anaerobic degradation of n-hexane in a denitrifying bacterium: Further degradation of the initial intermediate (1-methylpentyl) succinate via C-skeleton rearrangement Archives of Microbiology 177 (3): 235-243
Wu, K. A. and Wisecarver, K. D. (1990) Biological Phenol degradation in a countercurrent three-phase fluidized bed using a novel cell immobilization technique, AIChE Symposium Series San Francisco. 86,113-118.
Wu, K.A. and Wisecarver, K.D. (1992) Cell immobilization using PVA crosslinked with boric acid, Biotechnology and Bioengineering. 39, 447-449.
Yamamoto, K., and Win, K. M. (1991). Tannery wastewater treatment using a sequencing batch membrane reactor. Water Science and Technology., 23, 639-1648.
Yoshie, S. Noda, N. Miyano, T. Tsuneda, S. Hirata, A. and Inamori, Y. (2001) Microbial community analysis in the denitrification process of saline-wastewater by denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA and the cultivation method Journal of Bioscience and Bioengineering. 92 (4): 346-353
You, S.J. Chuang, S.H. Ouyang, C.F. (2003) Nitrification efficiency and nitrifying bacteria abundance in combined AS-RBC and A2O systems Water Research 37 (10): 2281-2290
Yuan, Z. Bogaert, H. Vanrolleghem, P. Thoeye, C. Vansteenkiste, G. and Verstraete, W. (1997). Control of external carbon addition to predenitrifying systems. Journal of Environmental Engineering, ASCE., 123: 1080-1086.
Zhao, H. W., Mavnic, D. S., Oldham, W. K., and Koch, F.A. (1999) Controlling factors for simultaneous nitrification and denitrification in two stage intermittent aeration process treating domestic sewage, Water Research, l33(4),961-970.
張志誠 (1999) 自營性生物脫氮法去除水源中硝酸鹽之研究, 國立台灣大學環境工程研究所博士論文.
張育傑 (1999) 利用新式薄膜反應槽去除廢水中氮之研究, 國立台灣大學環境工程研究所博士論文.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔