跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/20 08:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭雅文
研究生(外文):Hsiao, Ya-Wen
論文名稱:犬傳染性花柳性腫瘤不同生長時期的腫瘤細胞與腫瘤浸潤淋巴球之交互作用
論文名稱(外文):Interactions of Tumor Cells and Tumor Infiltrating Lymphocytes during Different Growth Stages of Canine Transmissible Venereal Tumor
指導教授:朱瑞民朱瑞民引用關係
指導教授(外文):Rea-Min Chu
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:獸醫學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:166
中文關鍵詞:細胞素-6殺手細胞腫瘤
外文關鍵詞:CTVTTGF-betaIL-6NKIFN-gamma
相關次數:
  • 被引用被引用:1
  • 點閱點閱:390
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
犬傳染性花柳性腫瘤(以下簡稱CTVT)是一種會經由活的腫瘤細胞直接接種於受傷黏膜而感染之犬隻腫瘤。已知CTVT細胞於實驗接種後會持續生長4-6個月,隨即產生自發性消退。此腫瘤在生長與消退這段期間究竟發生何種免疫機轉躲避宿主的免疫攻擊而持續長期生長?而後宿主本身又是如何對抗腫瘤導致腫瘤細胞快速消退?探討腫瘤細胞與腫瘤浸潤淋巴球之交互作用即為本研究的主題。希望藉以CTVT這獨特的犬隻腫瘤為動物模式,深入瞭解此腫瘤的特性,並試圖找出治療腫瘤的方法。在研究目標(一)我們希望找出腫瘤躲避宿主的免疫機制以及TIL對腫瘤細胞的影響。研究成果發現在腫瘤生長期(P 期)CTVT幾乎不表現MHC抗原,但在接種第十二週時MHC I及II的表現卻戲劇般的急速增加且持續表現至CTVT腫瘤消退。‚R期混合淋巴球-腫瘤反應(MLTR)呈陽性反應,顯示MHC的表現確實能刺激TIL增殖。ƒ進一步發現R期TIL無細胞之上清液可以刺激腫瘤細胞MHC表現,這結果指出腫瘤消退和TIL有密不可分的關係。„ CTVT細胞在不受TIL影響的情況下,腫瘤細胞即沒有表現MHC分子。…加入R期CTVT細胞與TIL共同培養的上清液或TIL單獨培養之上清液之後,CTVT細胞的MHC抗原又會再度的表現。根據研究目標一的結果,CTVT藉由不表現MHC抗原以躲避宿主免疫攻擊的情況下,應該會啟動NK細胞的毒殺作用,然而臨床上可見腫瘤依舊持續生長數個月,似乎並沒有受到NK細胞的影響。在R期腫瘤細胞仍有將近60%不表現MHC抗原的情況下,腫瘤卻快速消退,除了T細胞發揮功能之外,NK細胞的活性似乎也恢復了,究竟R期TIL是如果打贏這場免疫抗爭呢?在研究目標(二)我們對此問題做深入探討。證明了CTVT細胞具有分泌TGF-b的能力,而且不論P或R期都有功能性的TGF-b存在。‚CTVT分泌的TGF-b具有抑制NK細胞的能力。ƒR期TIL分泌IL-6的濃度顯著高過P期。„R期TIL分泌的IL-6具有拮抗TGF-b抑制LAK毒殺能力。… IL-6的濃度必須達到一定的閥值才可以完全拮抗TGF-b的功能。延續目標一及目標二的結果,於研究目標(三),我們希望更進一步探討,R期TIL究竟還會分泌哪種(些)物質刺激宿主MHC的表現?在我們的研究中發現P期和R期的TIL皆會分泌IFN-g,但在TGF-b的作用下,IFN-g刺激MHC表現的功能會被抑制而無法發揮。‚CTVT細胞在經過IL-6 72小時的刺激下,會讓MHC表現顯著增加。ƒ在IFN-g和IL-6共同刺激的情況下,MHC的表現會比單獨加入IL-6或IFN-g高。„ IFN-g和IL-6的協同作用雖可以增加MHC的表現,但IL-6的濃度如果太高則會讓MHC表現下降。…在IFN-g和IL-6的協同作用下會使轉錄因子IRF-1, STAT-1, STAT-3, NF-kB及CREB的表現顯著增加。在具有分泌TGF-b能力的腫瘤,IL-6的存在顯然扮演一個很重要的角色。不僅可以拮抗TGF-b的功能使NK細胞恢復毒殺能力,更可以和IFN-g共同作用刺激MHC的表現。這些發現將有助於研究腫瘤治療上的新方向。
CTVT is a unique tumor of dogs because it can be transplanted to randomly bred recipients by intact, viable cells. Experimentally transplanted CTVT exhibits a predictable growth pattern that includes progressive growth (P phase), stasis (S phase) and regression (R phase). CTVT cells do not express any MHC class I and II molecules during P phase, but express high levels of the molecules during R phase. Which mechanisms occurred between the tumor progression and regression were the interesting things that we want to investigate zealously. The objective of the research described in chapter 2 was to determine the effect of TIL on the expression of MHC I and II molecules in CTVT and on the subsequent regression of this tumor. We found that both MHC I and II molecules suddenly increased 12 weeks after CTVT inoculation, ‚mixed lymphocytes-tumor reaction (MLTR) study provides additional evidence that CTVT cells escape alloreactive T lymphocyte attack by down-regulating MHC I and II expression during P phase; regression follows induction of MHC over-expression and ƒthe increase in MHC expression during R phase was caused by a heat sensitive factor(s) secreted by TIL, and marked the tumor’s transition from P phase to R phase. „R phase CTVT cells lost the ability to express MHC molecules after 1 month of culture in vitro. It is well known that tumors frequently are infiltrated by T lymphocytes and natural killer (NK) cells. The functions of these cell types depend on the level of MHC class I molecules expressed at the surface of tumor cells. Such alteration in MHC I expression consequently should become targets for NK attack, leading tumor regression. However, most tumors maintain their ability to grow in vivo. We discovered that CTVT secretes TGF-b1 at both P and R phases ‚ TGF-b1 inhibited NK activity and escape host immunosurveillance, allowing the tumor to grow vigorously. ƒIn addition, TIL were able to express higher concentrations of IL-6, antagonizing TGF-b1 inhibition of NK activity at tumor regression. CTVT lost expression MHC class I and II in tumor progression phase and TIL secret a heat sensitive factor(s) to induce a re-expression of MHC class I and II during R phase. CTVT cells also secret TGF-b1, a potent inhibitor of immune function, to block the effect of TIL in CTVT growth stage, but high concentration of IL-6 secreted by R phase TIL antagonizes almost completely the immunosuppressive effects of TGF-b1. According to the above results, we further studied which the substances secreted by TIL to induce the MHC expressed. We observed that the TIL secreted IFN-g at both P and R phases. The effect of IFN-g and IL-6 in CTVT cells that secreted TGF-b1 upon the MHC class I and II expression. The changes of levels of involved transcription factors were further studied under the treatment of a variety of concentrations of IFN-g and IL-6 or different combinations of the cytokines. The transcriptional factors IRF-1, STAT-1, STAT-3, NF-k and CREB all increased after treating with IFN-g and IL-6. Our findings will facilitate understanding and further investigation of the mechanisms that initiate host immune surveillance against tumors.
Contents
中文摘要…………………………………………………………………………1
English Abstract ………………………………………………………………4
Chapter 1 Introduction, research objectives and literature Reviews 7
Introduction …………………………………………………………………7
Research objectives…………………………………………………………8
Literature Reviews …………………………………………………………10 Canine transmissible venereal tumor 10
1. Origin and transmission ………………………………………………..10
2. Proliferation characteristics ………………………………………… …12
3. Histological findings ……………………………………………………13
4. Cytology ………………………………………………………………...14
5. Immunity ……………………………………………………………… .15
5-1 CTVT cell
5-1.1 MHC……………………………………………………………..15
5-1.2 Tumor associated antigen ……………………………………….15
5-1.3 Heat shock protein …………………………………………… ..17
5-2 TIL
5-2.1 T cell ……………………………………………………………18
5-2.2 B cell ……………………………………………………………19
5-2.3 Non-T, non-B cells (NK cells) ………………………………… 20
6. Different methods of treatment ………………………………………...20
Tumor cells escape from the immune response 22
1. Loss or down-regulation of MHC class I antigen …………………… ..22
2. Modulation of tumor antigens ………………………………………… 25
3. Defective death receptor signaling ……………………………………..26
4. Lack of co-stimulation …………………………………………………28
5. Immunosuppressive cytokine …………………………………………..28
6. Down regulation of MICA and/or MICB ………………………………30
7. Nonclassical MHC class I --- HLA-G ………………………………….30
References …………………………………………………………………31
Chapter 2 Effect of Tumor Infiltrating Lymphocytes on the Expression of MHC molecules in Canine Transmissible Venereal Tumor Cells ...49
Abstract……………………………………………………………………… .49
Introduction……………………………………………………………………51
Materials and methods………………………………………………………...53
Results…………………………………………………………………………60
Discussions …………………………………………………………………..71 References………………………………………………………………….. .76
Chapter 3 TIL secretion of IL-6 antagonizes tumor-derived TGF-b1 and restores the LAK killing activity 82
Abstract ……………………………………………………………….……82
Introduction………………………………………………………………...83
Materials and methods……………………………………………….…….86
Results……………………………………………………………………...94
Discussions………………………………………………………………..106
References…………………………………………………………………110
Chapter 4 A combinational effect of IL-6 and IFN-g on transcriptional
regulation of MHC expression in TGF-b1-producing tumor
117
Abstract……………………………………………………………………...117 Introduction………………………………………………………………….118
Materials and methods……………………………………………………….121
Results ……………………………………………………………………….128
Discussions…………………………………………………………………...140 References……………………………………………………………………146
Chapter 5 Summary and Discussions 154
Discussions ………………………………………………………………….154
References……………………………………………………………………163
Appendixes I Publications ……………………………………………………..167
1. Yang, T. J., J. P. Chandler, and S. Dunne-Anway. 1987. Growth stage dependent expression of MHC antigens on the canine transmissible venereal sarcoma. Br J Cancer 55:131.
2. Perez, J., M. J. Day, and E. Mozos. 1998. Immunohistochemical study of the local inflammatory infiltrate in spontaneous canine transmissible venereal tumour at different stages of growth. Vet Immunol Immunopathol 64:133.
3. Chandler, J. P., and T. J. Yang. 1981. Canine transmissible venereal sarcoma: distribution of T and B lymphocytes in blood, draining lymph nodes and tumours at different stages of growth. Br J Cancer 44:514.
4. Trail, P. A., and T. J. Yang. 1985. Canine transmissible venereal sarcoma: quantitation of T-lymphocyte subpopulations during progressive growth and spontaneous tumor regression. J Natl Cancer Inst 74:461.
5. Bodey, B., B. Jr. Bodey, S. E. Siegel, J. V. Luck, and H. E. Kaiser. 1996. Immunophenotypic characterization of human primary and metastatic melanoma infiltrating leukocytes. Anticancer Res. 16:3439.
6. Ferrone, S., Marincola, FM. 1995. Loss of HLA class I antigens by melanoma cells: molecular mechanisms, functional significance and clinical relevance. Immunol Today 16:487.
7. Korkolopoulou, P., L. Kaklamanis, F. Pezzella, A. L. Harris, and K. C. Gatter. 1996. Loss of antigen-presenting molecules (MHC class I and TAP-1) in lung cancer. Br J Cancer 73:148.
8. Murray, M., Z. H. James, and W. B. Martin. 1969. A study of the cytology and karyotype of the canine transmissible venereal tumour. Res Vet Sci 10:565.
9. Weber, M. T. N., P. C. Hare, W. C. D. 1965. Chromosome studies of a transplanted and primary canine venereal sarcoma. J Natl Cancer Inst 35:537.
10. Barski, G. C.-J., F. 1966. Cytogenetic study of sticker venereal carcoma in European dogs. J. Natl. Cancer Inst. 37:787.
11. Adams, E. W. C., L. P. Dapp, W. J. 1968. Growth and maintenance of the canine venereal tumor in continuous culture. Cancer Res 28:753.
12. Makino, S. 1963. Some epidemiologic aspects of venereal tumors of dogs as revealed by chromosome and DNA studies. Annu. NY Acad. Sci. 108:1106.
13. Fujinaga, T., M. Yamashita, M. C. Yoshida, S. Mizuno, Y. Okamoto, M. Tajima, and K. Otomo. 1989. Chromosome analysis of canine transmissible sarcoma cells. Zentralbl Veterinarmed A 36:481.
14. Adams, E. W., W. J. Sapp, and L. P. Carter. 1981. Cytogenetic observations on the canine venereal tumor in long-term culture. Cornell Vet 71:336.
15. Cohen, D. 1985. The canine transmissible venereal tumor: a unique result of tumor progression. Adv Cancer Res 43:75.
16. Katzir, N., G. Rechavi, J. B. Cohen, T. Unger, F. Simoni, S. Segal, D. Cohen, and D. Givol. 1985. "Retroposon" insertion into the cellular oncogene c-myc in canine transmissible venereal tumor. Proc Natl Acad Sci U S A 82:1054.
17. Amariglio, E. N., I. Hakim, F. Brok-Simoni, Z. Grossman, N. Katzir, A. Harmelin, B. Ramot, and G. Rechavi. 1991. Identity of rearranged LINE/c-MYC junction sequences specific for the canine transmissible venereal tumor. Proc Natl Acad Sci U S A 88:8136.
18. Katzir, N., E. Arman, D. Cohen, D. Givol, and G. Rechavi. 1987. Common origin of transmissible venereal tumors (TVT) in dogs. Oncogene 1:445.
19. Choi, Y., N. Ishiguro, M. Shinagawa, C. J. Kim, Y. Okamoto, S. Minami, and K. Ogihara. 1999. Molecular structure of canine LINE-1 elements in canine transmissible venereal tumor. Anim Genet 30:51.
20. Choi, Y. K., and C. J. Kim. 2002. Sequence analysis of canine LINE-1 elements and p53 gene in canine transmissible venereal tumor. J Vet Sci 3:285.
21. Liao, K. W., Z. Y. Lin, H. N. Pao, S. Y. Kam, F. I. Wang, and R. M. Chu. 2003. Identification of canine transmissible venereal tumor cells using in situ polymerase chain reaction and the stable sequence of the long interspersed nuclear element. J Vet Diagn Invest 15:399.
22. Mozos, E., A. Mendez, J. C. Gomez-Villamandos, J. Martin De Las Mulas, and J. Perez. 1996. Immunohistochemical characterization of canine transmissible venereal tumor. Vet Pathol 33:257.
23. Marchal, T., L. Chabanne, C. Kaplanski, D. Rigal, and J. P. Magnol. 1997. Immunophenotype of the canine transmissible venereal tumour. Vet Immunol Immunopathol 57:1.
24. Kennedy, J. R., T. J. Yang, and P. L. Allen. 1977. Canine transmissible venereal sarcoma: electron microscopic changes with time after transplantation. Br J Cancer 36:375.
25. Crocker, J., D. A. Boldy, and M. J. Egan. 1989. How should we count AgNORS? Proposals for a standardized approach. J Pathol 158:185.
26. Hofstadter, F., R. Knuchel, and J. Ruschoff. 1995. Cell proliferation assessment in oncology. Virchows Arch 427:323.
27. Bauer, G. A., and P. M. Burgers. 1988. The yeast analog of mammalian cyclin/proliferating-cell nuclear antigen interacts with mammalian DNA polymerase delta. Proc Natl Acad Sci U S A 85:7506.
28. Mariani, A., T. J. Sebo, M. J. Webb, D. Riehle, J. A. Katzmann, G. L. Keeney, P. C. Roche, T. G. Lesnick, and K. C. Podratz. 2003. Molecular and histopathologic predictors of distant failure in endometrial cancer. Cancer Detect Prev 27:434.
29. Verdaguer, E., A. Jimenez, A. M. Canudas, E. G. Jorda, F. X. Sureda, M. Pallas, and A. Camins. 2003. Inhibition of Cell Cycle Pathway by Flavopiridol Promotes Survival of Cerebellar Granule Cells after an Excitotoxic Treatment. J Pharmacol Exp Ther.
30. Chu, R. M., C. Y. Lin, C. C. Liu, S. Y. Yang, Y. W. Hsiao, S. W. Hung, H. N. Pao, and K. W. Liao. 2001. Proliferation characteristics of canine transmissible venereal tumor. Anticancer Res 21:4017.
31. Harmelin, A., A. Zuckerman, and A. Nyska. 1995. Correlation of Ag-NOR protein measurements with prognosis in canine transmissible venereal tumour. J Comp Pathol 112:429.
32. Gonzalez, C. M., S. M. Griffey, D. K. Naydan, E. Flores, R. Cepeda, G. Cattaneo, and B. R. Madewell. 2000. Canine transmissible venereal tumour: a morphological and immunohistochemical study of 11 tumours in growth phase and during regression after chemotherapy. J Comp Pathol 122:241.
33. Biroccio, A., C. Gabellini, S. Amodei, B. Benassi, D. Del Bufalo, R. Elli, A. Antonelli, M. D''Incalci, and G. Zupi. 2003. Telomere dysfunction increases cisplatin and ecteinascidin-743 sensitivity of melanoma cells. Mol Pharmacol 63:632.
34. Hall, I. M., K. Noma, and S. I. Grewal. 2003. RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proc Natl Acad Sci U S A 100:193.
35. Ramirez, R. D. W., W. E. Shay, J. W. Taylor, R. S. 1997. Telomerase avtivity concentrates in the mitotically active segments of human hair follicles. J Invest Dermatol 108:113.
36. Cockrill, J. M., and J. N. Beasley. 1975. Ultrastructural characteristics of canine transmissible venereal tumor at various stages of growth and regression. Am J Vet Res 36:677.
37. Guvenc, T., M. Haligur, M. N. Orman, and R. Haziroglu. 2002. Mitosis and apoptosis in canine cutaneous histiocytoma and transmissible venereal tumour. Acta Vet Hung 50:315.
38. Albanese, F., A. Poli, F. Millanta, and F. Abramo. 2002. Primary cutaneous extragenital canine transmissible venereal tumour with Leishmania-laden neoplastic cells: a further suggestion of histiocytic origin? Vet Dermatol 13:243.
39. Hill, D. L., T. J. Yang, and A. Wachtel. 1984. Canine transmissible venereal sarcoma: tumor cell and infiltrating leukocyte ultrastructure at different growth stages. Vet Pathol 21:39.
40. Bennett, B. T. T., Y. Epstein, R. 1975. Segregation of the clinical course of transmissible venereal tumor with DL-A haplotypes in canine families. Transplant Proc 7:503.
41. Cohen, D., A. Shalev, and M. Krup. 1984. Lack of beta 2-microglobulin on the surface of canine transmissible venereal tumor cells. J Natl Cancer Inst 72:395.
42. Yang, T. J. 1988. Immunobiology of a spontaneously regressive tumor, the canine transmissible venereal sarcoma (review). Anticancer Res 8:93.
43. Palker, T. J., and T. J. Yang. 1981. Identification and physicochemical characterization of a tumor-associated antigen from canine transmissible venereal sarcoma. J Natl Cancer Inst 66:779.
44. Cohen, D. 1973. The biological behaviour of the transmissible venereal tumor in immunosuppressed dogs. Eur J Cancer 9:253.
45. Cohen, D. 1972. Detection of humoral antibody to the transmissible venereal tumor of the dog. Int J Cancer 10:207.
46. Fenton, M. A., and T. J. Yang. 1988. Role of humoral immunity in progressive and regressive and metastatic growth of the canine transmissible venereal sarcoma. Oncology 45:210.
47. Bennett, B. T. D.-F., K. M. Epstein, R. B. 1975. Tumor-blocking and inhibitory serum factors in the clinical course of canine venereal tumor. Cancer Res 35:2942.
48. Beschorner, W. E. H., A. D. Nerenberg, S. T. Epstein, R. B. 1979. Isolation and characterization of canine venereal tumor-associated inhibitory and blocking factor. Cancer Res 39:3920.
49. Cohen, D. 1980. In vitro cell-mediated cytotoxicity and antibody-dependent cellular cytotoxicity to the transmissible venereal tumor of the dog. J Natl Cancer Inst 64:317.
50. Harding, M. W., and T. J. Yang. 1981. Canine transmissible venereal sarcoma: leukocyte adherence inhibition (LAI) reactivity of various lymphoid tissues of dogs with tumors at different stages of growth. Int J Cancer 27:349.
51. Harding, M. W., and T. J. Yang. 1981. Sequential changes in peripheral blood leukocyte adherence inhibition (LAI) reactivity during progressive growth and spontaneous regression of canine transmissible venereal sarcoma. Int J Cancer 28:361.
52. Harding, M. W., and T. J. Yang. 1985. Regulation of leukocyte glass adherence and tube leukocyte adherence inhibition (LAI) reactivity by serum factors in dogs with progressing or spontaneously regressing canine transmissible venereal sarcoma (CTVS). Cancer Immunol Immunother 19:168.
53. Alexander, P. 1974. Escape from immune destruction by the host through shedding of surface antigens: Is this a characteristic shared by malignant and embryonic cells? Cancer Res 35:2077.
54. Alexander, P. 1974. Escape from immune destruction by the host through shedding of surface antigens: Is this a characteristic shared by malignant and embryonic cells? Cancer Res. 35:2077.
55. Badylak, S. F., C. F. Babbs, T. M. Skojac, W. D. Voorhees, and R. C. Richardson. 1985. Hyperthermia-induced vascular injury in normal and neoplastic tissue. Cancer 56:991.
56. Skeen, M. J., M. A. Miller, T. M. Shinnick, and H. K. Ziegler. 1996. Regulation of murine macrophage IL-12 production. Activation of macrophages in vivo, restimulation in vitro, and modulation by other cytokines. J Immunol 156:1196.
57. Galdiero, M., G. C. de l''Ero, and A. Marcatili. 1997. Cytokine and adhesion molecule expression in human monocytes and endothelial cells stimulated with bacterial heat shock proteins. Infect Immun 65:699.
58. Zugel, U. K., S. H. 1999. Immune response against heat-shock proteins in infectious diseases. Immunobiology 201:22.
59. Morino, M. T., T. Ishikawa, Y. Shirakami, T. Yoshimura, M. Kiyosuke, Y. Matsunaga, K. Yoskikumi, C. Saijo, N. 1997. Specific expression of HSP27 in human tumor cell lines in vitro. In Vivo 11:179.
60. Tou, B. L., B. L. Bouchard, H. L. Lagac, R. Huot, J. Landry, J. 1992. Prognostic influence of HSP-27 expression in malignant fibrous histiocytoma: a clinicopathological and immunohistochemical study. Cancer Res. 52:2325.
61. Chu, R. M., T. J. Sun, H. Y. Yang, D. G. Wang, K. W. Liao, T. F. Chuang, C. H. Lin, and W. C. Lee. 2001. Heat shock proteins in canine transmissible venereal tumor. Vet Immunol Immunopathol 82:9.
62. Barber, M. R., and T. J. Yang. 1999. Tumor infiltrating lymphocytes: CD8+ lymphocytes in canine transmissible venereal sarcomas at different stages of tumor growth. Anticancer Res 19:1137.
63. Liao, K. W., S. W. Hung, Y. W. Hsiao, M. Bennett, and R. M. Chu. 2003. Canine transmissible venereal tumor cell depletion of B lymphocytes: molecule(s) specifically toxic for B cells. Vet Immunol Immunopathol 92:149.
64. Mizuno, S., T. Fujinaga, and M. Hagio. 1994. Role of lymphocytes in spontaneous regression of experimentally transplanted canine transmissible venereal sarcoma. J Vet Med Sci 56:15.
65. Mizuno, S., T. Fujinaga, M. Tajima, K. Otomo, and T. Koike. 1989. Role of lymphocytes in dogs experimentally re-challenged with canine transmissible sarcoma. Nippon Juigaku Zasshi 51:86.
66. Yang, T. J., R. S. Roberts, and J. B. Jones. 1976. Quantitative study of lymphoreticular infiltration into canine transmissible venereal sarcoma. Virchows Arch B Cell Pathol 20:197.
67. Hess, A., B. Cunningham, B. Taylor Bennett, and R. Epstein. 1975. In vitro correlates of the in vivo course of the canine transmissible venereal tumor studied by mixed lymphocyte-tumor cultures. Transplant Proc 7:507.
68. Hsiao, Y. W., K. W. Liao, S. W. Hung, and R. M. Chu. 2002. Effect of tumor infiltrating lymphocytes on the expression of MHC molecules in canine transmissible venereal tumor cells. Vet Immunol Immunopathol 87:19.
69. Hsiao, Y. W., K. W. Liao, S. W. Hung, and R. M. Chu. 2003. TIL secretion of IL-6 antagonizes tumor-derived TGF-beta 1 and restores LAK killing activity. J Immunol.
70. De Landazuri, M. O. K., E. Fahey, J. L. 1974. Synergistic cooperation between iso antiserum and immune lymphoid cells: In vitro studies with a syngeneic rat lymphoma. J Immunol 112:2102.
71. Harada, M. P., G. Redmon, L. Winters, e. Kasuga, S. 1975. Antibody production and interaction with lymphoid cells in relation to tumor immunity in the Moloney sarcoma virus system. J Immunol 114:1318.
72. Brown, N. O. C., C. A. MacEwen, E. G. 1980. Chemotherapeutic management of transmissible venereal tumor in 30 dogs. J Am Vet Med Assoc 176:983.
73. Brodey, R. S. R., J. F. 1967. Neoplasms of the canine uterus, vagina and vulva: A clinicopathologic survey of 90 cases. J Am Vet Med Assoc 151:1294.
74. Thrall, D. E. 1982. Orthovoltage radiotherapy of canine transmissible venereal tumours. Vet Radiology 23:217.
75. Rogers, K. S., M. A. Walker, and H. B. Dillon. 1998. Transmissible venereal tumor: a retrospective study of 29 cases. J Am Anim Hosp Assoc 34:463.
76. Amber, E. I. H., R. A. 1982. Canine transmissible venereal tumor: Evaluation of surgical excision of primary and metastatic lesions in Zaria-Nigeria. JAAHA 18:350.
77. Amber, E. I., R. A. Henderson, J. B. Adeyanju, and E. O. Gyang. 1990. Single-drug chemotherapy of canine transmissible venereal tumor with cyclophosphamide, methotrexate, or vincristine. J Vet Intern Med 4:144.
78. Hess, A. D., R. Catchatourian, A. R. Zander, and R. B. Epstein. 1977. Intralesional Bacillus Calmette-Guerin immunotherapy of canine venereal tumors. Cancer Res 37:3990.
79. Cohen, D., M. F. Fer, J. W. Pearson, and R. B. Herberman. 1984. Treatment of canine transmissible venereal tumor by intravenous administration of protein A. J Biol Response Mod 3:271.
80. Townsend, A. R., J. Rothbard, F. M. Gotch, G. Bahadur, D. Wraith, and A. J. McMichael. 1986. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 44:959.
81. Ljunggren, H. G., K. Sturmhofel, E. Wolpert, G. J. Hammerling, and K. Karre. 1990. Transfection of beta 2-microglobulin restores IFN-mediated protection from natural killer cell lysis in YAC-1 lymphoma variants. J Immunol 145:380.
82. Garrido, F., F. Ruiz-Cabello, T. Cabrera, J. J. Perez-Villar, M. Lopez-Botet, M. Duggan-Keen, and P. L. Stern. 1997. Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today 18:89.
83. Sanda, M. G., N. P. Restifo, J. C. Walsh, Y. Kawakami, W. G. Nelson, D. M. Pardoll, and J. W. Simons. 1995. Molecular characterization of defective antigen processing in human prostate cancer. J Natl Cancer Inst 87:280.
84. Vitale, M., Rezzani, R., Rodella, L., Zauli, G., Grigolato, P., Cadei, M., Hicklin, D.J., Ferrone, S. 1998. HLA class I antigen and transporter associated with antigen processing (TAP1 and TAP2) down-regulation in high-grade primary breast carcinoma lesions. Cancer Res. 58:737.
85. Vegh, Z., Wang, P., Vanky, F., Klein, E. 1993. Selectively down-regulated expression of major histocompatibility complex class I alleles in human solid tumors. Cancer Res. 53:2416.
86. Koopman, L. A., Corver, W. E., van der Slik, A.R., Giphart, M. J., Fleuren, G.J. 2000. Multiple genetic alterations cause frequent and heterogeneous human histocompatibility leukocyte antigen class I loss in cervical cancer. J Exp Med 191:961.
87. Hicklin, D. J., Z. Wang, F. Arienti, L. Rivoltini, G. Parmiani, and S. Ferrone. 1998. beta2-Microglobulin mutations, HLA class I antigen loss, and tumor progression in melanoma. J Clin Invest 101:2720.
88. Balendiran, G. K., J. C. Solheim, A. C. Young, T. H. Hansen, S. G. Nathenson, and J. C. Sacchettini. 1997. The three-dimensional structure of an H-2Ld-peptide complex explains the unique interaction of Ld with beta-2 microglobulin and peptide. Proc Natl Acad Sci U S A 94:6880.
89. Lie, W. R., N. B. Myers, J. Gorka, R. J. Rubocki, J. M. Connolly, and T. H. Hansen. 1990. Peptide ligand-induced conformation and surface expression of the Ld class I MHC molecule. Nature 344:439.
90. Cook, J. R., N. B. Myers, and T. H. Hansen. 1996. The mechanisms of peptide exchange and beta 2-microglobulin exchange on cell surface Ld and Kb molecules are noncooperative. J Immunol 157:2256.
91. Seliger, B., S. Hammers, A. Hohne, R. Zeidler, A. Knuth, C. D. Gerharz, and C. Huber. 1997. IFN-gamma-mediated coordinated transcriptional regulation of the human TAP-1 and LMP-2 genes in human renal cell carcinoma. Clin Cancer Res 3:573.
92. Versteeg, R., K. M. Kruse-Wolters, A. C. Plomp, A. van Leeuwen, N. J. Stam, H. L. Ploegh, D. J. Ruiter, and P. I. Schrier. 1989. Suppression of class I human histocompatibility leukocyte antigen by c-myc is locus specific. J Exp Med 170:621.
93. Soong, T. W., and K. M. Hui. 1992. Locus-specific transcriptional control of HLA genes. J Immunol 149:2008.
94. Marincola, F. M., P. Shamamian, R. B. Alexander, J. R. Gnarra, R. L. Turetskaya, S. A. Nedospasov, T. B. Simonis, J. K. Taubenberger, J. Yannelli, A. Mixon, and et al. 1994. Loss of HLA haplotype and B locus down-regulation in melanoma cell lines. J Immunol 153:1225.
95. Cormier, J. N., M. C. Panelli, J. A. Hackett, M. P. Bettinotti, A. Mixon, J. Wunderlich, L. L. Parker, N. P. Restifo, S. Ferrone, and F. M. Marincola. 1999. Natural variation of the expression of HLA and endogenous antigen modulates CTL recognition in an in vitro melanoma model. Int J Cancer 80:781.
96. Lee, K. H., M. C. Panelli, C. J. Kim, A. I. Riker, M. P. Bettinotti, M. M. Roden, P. Fetsch, A. Abati, S. A. Rosenberg, and F. M. Marincola. 1998. Functional dissociation between local and systemic immune response during anti-melanoma peptide vaccination. J Immunol 161:4183.
97. Schreiber, H., T. H. Wu, J. Nachman, and W. M. Kast. 2002. Immunodominance and tumor escape. Semin Cancer Biol 12:25.
98. Chen, J. J., Y. Sun, and G. J. Nabel. 1998. Regulation of the proinflammatory effects of Fas ligand (CD95L). Science 282:1714.
99. Straus, S. E., E. S. Jaffe, J. M. Puck, J. K. Dale, K. B. Elkon, A. Rosen-Wolff, A. M. Peters, M. C. Sneller, C. W. Hallahan, J. Wang, R. E. Fischer, C. M. Jackson, A. Y. Lin, C. Baumler, E. Siegert, A. Marx, A. K. Vaishnaw, T. Grodzicky, T. A. Fleisher, and M. J. Lenardo. 2001. The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis. Blood 98:194.
100. Ucur, E., J. Mattern, T. Wenger, S. Okouoyo, A. Schroth, K. M. Debatin, and I. Herr. 2003. Induction of apoptosis in experimental human B cell lymphomas by conditional TRAIL-expressing T cells. Br J Cancer 89:2155.
101. He, Q., Y. Huang, and M. S. Sheikh. 2003. Proteasome inhibitor MG132 upregulates death receptor 5 and cooperates with Apo2L/TRAIL to induce apoptosis in Bax-proficient and -deficient cells. Oncogene.
102. Song, J. H., D. K. Song, B. Pyrzynska, K. C. Petruk, E. G. Van Meir, and C. Hao. 2003. TRAIL triggers apoptosis in human malignant glioma cells through extrinsic and intrinsic pathways. Brain Pathol 13:539.
103. Kalli, K. R., K. E. Devine, M. C. Cabot, C. R. Arnt, M. P. Heldebrant, P. A. Svingen, C. Erlichman, L. C. Hartmann, C. A. Conover, and S. H. Kaufmann. 2003. Heterogeneous role of caspase-8 in fenretinide-induced apoptosis in epithelial ovarian carcinoma cell lines. Mol Pharmacol 64:1434.
104. Semenkova, L., E. Dudich, I. Dudich, N. Tokhtamisheva, E. Tatulov, Y. Okruzhnov, J. Garcia-Foncillas, J. A. Palop-Cubillo, and T. Korpela. 2003. Alpha-fetoprotein positively regulates cytochrome c-mediated caspase activation and apoptosome complex formation. Eur J Biochem 270:4388.
105. Zauli, G., D. Milani, E. Rimondi, G. Baldini, V. Nicolin, V. Grill, and P. Secchiero. 2003. TRAIL activates a caspase 9/7-dependent pathway in caspase 8/10-defective SK-N-SH neuroblastoma cells with two functional end points: induction of apoptosis and PGE2 release. Neoplasia 5:457.
106. Lenschow, D. J. W., T.L. Bluestone, J.A. 1996. CD28/B7 system of T cell costimulation. Ann Rev Immunol 14:233.
107. Sperling, A. I. B., J.A. 1996. The complexities of T cell costimulation: CD28 and beyond. Immunol Rev 153:155.
108. Chambers, C. A. A., J.P. 1997. Co-stimulation in T cell responses. Curr Opin Immunol 9:393.
109. Galea-Lauri, J., D. Darling, S. U. Gan, L. Krivochtchapov, M. Kuiper, J. Gaken, B. Souberbielle, and F. Farzaneh. 1999. Expression of a variant of CD28 on a subpopulation of human NK cells: implications for B7-mediated stimulation of NK cells. J Immunol 163:62.
110. Takeda, K., H. Oshima, Y. Hayakawa, H. Akiba, M. Atsuta, T. Kobata, K. Kobayashi, M. Ito, H. Yagita, and K. Okumura. 2000. CD27-mediated activation of murine NK cells. J Immunol 164:1741.
111. MacDonald, K. P., V. Rowe, C. Filippich, R. Thomas, A. D. Clouston, J. K. Welply, D. N. Hart, J. L. Ferrara, and G. R. Hill. 2003. Donor pretreatment with progenipoietin-1 is superior to granulocyte colony-stimulating factor in preventing graft-versus-host disease after allogeneic stem cell transplantation. Blood 101:2033.
112. Carbone, E., G. Terrazzano, G. Ruggiero, D. Zanzi, A. Ottaiano, C. Manzo, K. Karre, and S. Zappacosta. 1999. Recognition of autologous dendritic cells by human NK cells. Eur J Immunol 29:4022.
113. Terrazzano, G., M. F. Romano, M. C. Turco, S. Salzano, A. Ottaiano, S. Venuta, S. Fontana, C. Manzo, S. Zappacosta, and E. Carbone. 2000. HLA class I antigen downregulation by interleukin (IL)-10 is predominantly governed by NK-kappaB in the short term and by TAP1+2 in the long term. Tissue Antigens 55:326.
114. Kim, I. Y., H. J. Ahn, D. J. Zelner, J. W. Shaw, J. A. Sensibar, J. H. Kim, M. Kato, and C. Lee. 1996. Genetic change in transforming growth factor beta (TGF-beta) receptor type I gene correlates with insensitivity to TGF-beta 1 in human prostate cancer cells. Cancer Res 56:44.
115. Reiss, M. 1999. TGF-beta and cancer. Microbes Infect 1:1327.
116. Pasche, B. 2001. Role of transforming growth factor beta in cancer. J Cell Physiol 186:153.
117. Grande, J. P. 1997. Role of transforming growth factor beta in tissue injury and repair. Proc Soc Exp Biol Med 214:27.
118. Gold, L. I. 1999. The role for transforming growth factor-beta (TGF-beta) in human cancer. Crit Rev Oncog 10:303.
119. Gilboa, E. 1999. How tumors escape immune destruction and what we can do about it. Cancer Immunol Immunother 48:382.
120. Maccalli, C., D. Pende, C. Castelli, M. C. Mingari, P. F. Robbins, and G. Parmiani. 2003. NKG2D engagement of colorectal cancer-specific T cells strengthens TCR-mediated antigen stimulation and elicits TCR independent anti-tumor activity. Eur J Immunol 33:2033.
121. Jinushi, M., T. Takehara, T. Tatsumi, T. Kanto, V. Groh, T. Spies, R. Kimura, T. Miyagi, K. Mochizuki, Y. Sasaki, and N. Hayashi. 2003. Expression and role of MICA and MICB in human hepatocellular carcinomas and their regulation by retinoic acid. Int J Cancer 104:354.
122. Rouas-Freiss, N., R. E. Marchal, M. Kirszenbaum, J. Dausset, and E. D. Carosella. 1997. The alpha1 domain of HLA-G1 and HLA-G2 inhibits cytotoxicity induced by natural killer cells: is HLA-G the public ligand for natural killer cell inhibitory receptors? Proc Natl Acad Sci U S A 94:5249.
123. Mandelboim, O., L. Pazmany, D. M. Davis, M. Vales-Gomez, H. T. Reyburn, B. Rybalov, and J. L. Strominger. 1997. Multiple receptors for HLA-G on human natural killer cells. Proc Natl Acad Sci U S A 94:14666.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top