(3.236.222.124) 您好!臺灣時間:2021/05/19 11:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張家銘
研究生(外文):Chia-Ming Chang
論文名稱:半主動控制器(MR阻尼器)於結構控制之效益評估
論文名稱(外文):Assessment of Semi-active Control Strategies for MR Dampers: Application to Building and Cable-Stayed Bridge Structures
指導教授:羅俊雄羅俊雄引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:167
中文關鍵詞:阻尼器類神經網路控制演算法
外文關鍵詞:MR damperneural network systemcontrol algorithm
相關次數:
  • 被引用被引用:3
  • 點閱點閱:375
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文的目的在於利用半主動控制器( MR damper )結合結構控制的技巧來減低地震對結構物所造成的損害。首先,針對一支由國家地震中心所提供的 MR 阻尼器做出對應於該阻尼器適當的數學模型( Biviscous model 和 Bilinear model),此模型考慮以前學者所提出一些理論做適度的修改以符合此 MR 阻尼器之真實行為,同時也考慮了模擬上的收斂性,所以對於阻尼器之模型作了簡單之判斷原則,在本文中亦有詳盡之說明。再者,由於此阻尼器具有高度非線性之行為,而且其輸入之訊號為電壓,並非是所連結位置之狀態反應,所以必須把預想之控制力轉成為電壓的形式,所以必須引進另外一種轉換的模型使之能驅動此阻尼器,進而達成所期望的控制力,此模型是參考國外學者所提出來的模型( Neural network inverse model ),它是結合了類神經網路的技巧與系統識別的概念,加上實際實驗數據的訓練後,能夠有效的將控制力轉成適當的電壓訊號,使之在真實控制上能夠準確地驅動此阻尼器。第三,本文中考慮了兩種不同的結構物做數值上的模擬,一是一棟三層樓之鋼構架,另一個是一座長垮度的斜張橋,把兩種不同的結構物利用狀態空間的型式來做模擬,配合了所提出的控制迴路,進而達成其控制的實際性,其中包括了輸入之地震力,結構物的數學模型,各種的量測訊號,不同的控制演算法,尋找對應於控制力的電壓訊號,最後就是其阻尼器本身。第四,本文同時探討了各種不同控制演算法對於該阻尼器之適用性與有效性,其中演算法包括了 H2、H∞、Mixed H2 and H∞、Sliding mode control和 Fuzzy sliding mode control 這五種,都是根據以前學者所提出之理論,配合本文所應用之結構物做適當的調整,再根據不同之結構物反應的評估規則,就可以有效判別出控制演算法是否適合於該結構物或該地震歷時紀錄。最後,利用所選取的地震紀錄,包括了近斷層與遠域的地震力(921的地震紀錄與同一測站非921之地震紀錄),作為結構控制的輸入擾動,再與被動控制和主動控制做一系列的比較,使之能夠真實呈現此阻尼器的優缺點,並且找出最適合該阻尼器的半主動控制演算法,使得對於日後實際應用上能夠有所參考。
This paper presents the performance assessment of the semi-active control algorithms using MR dampers. In order to develop the semi-active control algorithm the unique features of the MR damper was generated which consider the intrinsic nonlinear behavior of the damper. The modified nonlinear hysteretic bi-viscous model with three slopes in force/velocity loop and two yield force values were proposed. Different control algorithms were selected including H2, H�V and mixed H2 and H�V control algorithms, sliding mode control in lieu of the LQG formulation, and the SMC with fussy logic control. The performance of the control algorithm is compared through numerical example study of a 3-story building and a benchmark problem of the cable-stayed bridge. Both far-field and near-field ground motion excitation are considered as excitation.
誌謝 I

摘要 II

ABSTRACT III

LIST OF TABLES VI
LIST OF FIGURES VII

1. Introduction 1

2. Magnetorheological Damper Modeling 4
2.1 Modified Biviscous Model 4
2.2 Bilinear Model 6

3. Control Circuit 8
3.1 Building Control 8
3.2 Cable-Stayed Bridge Control 8

4. Neural Network Inverse Model of MR Damper 11

5. Control Algorithms 13
5.1 H2 Control Algorithm 14
5.2 H∞ Control Algorithm 15
5.3 Mixed H2 and H∞ Control Algorithm 17
5.4 SMC Algorithm 20
5.5 FSMC Algorithm 24

6. Numerical Examples 26
6.1 Building Control 26
6.2 Cable-Stayed Bridge Control 39

7. Conclusions 52
7.1 MR dampers Modeling 52
7.2 Control Circuit 52
7.3 Inverse NN Model 53
7.4 Control Algorithms and Numerical Examples 54
7.5 Future Work 55

References 57

Tables 59

Figures 72
Dyke, S. J., Spencer Jr., B. F., Sain, M.K. and Carlson, J. D. (1996). “Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction,” Smart Materials and Structures, Vol. 5, pp. 565-575.

Wereley, M.W., Pang L., and Kamath G.M., (1998). “Idealized Hysteresis Modeling of Electrorheological and Magnetorheological Dampers,” Journal of Intelligent Material Systems and Structures, Vol. 9, pp. 642-649.

Wen, Y.K., (1976). “Method of Random Vibration of Hysteretic Systems,” Journal of Engineering Mechanics Division, ASCE, Vol. 102, No. EM2, pp. 249-263.

Stanway, R., Sproston, J. L., and Stevens, N. G. (1987). “Non-linear modeling of an electro-rheological vibration damper,” Journal of Electrostatics, Vol. 20, pp. 167-184.

Chang, C. C. and Zhou, L. (2000). “A recurrent neural network emulator for the inverse dynamics of an MR damper,” Advances in Structural dynamics, Vol. 1, pp. 365-372.

Yang, J.N., Akbarpour, A., and Ghaemmaghami, P., (1986). “New optimal control algorithms for structural control,” Journal of Engineering Mechanics, Vol. 113, pp. 1369-1386.

Limebeer, D.J.N., Anderson, B.D.O., and Hendel, B., (1994). “A Nash game approach to Mixed H2/H∞ control,” IEEE Transactions on Automatic Control, Vol. 39, pp. 69-82.
Moon, S.J., Bergman, L.A., Voulgaris, P.G., (2003). “Sliding Mode Control of Cable-Stayed Bridge Subjected to Seismic Excitation,” Journal of Engineering Mechanics, Vol. 129, No.1, pp. 71-78.

Hwang, G. C. and Lin, S. C. (1992). “A stability approach to fuzzy control design for nonlinear systems,” Fuzzy Sets and Systems, Vol. 48, pp. 279-287.

Dyke, S.J., Caicedo, J.M., Moon, S.J., Bergman, L.A., Turan, G., and Hague, S., (2003). “Phase II Benchmark control problem for seismic response of cable-stayed bridges,” Journal of structural control, Vol. 10, pp. 137-168.

Dyke, S.J. and Jansen, L.M., (2000). “Semi-Active Control Strategies for MR Dampers: A Comparative Study,” Journal of Engineering Mechanics, ASCE, Vol. 126, No. 8, pp. 795-803.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top