跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/19 00:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:余定縣
研究生(外文):Ding-Xian Yu
論文名稱:貓羅溪高細粒料土壤抗液化強度之研究
指導教授:翁作新翁作新引用關係
指導教授(外文):Tzuo-Shin Ueng
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:94
中文關鍵詞:液化強度中空扭剪細粒料
外文關鍵詞:Liquefaction StrengthHollow torsional ShearFines
相關次數:
  • 被引用被引用:5
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討南投市貓羅溪地區第二高速公路高架橋下及工務所附近之高細粒料含量土壤之組成與液化特性。由其粒徑分佈曲線得知,此兩處土壤過200號篩百分比分別為74%與48%,在統一土壤分類法(USCS)中,橋下土樣屬於CL,工務所土樣則為SM。但從粗粒料與細粒料兩部份各自特性的分析結果,可知兩處土樣為同一種土壤,且土壤礦物組成含量上大都是石英居多。

本研究利用現地土樣重模成中空圓柱形試體進行扭剪試驗,控制試體壓密後之乾密度,求取現地土壤之抗液化強度,由試驗結果所得抗液化曲線顯示,橋下土樣(FC=74%)抗液化強度比工務所(FC=48%)高,且兩者曲線近乎呈平行。

依本研究結果與陳界文之動態三軸試驗結果之比較,動態三軸試驗反覆應力比與中空圓柱形試體扭剪試驗反覆應力比之間的修正係數為Cr=0.666,與De Alba et al.(1975)所建議的修正係數相近。並且從工務所土樣細粒料含量為74%之重模試體與橋下土樣(FC=74 %)試體兩者的液化強度曲線相近,因此本研究中空圓柱形試體扭剪試驗在試體準備與試驗操作過程,有很好的可靠度。


This study evaluates the liquefaction of the soils of high fines contents in the Maoluo River area of Nantou City. The particle size distribution curves indicate that the fines content of the soil taken under the viaduct of the second freeway is 74% while that taken near the construction office is 48%. According to the USCS, the under-viaduct soil is CL while the soil near the construction office is SM. But based on the result of analyzing the characteristics of the granular materials and the fines, they are the same kind of soil and contain quartz mostly.

In this study, the soils taken from the sites are used to make the hollow cylinder specimens for the torsional shear tests by controlling the dry density of specimens after consolidation. The test results show that the liquefaction resistance of the under-viaduct soil (FC=74%) is higher than that near the construction office (FC=48%), but the relations of the two soils are almost parallel.

Comparison between this study and the previous test results by Chen shows that the correction coefficient Cr between the cyclic stress ratio of cyclic triaxial test and cyclic hollow cylinder torsional shear test is 0.666 which is very closed to the correction coefficient computed according to De Alba et al. (1975) suggested method. Therefore, the sample preparation and testing process of the hollow cylinder torsional shear test in this study is reliable. With the same fines content at 74%, the liquefaction strengths are very much the same for specimens taken under viaduct and near the construction office.

誌 謝.................................................I
摘 要.................................................II
Abstract...............................................III
目 錄.................................................V
表 目 錄...............................................VII
圖 目 錄...............................................VIII
照片目錄...............................................XII
第一章 緒論............................................1
1-1研究動機與目的......................................1
1-2研究內容與方法 .....................................2
第二章 前人文獻........................................5
2-1反覆三軸、單剪、扭剪試驗之比較......................5
2-2動力三軸試驗之反覆應力比的轉換......................6
2-3動態扭剪試驗之相關研究..............................11
2-4細粒料含量對液化潛能之影響..........................13
2-5 塑性性質對液化強度之影響...........................15
第三章 試驗內容........................................36
3-1 試驗土樣 .....................................36
3-2 動態中空圓柱形扭剪試驗之設備與步驟.................37
3-2-1 試驗設備.........................................37
3-2-2 試驗步驟.........................................41
第四章 試驗結果與討論..................................55
4-1 土壤基本特性試驗結果...............................55
4-2 破壞準則定義.......................................56
4-3 試體應力與應變計算方式.............................57
4-4 液化強度試驗之驗證.................................58
4-5 液化強度試驗結果討論...............................60
4-5-1現地土樣之抗液化強度..............................60
4-5-2乾密度、相對密度對土壤液化強度之影響..............63
4-6孔隙水壓力激發歷時分析討論..........................65
第五章 結論與建議.....................................87
5-1 結論...............................................87
5-2 建議...............................................88
參考文獻...............................................90


[1] Seed, H. B.,Tokimatsu, K.,Harder, L. F.,and Chung, R. M. , ”Influence of SPT procedures in soil liquefaction resistance evaluations”, Journal of Geotechnical Engineering, ASCE, Vol. 111, No. 12, pp.1425-1444,1985.
[2] Seed, H. B. and Peacock, W. H., ” Test Procedures for measuring Soil Li- qufaction Characteristics”, Journal of the Soil Mechanics and Foundati- ons Division, ASCE, Vol.97, No.SM8, Proc., Paper 8330, pp.1099-1119, Agu., 1971.
[3] Seed, H. B. and Lee, K. L., ”Liquefaction of Saturated Sands During Cyc- lic Loading“, Journal of the Soil Mechanics and Foundation Div- ision, ASCE ,Vol.92, No.SM6, Proc.Paper 4972, Nov., 1966, PP.105-134.
[4] Ishibashi, I., and Sherif , M. A., ”Soil liquefaction by torsional simplesh- ear device”, Journal of the geotechnical engineering division , vol. 100 , No. GT8, Aug. pp.871-888,1974.
[5] Ishihara, K., and Yasuda, S. ”Sand liquefaction in hollow cylinder tors- ion under irregular excitation”, Japanese society of soil mechanics and foundation engineering,Vol.15, No.1, Mar.1975.
[6] Finn, W. D. L., Pickering Pickering ,D. J. and Bransby,P. L.,”Sand Liqu- efaction in triaxial and simple shear tests”, Journal of the soil mechanics and founations division, Vol.97, No.SM4, April, 1971.
[7] Castro, G.,”Liquefaction and cyclic mobility of saturated sands ”Journal of the geotechnical engineering division,Vol.101,No.GT6,June, 1975 .
[8] De Alba, P., Chan, C. K. and Seed, H. B., ”Determination of Soil Liqu- efaction Characteristics by Large-scale Laboratory”, Reprot EERC74-14, Earthquake Engineering Research Center,U. C. Berkeley, 1975.
[9] Bhatial, S. K., Schwab, J. and Ishibash, I. ”Cyclic simple,Torsional shear and Triaxial –A comparative study”, Advances in the Art of Testing Soils Under Cyclic Conditions, pp 233 -254 , October 24,1985.
[10] Ishihara, K., ”Soil Behaviour in Earthquake Geotechnics”, Oxford Sci- ence Publications, 1996.
[11] Chang, N.Y.(1990), ”Influence of fines content and plasticity on earthq- uake induced soil liquefaction”, Rep., Contract No. DOCW 3988 - C - 0078, U.S. Army Engineer Waterways Experiment Station,Vicksburg, Miss.
[12] Troncoso, J. H. (1990).”Failure risks of abandoned tailings dams”, Proc., Int. Sym. on Safety and Rehabilitation of Tailings Dams, Inter- national Commission on Large Dams, Paris, 82-89 .
[13] 陳守德(1986),「微量細料對砂性土壤液化潛能之影響」,國立台灣大學土木工程學研究所,碩士論文。
[14] 陳界文,「細粒料特性對土壤抗液化強度之影響」,國立台灣大學土木工程學研究所,碩士論文 (2001)。
[15] Bouckovalas, G. D., Andrianopoulos, K. I., Papadimitriou, A. G.,”A critical state interpretation for the cyclic liquefaction resistance of silty sands”, Soil Dynamics and Earthquake Engineering 23(2003) 115- 125.
[16] Xenaki, V. C., Athanasopoulos, G. A., ”Liquefaction resistance of sand silt mixtures:an experimental investigation of the effect of fine”, Soil Dynamics and Earthquake Engineering 23(2003) 183-194.
[17] Chung, Kin Y. C., and Wong, I. H., “Liquefaction potential of soils wi- th plastic fines”, Soil Dynamics and Earthquake Engineering Confere- nce , Southampton, pp. 887-897 ,1982.
[18] Puri, V. K.”Liquefaction aspects of loessial soils”, Proc., 4th U.S. Nat. Conf. on Earthquake Engrg., Earthquake Engineering Research Inst., EI Cerito,Calif.,3,755-762,1990.
[19] Puri, V. K.”Liquefaction behavior and dynamic properties of loessial (silty) soil”, PhD thesis, University of Missouri-Rollo, Mo, 1984.
[20] EI Hosri, M. S., Biarez, H. and Hicher, P. Y., ”Liquefaction characteri- stics of silty clay”, Proceedings of the Eighth World Conference on Earthquake Engineering, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1984, V0l.3 , pp277-284, 1984.
[21] Guo, Tianqiang and Prakash , Shamsher., ”Liquefaction of silts and Silt Clay mixtures”, Journal of Geotechnical and Geoenvironmental Enginee- ring,Vol.125, No.8, pp. 706 - 710, 1999.
[22] Sandoval, J. ”Liquefaction and settlement characteristics of silt soils”, PhD thesis, University of Missouri-Rolla, Mo,1989.
[23] Prakash, S., and Sandoval, J. A., ”Liquefaction of low plasticity silts”, J. Soil Dyn. and Earthquake Engrg., 71(7), 373-397, 1992.
[24] Kramer, Steven L. ”Geotechnical Earthquake Engineering”, Prentice Hall , New Jersey, 1996.
[25] Hight, D.W., Gens, A., and Symes, M.J., ”The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils” , Geotechnique,33,No.4,355-383.,1983.
[26] Tatsuoka,F.,Sonoda,S.,Hara,K.,Fukushima,S.,Pradhan,T.B.S.,”Failure and deformation of sand in torsional shear ”, soils and foundationns, Vol.26, No.4, 79-97, Dec. 1986.
[27] Bowles J. E., ”Foundation analysis and design”, fifth edition, Mc Graw Hill Company, New York, 1996.
[28] Jaky, J., ”The coefficient of earth pressure at rest”, Journal of the society of Hungarian architects and engineers, Budapest, hungary, pp. 355-358, 1944.
[29] Youd, T. L. et al., ”Liquefaction resistance of soils:summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evalua- tion of liquefaction resistance soils”, Journal of Geotechnical and Geo- envir onmental Engineering, ASCE, pp. 297~313, 2001.
[30] Seed, H. B., Tokimatsu, K., and Harder, L. F. and Chung, R. M., ” I- nfluence of SPT procedures in soil liquefaction resistance evaluateo- ns” , Journal of Geotechnical Engineering, ASCE, Vol. 111, No.12, pp. 1425-1444, 1985.
[31] Seed, H.B. and Idriss I. M., ”Simplified procedure for evaluating soil liquefaction potential”, Journal of the soil mechanics and foundations division, ASCE, Vol.107, No.SM9, pp.1249-1274, 1971.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top