(34.229.64.28) 您好!臺灣時間:2021/05/06 07:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃慶民
研究生(外文):Ching-Min Huang
論文名稱:Delaunay網格生成之二維品質改善及三維Sliver問題探討
論文名稱(外文):Delaunay Triangulation for Quality Assessment in Two Dimensions and Sliver Investigation in Three Dimensions
指導教授:陳俊杉陳俊杉引用關係
指導教授(外文):Chuin-Shan Chen
口試委員:張善政謝尚賢
口試委員(外文):San-Cheng ChangShang-Hsien Hsieh
口試日期:2004-07-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:50
中文關鍵詞:扁平四面體網格品質Delaunay三角化Delaunay細分網格生成
外文關鍵詞:SliverMesh QualityDelaunay TriangulationDelaunay RefinementMesh Generation
DOI:10.6342/NTU.2004.02087
相關次數:
  • 被引用被引用:0
  • 點閱點閱:8804
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:88
  • 收藏至我的研究室書目清單書目收藏:1
在三角形和四面體網格生成方法中,Delaunay準則為最廣泛應用之基準原則;然而,網格生成之元素品質仍尚未獲得解決。鑑於前人提出之refinement方法,主要乃以插入形狀低劣之三角形外接圓之圓心,以提高網格品質;本文提出一新的思考觀點,乃試圖插點於其影響區域之中心,以提高其品質。在二維方面,插點之有效區域乃指網格區域內之所有三角形外接圓或四面體外接球包含此點之三角形或四面體集合。此方法將使插點對應於其有效區域所構成之各個新元素之角度具等分之性質,使得相較於其他插入點而言較不易產生形狀低劣之三角形。本文提出之方法已實作於二維且經數值結果顯示,於二維之三角形元素具有品質提昇之能力。
The Delaunay criterion is the most popular criterion for developing triangular and tetrahedral meshes, but the quality of a mesh has not been totally resolved. In this thesis, a novel method is proposed to raise the quality of triangular mesh generation. Whereas previous refinement methods mainly focus on inserting a new vertex into the circumcenter of a skinny triangle or tetrahedron, the proposed method is striving to insert a vertex near the geometric center of an effective region. The effective region is combined by all the effective triangles or tetrahedra whose circumcircle contains the inserted vertex. Using the proposed method, all the newly generated triangles and tetrahedra will have the property of equally divided angles. The proposed method is implemented for two dimensions. Numerical results using the proposed method show its capability to generate superior quality of triangles in two dimensions.
Chapter 1: Introduction to Mesh Generation 1
1.1 Background and Motivation 1
1.1.1 Mesh Generation in Finite Element Analysis Procedure 1
1.1.2 Structured and Unstructured Mesh 2
1.2 Objectives and Thesis Organization 4
Chapter 2: Triangulation Methods Using Delaunay Criterion 5
2.1 Overview 5
2.2 Delaunay Triangulation Methods 7
2.3 Delaunay Refinement Methods 9
2.3.1 Chew's Delaunay Refinement Method 9
2.3.2 Ruppert's Delaunay Refinement Method 10
2.3.3 Discussion 13
2.4 Summary 13
Chapter 3: Mesh Generation and Quality Assurance 15
3.1 Delaunay Triangulation Implementation 15
3.2 Mesh Quality Measurement and Assessment 17
3.3 Slivers in Three Dimensions 19
3.3.1 The Sliver Problem 19
3.3.2 Solving the Sliver Problem 21
3.3.2.1 Concept 21
3.3.2.2 Implementation 24
3.4 Summary 31
Chapter 4: Case Studies 33
4.1 Numerical Examples 33
4.2 Discussion 41
Chapter 5: Conclusions and Future Studies 43
5.1 Conclusions 43
5.2 Future Studies 43
References 45
Appendix: Coordinates of Numerical Examples Used in Chapter 4 49
Aurenhammer, F. (1991). "Voronoi Diagrams: A Study of A Fundamental Geometric Data Structure," ACM Computing Surveys, 23:345-405.
Cheng, S. W., T. K. Dey, H. Edelsbrunner, M. A. Facello and S.-H. Teng (1999). "Sliver Exudation," Proceedings of the 15th Annual Symposium on Computational Geometry, 1-13.
Chew, P. L. (1989a). "Constrained Delaunay Triangulations," Algorithmica, 4:97-108.
Chew, P. L. (1989b). "Guaranteed-Quality Triangular Meshes," TR 89-983, Department of Computer Science, Cornell University, Ithaca, NY.
Chew, P. L. (1997). "Guaranteed-Quality Delaunay Meshing in 3D," Proceedings of the 13th Annual Symposium Computational Geometry, 391-393.
Cifuentes, A. O and A. Kalbag (1992). "A Performance Study of Tetrahedral and Hexahedral Elements in 3-D Finite Element Structural Analysis," Finite Elements in Analysis and Design, 12:313-318.
Cohen-Steiner, D., Éric Colin de Verdière and M. Yvinec (2002). "Conforming Delaunay Triangulations in 3D," Proceedings of the 18 Annual Symposium on Computational Geometry, 199-208.
Dey, T. K., C. L. Bajaj and K. Sugihara (1992). "On Good Triangulations in Three Dimensions," International Journal of Computational Geometry and Applications, 2:75-95.
Edelsbrunner, H. (1987). Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, Germany.
Edelsbrunner, H., and T. S. Tan (1993). "An Upper Bound for Conforming Delaunay Triangulation," Discrete & Computational Geometry, 10:197-213.
George, P. L. (1999). "Tet meshing: Construction, Optimization and Adaptation," Proceedings of the 8th International Meshing Roundtable, 133-141.
George, P. L. (1996). "Automatic Mesh Generation and Finite Element Computation, " In Ciarlet, P. G., Lions, J. L. (eds), Handbook of Numerical Analysis, Vol. IV, 69-190.
Lee, D. T. and A. K. Lin (1986). "Generalized Delaunay Triangulations for Planar Graphs," Discrete & Computational Geometry, 1:201–217.
Lo, S. H (2002). "Finite Element Mesh Generation and Adaptive Meshing," Progress in Structural Engineering and Materials, 4:381-399.
Murphy, M., D. M. Mount and C. W. Gable (2000). "A Point-Placement Strategy for Conforming Delaunay Tetrahedralization," Proceedings of the 11th ACM-SIAM Symposium on Discrete Algorithms, 67-74.
Owen, S. J. (1998). Meshing Research Corner, http://www.andrew.cmu.edu/user/sowen/mesh.html
Ruppert, J. (1995). "A Delaunay refinement method for Quality 2-Dimensional Mesh Generation," Journal of Algorithms, 18:548–585.
Ruppert, J. and R. Seidel (1992). "On the Difficulty of Tetrahedralizing 3-Dimensional Non-Convex Polyhedra," Discrete & Computational Geometry, 7:227-254.
Shewchuk, J. R. (2002). "Constrained Delaunay Tetrahedralizations and Provably Good Boundary Recovery," Proceedings of the 11th International Meshing Roundtable, 193-204.
Shewchuk, J. R. (2000). "Mesh Generation for Domains with Small Angles," Proceedings of the 16th Annual ACM Symposium on Computational Geometry, 1-10.
Shewchuk, J. R. (1996). Triangle (Version 1.3), http://www-2.cs.cmu.edu/~quake/triangle.html
Teng, S. H. (2000). "Unstructured Mesh Generation: Theory, Practice and Perspectives," International Journal of Computational Geometry and Applications, 10:227-266.
Thompson, J. F. (1985). Numerical Grid Generation, Foundation and Applications, http://www.erc.msstate.edu/education/gridbook/index.html
Thompson, J. F., B. K. Soni and N. P. Weatherill (1999). Handbook of Grid Generation, CRC Press.
Watson, D. F. (1981). "The n-Dimensional Delaunay Tessellation with Application to Voronoi Polytopes," Computer Journal, 24:167-172.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔