(3.236.222.124) 您好!臺灣時間:2021/05/10 15:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊善茜
研究生(外文):Yang Shan-Chien
論文名稱:台灣地區冬季劇烈天氣之個案診斷分析
指導教授:陳泰然陳泰然引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:大氣科學研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:110
中文關鍵詞:冰雹劇烈天氣雲模式
外文關鍵詞:hailsevere weathercloud model
相關次數:
  • 被引用被引用:2
  • 點閱點閱:239
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
2002年12月18–21日期間,華南福建與台灣地區多處降下冰雹,為此區冬季罕見之劇烈天氣現象,並造成停電與農業損失。此期間,華南與台灣地區位於地面鋒後與850 hPa槽前,地面冷空氣之上具有深厚西南風並有顯著垂直風切,低層非季節性的暖濕氣流,高層噴流與分流輻散場,以及中低對流層之對流不穩度,這些均為有利劇烈對流發展的綜觀環境條件。

衛星雲圖與雷達回波顯示,對流系統在19日1600 LST於廈門西方開始發展,三個超大胞對流風暴呈東北–西南走向排列,隨後增強並東移到台灣地區。個別對流胞移動方向、對流系統移動方向及其與環境風切間之配置,均與美國中部多胞對流系統之發展情況相似。三個強對流胞均經歷多次的風暴分裂,且分裂後以南側之風暴較強。

使用日本名古屋大學研發之雲解析風暴模式(Cloud-Resolving Storm Simulator,簡稱CReSS)進行個案模擬,發現福建武夷山東側山坡局部環流上坡風在午後形成中尺度輻合,其伴隨之上升運動使低層空氣被舉升以達自由對流層。同時,CReSS除模擬本個案之劇烈對流、鋒面對流以及陸上零星對流之發展、結構和移行,也成功模擬風暴分裂的現象。風暴分裂過程中,在700 hPa附近產生一對氣旋式與反旋式渦旋,其出現與發展的高度、強度均與理論預期相符,渦度收支分析顯示,此對渦旋主要透過垂直速度水平差異的扭轉效應而來。

本個案對流系統之延時雖長達10小時,但是模擬之對流系統卻於發展3小時後消散。由模擬結果顯示對流發生前近地層內之偏北風較觀測之偏東風為乾,減少了有利對流發展與維持的水氣供應。對流發展後,福建沿海近地層內之東南風亦與觀測之東北風有所差異,使有利對流發展之中尺度輻合區滯留於福建內陸,同時模擬中偏低的海面溫度,亦不利對流系統東移發展;另一方面,850 hPa以上的各層模擬風速均較觀測為弱,故低層噴流水氣輸送較觀測少,而較弱的高層分流輻散場亦未能提供有利對流發展之環境,致使模式中對流無法維持並提前減弱消散。


目 錄
頁次
目錄…………………………………………………………………….i–ii
摘要……………………………………………………………….….iii–iv
圖說…………………………………………………………………...v–ix
第一章 前言………………………………………………………..1–4
第二章 資料與分析……………………………………………5–7
一、 資料……………………………………………………5
二、 分析方法…………………………………………………6–7
第三章 綜觀環境條件……………………………………………8–18
一、 地面分析…………………………………………………8–9
二、 高空分析…………………………………………………9–12
三、 氣候上的特殊性…………………………………………13–14
四、 探空分析…………………………………………………14–15
五、 小結……………………………………………………15–18
第四章 中尺度分析………………………………………………19–25
一、 雨量與落雷分布…………………………………………19
二、 紅外線衛星雲圖……………………………………19–21
三、 雷達回波…………………………………………….21–22
四、 地面中尺度分析…………………………………………22–23
五、 小結……………………………………………………….23–25
第五章 數值模擬…………………………………………………26–40
一、 模式簡介…………………………………………………26–27
二、 初始場………………………………………………28–29
三、 模擬結果…………………………………………………29–37
(一) 綜觀比對…………………………………………29–30
(二) 強度與移行………………………………………30–34
(三) 地面分析…………………………………………34
(四) 低層中尺度輻合與舉升機制……………………..34–36
(五) 對流風暴分裂……………………………………..36–37
四、 小結……………………………………………………….38–40
第六章 討論……………………………………………………41–48
第七章 總結……………………………………………………49–51
致謝…………………………………………………………………52–53
參考文獻……………………………………………………………54–59
圖…………………………………………………………………..60–109


王寶貫,1994:雲物理學。國立編譯館主編,渤海堂文化公司出版,332頁。
林品芳、周仲島及游政谷,2003:北台灣夏季雹暴之雙都卜勒雷達分析。大氣科學,31,333–354。
俞家忠,1974:利用氣象衛星資料預測台灣低壓及台灣天氣之研究。氣象預報與分析,60,1–11。
紀水上與陳泰然,1990:冬季前夕台灣地區標線系統之初步分析:1989年12月21日個案。天氣分析與預報研討會論文彙編,中央氣象局,30,347–367。
陶詩言與張慶華,1998:亞洲地區冬夏季對ENSO事件的影響。大气科学(中國大陸),22,399–407。
黃文亭與陳泰然,2002:台灣北部地區冬季劇烈天氣事件的診斷分析研究。大氣科學,217–239。
劉廣英、葉文欽及張儀峰,1985:台灣區探空氣象因子量氣候參考值之分析。行政院國家科學委員會專題研究報告第013號,76頁。
Atkins, N. T., M. L. Weisman, and L. J. Wicker, 1999: The influence of preexisting boundaries on supercell evolution. Mon. Wea. Rev., 127, 2910–2927.
Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 1711–1732.
Brown, R. A., 1992: Initiation and evolution of updraft rotation within an incipient supercell thunderstorm. J. Atoms. Sci., 49, 1997–2014.
Browning, K. A., 1964: Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J. Atoms. Sci., 21, 634–639.
____, 1977: The structure and mechanisms of hailstorms. Meteor. Monogr., 38, 1–43.
____, and G. B. Foote, 1976: Airflow and hailgrowth in supercell storms and some implications for hail storms. Quart. J. Roy. Meteor. Soc., 102, 499–533.
Chancibault, K., V. Ducrocq, and J.-P. Lafore, 2003: A numerical study of a nontornadic supercell over France. Mon. Wea. Rev., 131, 2290–2311.
Chen, G T.-J., and C.-C. Yu, 1988: Study of low-level jet and extremely heavy rainfall over northern Taiwan in the Mei–Yu season. Mon. Wea. Rev., 116, 884–891.
____, C.-C. Wang, and D. T.-W. Lin, 2004: Characteristics of low-level jets over northern Taiwan in Mei-yu season and their relationship to heavy rain events. Mon. Wea. Rev. (accepted)
Chisholm, J., and J. H. Renick, 1972: The kinematics of multicell and supercell Alberta hailstorms, Alberta Hail Studies, 1972. Research Council of Albertal Hail Studies Rep., 72–2, 24–31.
Cotton, W. R., and R. A. Anthes, 1989: Storm and Cloud Dynamics. Academic Press Inc., 573.
Edwards, R., and R. L. Thompson, 1998: Nationwide comparisons of hail size with WSR-88D vertically integrated liquid water and derived thermodynamic sounding data. Wea. Forcasting, 13, 277–285.
Foote, G. B., and H. W. Frank, 1983: Case study of a hailstorm in
Colorado. Part Ⅲ: Airflow from triple-Doppler measurements. J. Atmos. Sci., 40, 686–707.
Hallett, J., and G. A. Isaac, 2000: Meeting summary: Perspectives in could physics. Bull. Amer. Meteor. Soc., 82, 2259–2264.
Johnson, R. H., and C. A. DoswellⅢ, 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588–612.
____, and B. E. Mapes, 2001: Mesoscale processes and severe convective weather. Severe Convective Storms, Meteor. Monogo., 28, 71–122.
Jonhson, D. E., P. K. Wang, and J. M. Straka, 1993: Numerical simulations of the 2 August 1981 CCOPE supercell storm with and without ice microphysics. J. Appl. Meteor., 32, 745–759.
Klemp, J. B., 1987: Dynamics of tornadic thunderstorms. Annu. Rev. Fliud Mech., 19, 396–402.
____, and M. L. Weisman, 1983: The dependence of convective precipitation patterns on vertical wind shear. Preprints, 21st Conf. Radar Meteorol., Boston, Amer. Meteor. Soc., 44–49.
____, and R. B. Wilhelmson, 1978: Simulations of right– and left–moving storms produced through storm splitting. J. Atoms. Sci., 34, 1097–1110.
Kondo, J., 1976: Heat balance of the China Sea during the air mass transformation experiment. J. Meteor. Soc. Japan, 54, 382–398.
Konrad, C. E., 1997: Synoptic-scale features associated with warm season heavy rainfall over the interior southeastern United States. Wea. Forecasting, 12, 557–571.
Lenning, E., and H. E. Fuelberg, 1998: An evaluation of WSR-88D severe hail algorithms along the northeastern Gulf coast. Wea. Forecasting, 13, 1029–1044.
Lilly, D. K., 1986: The structure, energetics and propagation of rotating convective storms. Part Ⅱ: Helicity and storm stablilzation. J. Atoms. Sci., 43, 126–140.
Marwitz, J. D., 1972: The structure and motion of severe hailstorms. PartⅡ: Multi-cell storms. J. Appl. Meteor., 11, 180–188.
Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atoms. Sci., 31, 1791–1806.
Newton, C. W., 1967: Severe convective storms. Advances in Geophysics, Academic Press, 12, 257–303.
Ogura, Y., and M. T. Liou, 1980: The structure of a midlatitude squall line: A case study. J. Atmos. Sci., 37, 553–567.
Parker, M. D., and R. H. Johnson, 2000: Organization modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 3413–3436.
Phillips, T., and P. L. Barry, 2003: A quirky El Nino. http://science.nasa.gov/headlines/y2003/14mar_elnino2002.htm
Ray, P. S., R. J. Doviak, G. B. Walker, D. Simans, J. Carter, and B. Bumgarner, 1975: Dual-Doppler observation of a tornadic storm. J. Appl. Meteor., 14, 1521–1530.
Rotunno, R., 1981: On the evolution of thunderstorm rotation. Mon. Wea. Rev., 109, 577–586.
____, and J. B. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271–292.
____, ____, and M. L. Weisman, 1988: A theory for strong, long-live squall lines. J. Atmos. Sci., 45, 463–485.
Sanders, F., and L. F. Bosart, 1985: Mesoscale structure in the Megalopolitan snowstorm of 11–12 February 1983. Part Ⅰ: Frontogenetical foring and symmetric instability. J. Atmos. Sci., 42, 1050–1061.
Schlesinger, R. E., 1980: A three-dimensional numerical model of an isolated deep thunderstorm. Part Ⅱ: Dynamics of updraft splitting and mesovortex couplet evolution. J. Atmos. Sci., 37, 395–420.
Tsuboki, K., and A. Sakakibara, 2002: Large-scale parallel computing of cloud resolving storm simulator. High Performance Computing, Springer, H. P. Zima et al. Eds., 243–259.
Uccellini, L. W., and D. R. Johnson, 1979: The coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storm. Mon. Wea. Rev., 107, 682–703.
____, and P. J. Kocin, 1981: The interaction of jet streak circulations. Wea. Forcasting, 2, 289–308.
Wakimoto, R. M., C.-H. Liu, and H.-Q. Cai, 1998: The Garden City, Kansas, storm during VORTEX 95. Part Ⅰ: Overview of the storm’s life cycle and mesocyclogenesis. Mon. Wea. Rev., 126, 372–392.
Weisman, M. L., 1992: The role of convectively generated rear-inflow jets in the evolution of long-lived mesoconvective systems. J. Atmos. Sci., 49, 1826–1847.
____, and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504–520.
Xiaowen, L., W.-K. Tao, A. Khain, J. Simpson, and D. Johnson, 2004: Impact of aerosol concentration on a tropical mesoscale convective system: A cloud model study. 14th International conference on clouds and precipitation, Bologna, Italy, 18–23 July 2004.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔