(3.238.96.184) 您好!臺灣時間:2021/05/10 10:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃俐瑀
研究生(外文):Li-Yu Huang
論文名稱:半導體製造之先進製程產能的建置時點模型
論文名稱(外文):A Model of Capacity Deployment Timing for Advanced Processes of Semiconductor Manufacturing
指導教授:周雍強周雍強引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工業工程學研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:99
中文關鍵詞:產能投資規劃先進製程技術半導體製造良率學習測試期時間長度產能時點決策產能擴充
外文關鍵詞:Capacity Deployment TimingYield Improvement ModelsSemiconductor ManufacturingCapacity IncrementAdvanced Process Capacity
相關次數:
  • 被引用被引用:2
  • 點閱點閱:206
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高科技產業的技術測試與產品需求有很高的不確定性,而先進製程技術更迭迅速、建廠的前置時間長,使得製程測試壓力很大,此外產能的投資成本往往很高,更加深了企業在規劃先進製程技術產能投資的困難度,產能建置過早會造成設備閒置,建置太晚則會喪失商機,所以產能建置時點是高科技製造企業的重要決策。
本文的主要目的是探討半導體先進製程產能的建置規劃方法,本文首先建構包含良率改善的隨機模型在內的系統動態模型,其次,依據系統動態關係,建立一個設備閒置與商機損失的經濟分析模式,最後,產能就緒的最佳時點經由數學優化產生並以投資績效指標,提出一個產能擴充的應有態度。
本研究的主要貢獻為成孕H良率改善的隨機模型計算測試期時間長度的機率分佈,提供企業明確的先進製程產能投資時點的決策方法,並結合產能擴充計劃與投資績效指標,客觀地提出產能擴充的合理態度。未來的高科技產業將會有很多的不確定性,本文提出的方法將有助於分析風險與制訂對策。
Technology development and product demand in high-tech industries are full of uncertainties. Since building a factory requires long lead-time and manufacturing capacity incurs high cost, capacity deployment timing is an important decision in the uncertain environment of technology development and the volatile market.

The objective of this paper is to propose a method of capacity deployment timing for advanced process technology of semiconductor manufacturing in order to decrease the capacity idle costs and the losing business chance costs. A dynamic system model based on a stochastic model of yield improvement is first presented. And then, establish an economic analysis model considering over-capacity and under-capacity costs. Finally, illustrations are given to show how to optimize capacity deployment timing with this model.

The contribution of this paper is to offer successfully the distribution of time length of development, present the method of capacity deployment timing decision, and verify its optimization. Besides, the editor also presents a proper attitude to capacity increment when the demand condition is uncertain. Because of the high uncertainties that high-tech industry will face in the future, the research results will help those firms in that industry to make better risk and strategy analyses.
中文摘要 I
Abstract II
目 錄 III
圖 目 錄 V
表 目 錄 VII
第1章 緒論 1
1.1 研究背景與動機 2
1.1.1 先進製程產能規劃的不確定性 4
1.1.2 最小之產能利用率限制 6
1.2 研究目的 6
1.3 研究方法與步驟 7
1.4 論文組織與架構 8
第2章 文獻回顧 9
2.1 需求生命週期 9
2.2 學習曲線 10
2.3 製程良率發展 14
2.4 良率的時間函數 16
2.5 良率與需求的相依關係 20
2.6 價格趨勢模型 21
2.7 單位產能的投資成本 24
2.8 商機損失的成本 25
2.9 不確定性下的產能投資策略 27
2.10 固定資產的折舊方式 28
第3章 產能供應與需求的動態模型 32
3.1 產能需求之動態關係 32
3.2 產能決策模式 39
3.3 良率分佈的合理區間 41
3.4 在時間t時的良率機率分佈 46
3.5 測試期之期間分佈 (T1) 51
3.6 先進製程之產能決策分析 59
第4章 產能擴充計劃與績效指標 69
4.1 最小之產能利用率 69
4.2 資產報酬率(ROA)模型概念 71
4.3 產能擴充態度 76
第5章 總結 79
5.1 結論 79
5.2 未來研究方向 80
參考文獻 81
附錄一 良率改善的時間長度 83
附錄二 不同製程技術之需求與良率關係圖 84
附錄三 目標函數Z(tc)兩次微分證明式 86
1.楊雲明, “個體經濟學”, 智勝文化出版社, 1999.
2.Balasubramaniam, S., Abul K. Sarwar and D. M. H. Walker, , “Yield Learning in Integrated Circuit Package Assembly,” IEEE Transactions on components, packaging, and manufacturing technology, part C, Vol.20, No.2, April 1997.
3.Baldi, L., “Industry roadmaps: The challenge of complexity,” Microelectronic Engineering 34, 1996, p. 9-26
4.Benavides, D.L., James R. Duley and Blake E. Johnson, “As Good as it Gets: Optimal Fab Design and Development,” IEEE Transactions on Semiconductor Manufacturing, Vol.12, No.3, 281-287, 1999
5.Cassandras, C. G.., and Yu-Chi Ho, “Yield Learning and Production Planning for Semiconductor Manufacturing Systems,” Network Dynamics, Inc., 128 Wheeler Road, Burlington, MA01803, 385-390, 1994.
6.Clarke, F. H., Darrough M.N., and Heineke J.M., “Optimal Pricing Policy in the Presence of Experience Effects,” Journal of Business 55, 517-530, 1982.
7.Cvsa, V., and Stephen M. Gilbert, “Strategic Commitment versus Postponement in a Two-tier Supply Chain,” European Journal of Operation Research Vol.141, Issue.3, 526-543, 2002.
8.De Jong, J. R., “Increasing Skill and Reduction of Work Time-Concluded,” Time and Motion Study, 20-33, 1964.
9.Dotan, A., Gross M., and Lieber Z., “Optimal Production in the Presence of Learning,” Economic Letters 19, 79-83, 1985.
10.Jorgensen, S., Peter M. Kort, and Georges Zaccour, “Production, Inventory, and Pricing under Cost and Demand Learning Effects,” European Journal of Operation Research 117, 382-395, 1999.
11.Karabuk, S. and S. David Wu, “Coordinating Strategic Capacity Planning in the Semiconductor Industry,” Operation Research Vol.51, No.6, 838-849, 2003.
12.Kidd, P. T., Agile Manufacturing-Forging New Frontiers, Addison Wesley, 2nd ed, 1994.
13.Kuo, W., and Taeho Kim, “An Overview of Manufacturing Yield and Reliability Modeling for Semiconductor Products,” Proceedings of the IEEE, Vol.87, No.8, 1329-1344, August 1999.
14.Kwon, Y. J., and D. M. H. Walker, “Yield Learning via Functional Test Data,” International Test Conference, 626-635, 1995.
15.Liang, Y. Y. and Yon Chun Chou, “Option-based Capacity Planning for Semiconductor Manufacturing,” Semiconductor Manufacturing, 2003 IEEE International Symposium on, 77-80, 2003.
16.Wang, E., and Ram Akella, “Resource Allocation for Yield learning in Semiconductor Manufacturing,” 1995 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, 260-266, 1995.
17.Wang, E., Marius Holtan, Ram Akella, Iraj Emami, Mike McIntyre, Dave Jensen, and Dave Fletcher, “Valuation of Yield Management Investments,” 1997 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, 1-7, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔