(3.238.96.184) 您好!臺灣時間:2021/05/08 03:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林威戎
研究生(外文):Wei-jung Lin
論文名稱:多面體寡聚倍半矽氧烷奈米複合材料之合成與特性及其微結構研究
論文名稱(外文):Synthesis and Characterization of Polyhedral Oligomeric Silsesquioxane Based Nanocomposites and Their Microstructures
指導教授:陳文章陳文章引用關係
指導教授(外文):Wen-Chang Chen
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:227
中文關鍵詞:倍半矽氧烷共軛高分子聚醯亞胺蒙地卡羅
外文關鍵詞:Monte Carlosilsesequioxaneconjugated polymerpolyimide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:299
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,多面體寡聚倍半矽氧烷(POSS)受到了廣泛的研究並且開啟了新的奈米複合材料合成途徑。POSS因具有無機的核心及有機的鏈段,可以以奈米等級有效地分散在混成材料中,此外其特殊立體結構及耐熱性,更增添其應用上的多樣性,本文在簡介部分詳細整理了相關的POSS文獻,包括POSS的合成方法、POSS與各種高分子的混成材料製備及應用。在本研究中,以POSS衍生物出發,分別探討POSS與共軛發光高分子形成之星狀結構對發光性質之影響,以電腦模擬POSS自身反應所形成之孔洞結構,及POSS與聚醯亞胺混成材料在作為光學薄膜或低介電常數薄膜的性質與應用。

本文第一部份研究POSS對共軛發光高分子之發光及耐熱特性之影響。首先合成末端含溴苯基之POSS,並與高分子polyfluorene (PFO)以鎳催化反應得到以POSS為核心之星狀共軛發光高分子,結果顯示POSS的加入明顯降低聚集的產生並加強其耐熱性,研究發現POSS會阻礙玻璃轉移及結晶行為,且在不同溶劑中或在固態下對可見光之吸收可發現聚集產生之吸收隨POSS加入而減少,相對於原本純高分子產生明顯之綠光,加入POSS後發光熱穩定性可增加至150度。另外將此材料製備成單層發光二極體元件,其最大亮度及發光效率相較於純高分子可增加兩倍,因此,藉由加入無機之POSS可提供一新的途徑使共軛發光高分子獲得更佳之耐熱及光電性質。

本文第二部份則以連續體分子模型及蒙地卡羅法模擬POSS奈米複合材料之網狀孔洞結構,此模擬清楚地分辨出奈米孔洞結構中所包含較小的分子間孔洞及較大的微孔洞,因此藉由觀察交聯程度、孔洞大小及分佈來探討與POSS上鏈段長度、鏈段硬度及可交聯鏈段數目之關係。模擬結果顯示交聯程度及分子間孔洞的大小隨POSS上鏈段長度增加增加,而微孔洞的大小卻隨著鏈段長度增加而趨減小,結果均與實驗相符合。硬鏈段的POSS則因含有較多的自由未反應鏈段,導致較低的交聯程度與較窄的孔洞分佈,相反地,減少可以反應的鏈段數目並未影響反應交聯程度,卻使得分子間孔洞大小增加,也使得POSS包含了更大的體積並均勻地分散在系統內,降低了產生大型微孔洞的機率,因此,藉由電腦模擬的輔助可以觀察到實驗無法觀察到的結果並預測不同條件所產生對POSS為結構的影響。

本文第三部份則是合成寡聚甲基倍半矽氧烷(O-MSSQ)與聚醯亞胺(polyimide)混成材料,此奈米級O-MSSQ可提供無機含量精確控制,研究有機-無機組成、混成結構對此材料製備成為薄膜後之型態及特性的影響。相分離可以藉由控制聚醯亞胺的分子量及O-MSSQ的Si-OH反應基含量得以改善,因此低分子量聚醯亞胺並配合使用偶合劑可得到均勻透明的薄膜,抑或使用含大量反應基之O-MSSQ。熱性質及機械性質在無機成分加入後有顯著的提升,並且可以利用有機-無機比料調控的折射率及介電常數,此外雙折射率也相對地減低,因此,本研究顯示此混成材料可作為光學薄膜或低介電常數薄膜的應用。

由前述研究可發現奈米複合材料的結構與性質可經由POSS的加入得到明顯改進,後續的研究包括藉由理論與實驗精確地控制POSS奈米複合材料的結構、型態與性質。


Polyhedral oligomeric silsesquioxane (POSS) based nanocomposites have been extensively studied recently. The inorganic core and organic tethers enable POSS to disperse homogeneously in hybrid materials. Their special stereo structure and thermal stability also increase the versatile applications of the POSS based nanocomposites. However, the details on the correlation between the structure, morphology and properties require further exploration. In this study, the structures and properties of three POSS based nanocomposites were explored: (1) synthesis of new POSS core and its star-like polyfluorene derivative to address the effect of POSS on the morphology and properties of nanocomposites; (2) The theoretical network structure of the POSS simulated by Monte Carlo method; (3) Polyimide/POSS nanocomposites synthesized from oligomeric silsesquioxane precursor solutions.

In Chapter 2, a novel starlike polyfluorene derivative, PFO-SQ, was synthesized by the Ni(0)-catalyzed reaction of octa(2-(4-bromophenyl)ethyl)octasilsesquioxane (OBPE-SQ) and polydioctylfluoroene (PFO). The incorporation of the silsesquioxane core into polyfluorene could significantly reduce the aggregation as well as enhance the thermal stability. The DSC study showed an elimination of the glass transition and the crystallization as well as a significant reduction on the melting enthalpy in the PFO-SQ. The UV-Vis absorption spectra in a different solvent combination or solid state film showed an intensity reduction of the aggregation peak for the PFO-SQ in comparison with that of the PFO. The stability of the photoluminescence spectra of the PFO-SQ could be up to 1500C while that of the PFO showed a significant green emission. A single-layer LED device using the PFO-SQ showed a turn on voltage of 6.0 V, a brightness of 5430 cd/m2 (at a drive voltage of 8.8 V), and a current density of 0.844 A/cm2. The maximum luminescence intensity and quantum efficiency of the PFO-SQ were almost twice as good as those of the PFO electroluminescent device. Hence, the incorporation of the inorganic silsesquioxane core into polyfluorenes could provide a new methodology for preparing organic light-emitting diodes with improved thermal and optoelectronic characteristics.

In chapter 3, the network structures of POSS based nanocomposites are studied by continuous-space Monte Carlo simulations. The nanoporous network contains intercubic pores and mesopores which can be clearly identified in this work. In terms of degree of crosslinking and pore size distribution (PSD), effects of linker length, tether rigidity and number of reactive tethers are examined. It is found that the extent of crosslinking as well as the intercubic pore size of the network increases as linker length increases which are consistent with experimental findings. However, the mesopores appear to shift to a smaller radii regime for networks with longer linkers. Networks with rigid tethers contain lots of free linkers, thus, low crosslinking density and narrow PSD are observed. On the other hand, reduction of the reactive tethers shows an insignificant effect on the degree of crosslinking of the system. The fact that the intercubic pore size increases as the number of reactive tethers decreases causes the nano-building blocks to possess larger free volumes and distribute themselves more evenly through out the system. As a result, it reduces the possibility of forming large mesopores.

In the final part of this study, polyimide/silsesquioxane hybrid materials were synthesized by the aminoalkoxysilane-capped poly(pyromellitic dianhydride-co-4,4’- oxydianiline)(amic aicd) and oligomeric methylsilsesquioxane (O-MSSQ) precursor. The O-MSSQ moiety was used for obtaining the precise nano-inorganic moiety in the hybrid materials. The effects of molecular structures and composition on the morphologies and properties of the prepared hybrid materials were studied. The phase separation of the prepared hybrid materials could be controlled by the molecular weight of the polyimide moiety, the Si-OH end group content of the O-MSSQ or the coupling agent. Homogeneous and transparent hybrid thin films were obtained from the case of low molecular weight polyimide moiety with a coupling agent, 3-aminopropyltrimethoxysilane (APrTMS). However, micro-phase separation was occurred if the molecular weight of the polyimide moiety enhanced or without a coupling agent, as evidenced by AFM, FE-SEM, and ESCA. The high Si-OH content of the O-MSSQ could enhance the bonding density between the organic and inorganic moiety and thus retard phase separation. The thermal and mechanical properties of the prepared hybrid materials were largely improved from the parent polyimide, PMDA-ODA, which were demonstrated by the TGA, DSC, and thermal-stress analysis. The hybrid materials showed adjustable refractive index and dielectric constant by varying the O-MSSQ content. The birefringence of the PMDA-ODA was reduced by incorporating the O-MSSQ moiety. This work revealed that the polyimide/O-MSSQ hybrid materials could have potential applications as optical films or low dielectric constant materials.

The above studies suggest that the structure and properties of nanocomposites could be significantly improved through the incorporation of well-defined POSS structure. Ongoing work will be the precise control of the structure, morphology, and properties of POSS based nanocomposites through the experimental and theoretical approach.


Chapter 1 Introduction to Polyhedral Oligomeric Silsesquioxanes 1
1-1 Synthesis of octasubstituted POSS (R8T8) 4
1-1-1 Hydrolytic condensation reaction 4
1-1-2 Hydrosilylation reaction 6
1-1-3 Synthetic methods using octaphenyl-, octavinyl-, and octaamino-POSS 8
1-2 Synthesis of monosubstituted POSS (R’R7T8) 11
1-2-1 Corner capping reaction 11
1-2-2 Co-hydrolytic condensation 12
1-3 Synthesis of intermediate substituted POSS (R’nR8-nT8) 14
1-4 POSS based polymer 15
1-4-1 POSS-PS (Polystyrene) 18
1-4-2 POSS-PMA (Polymethacrylate) 19
1-4-3 POSS-PI (Polyimide) 21
1-4-4 POSS-PE, POSS-PP 25
1-4-5 POSS-PU (Polyurethane) 27
1-4-6 POSS-PN (Polynorbornene) 28
1-4-7 POSS-POZO (Polyoxazoline) 30
1-4-8 POSS-LCP (Liquid crystalline polymer) 33
1-4-9 POSS-PVP (Polyvinylpyrrolidone) 34
1-4-10 POSS-Polysiloxane 35
1-4-11 POSS-Epoxy resin 36
1-4-12 POSS-Conjugated polymer 37
1-4-13 Summary 38
1-5 Dendritic and Star-like POSS 39
1-5-1 Liquid Crystalline POSS (LC-POSS) 39
1-5-2 Dendritic POSS 43
1-6 Porous POSS materials 44
1-7 Other applications 49
1-8 Properties of POSS based derivatives 50
1-9 Research Objectives 51

Chapter 2 Synthesis and Optoelectronic Properties of Star-like Polyfluorenes with a Silsesquioxane Core 59
2-1 Introduction 59
2-2 Experimental Section 62
2-2-1 Materials 62
2-2-2 Synthesis of Octa(2-(4-bromophenyl)ethyl)octasilsesquioxane (OBPE-SQ) 62
2-2-3 Synthesis of Poly(9,9-dioctylfluorene) (PFO) 65
2-2-4 Synthesis of Starlike Polyfluorene Using OBPE-SQ as the Core (PFO-SQ) 66
2-2-5 Characterization 68
2-2-6 Device Fabrication and Testing 69
2-3 Results and Discussion 70
2-3-1 Synthesis of the OBPE-SQ 70
2-3-2 Synthesis of the PFO-SQ 73
2-3-3 Thermal Properties 74
2-3-4 Optoelectronic Properties - Absorption and Photoluminescence 76
2-3-5 Optoelectronic Properties - Electroluminescence Characteristics 81
2-4 Conclusions 83

Chapter 3 Network Structures of Polyhedral Oligomeric Silsesquioxane Based Nanocomposites: A Monte Carlo Study 87
3-1 Introduction 88
3-2 Theoretical Models and Simulation 91
3-3 Results and Discussion 96
3-3-1 Effect of Tether Length on Pore Size Distribution and Degree of Crosslinking 96
3-3-2 Tether Rigidity 105
3-3-3 Number of reactive tethers 108
3-4 Conclusions 112

Chapter 4 Synthesis and Characterization of Polyimide/Oligomeric Methylsilsesquioxane Hybrid Films 117
4-1 Introduction 117
4-2 Experimental 121
4-2-1 Materials 121
4-2-2 Preparation of PMDA-ODA/O-MSSQ hybrid thin films 121
4-2-3 Characterization 125
4-3 Results and Discussion 126
4-3-1 Structure and Molecular Weight 126
4-3-2 Morphology 129
4-3-3 Thermal Properties 134
4-3-4 Optical and Dielectric Properties 136
4-4 Conclusions 139

Chapter 5 Conclusions and Future Work 143
5-1 Conclusions 143
5-2 Future Work 145

Appendix A Theoretical Analysis of Baking Process on Two Polymer/Solvent Systems : PMMA/Anisole and PMDA-ODA/NMP A-1
A-1 Introduction A-2
A-2 Theoretical Analysis A-4
A-2-1 Case I: Fixed Boundary Problem A-5
A-2-2 Case II: Moving Boundary Problem A-7
A-3 Results and Discussion A-12
A-3-1 PMMA/Anisole System A-14
A-3-2 PMDA-ODA/NMP System A-20
A-4 Conclusions A-23

Appendix B A general model for predicting the baking behavior of a polymer film from poly(vinyl acetate)/methanol B-1
B-1 Introduction B-2
B-2 Theoretical Analysis B-4
B-3 Results and Discussion B-13
B-4 Conclusions B-20

Appendix C Personal Publication List C-1


Chapter 1
(1)Agaskar, P. A.; Klemperer, W. G. Inorganica Chimica Acta 1995, 229, 355-364.
(2)Frye, C. L.; Collins, W. T. J. Am. Chem. Soc. 1970, 92, 5586-5588.
(3)Agaskar, P. A. Inorganic Chemistry 1991, 30, 2707-2708.
(4)Bolln, C.; Tsuchida, A.; Frey, H.; Mulhaupt, R. Chemistry of Materials 1997, 9, 1475-1479.
(5)Crivello, J. V.; Malik, R. Journal of Polymer Science Part a-Polymer Chemistry 1997, 35, 407-425.
(6)Nyman, M. D.; Desu, S. B.; Peng, C. H. Chemistry of Materials 1993, 5, 1636-1640.
(7)Barry, A. J.; Daudt, W. H.; Dmicone, J. J.; Gilkey, J. W. J. Am. Chem. Soc. 1954, 77, 4248-4252.
(8)Lucke, S.; Stoppek-Langner, K. Applied Surface Science 1999, 145, 713-715.
(9)Brown, J. F.; Vogt, L. H.; Prescott, P. I. J. Am. Chem. Soc. 1963, 86, 1120-1124.
(10)Voronkov, M. G.; Martynova, T. N.; Mirskov, R. G.; Belyi, V. I. Zh. Obshch. Khim. 1979, 49, 1522-1525.
(11)Hasegawa, I.; Motojima, S. Journal of Organometallic Chemistry 1992, 441, 373-380.
(12)Hasegawa, I.; Ishida, M.; Motojima, S. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry 1994, 24, 1099-1110.
(13)Hasegawa, I. Polyhedron 1991, 10, 1097-1101.
(14)Agaskar, P. A. Inorganic Chemistry 1990, 29, 1603-1603.
(15)Gravel, M. C.; Zhang, C.; Dinderman, M.; Laine, R. M. Applied Organometallic Chemistry 1999, 13, 329-336.
(16)Zhang, C. X.; Laine, R. M. Journal of the American Chemical Society 2000, 122, 6979-6988.
(17)Bassindale, A. R.; Gentle, T. E. Journal of Materials Chemistry 1993, 3, 1319-1325.
(18)Sellinger, A.; Laine, R. M. Macromolecules 1996, 29, 2327-2330.
(19)Kim, K. M.; Inakura, T.; Chujo, Y. Polymer Bulletin 2001, 46, 351-356.
(20)Kim, K. H.; Chujo, Y. Polymer Bulletin 2001, 46, 15-21.
(21)Provatas, A.; Luft, M.; Mu, J. C.; White, A. H.; Matisons, J. G.; Skelton, B. W. Journal of Organometallic Chemistry 1998, 565, 159-164.
(22)Zhang, C. X.; Bunning, T. J.; Laine, R. M. Chemistry of Materials 2001, 13, 3653-3662.
(23)Tamaki, R.; Tanaka, Y.; Asuncion, M. Z.; Choi, J. W.; Laine, R. M. Journal of the American Chemical Society 2001, 123, 12416-12417.
(24)Rikowski, E.; Marsmann, H. C. Polyhedron 1997, 16, 3357-3361.
(25)Feher, F. J.; Wyndham, K. D.; Soulivong, D.; Nguyen, F. Journal of the Chemical Society-Dalton Transactions 1999, 1491-1497.
(26)Feher, F. J.; Wyndham, K. D.; Knauer, D. J. Chemical Communications 1998, 2393-2394.
(27)Feher, F. J.; Wyndham, K. D.; Scialdone, M. A.; Hamuro, Y. Chemical Communications 1998, 1469-1470.
(28)Feher, F. J.; Wyndham, K. D. Chemical Communications 1998, 323-324.
(29)Sellinger, A.; Laine, R. M. WO 02/05971 A1 2002.
(30)Manson, B. W.; Morrison, J. J.; Coupar, P. I.; Jaffres, P. A.; Morris, R. E. Journal of the Chemical Society-Dalton Transactions 2001, 1123-1127.
(31)Zhang, C. X.; Laine, R. M. Journal of Organometallic Chemistry 1996, 521, 199-201.
(32)Feher, F. J.; Soulivong, D.; Eklund, A. G.; Wyndham, K. D. Chemical Communications 1997, 1185-1186.
(33)Marcolli, C.; Calzaferri, G. Applied Organometallic Chemistry 1999, 13, 213-226.
(34)Feher, F. J.; Weller, K. J. Organometallics 1990, 9, 2638-2640.
(35)Feher, F. J.; Weller, K. J.; Schwab, J. J. Organometallics 1995, 14, 2009-2017.
(36)Feher, F. J.; Budzichowski, T. A.; Blanski, R. L.; Weller, K. J.; Ziller, J. W. Organometallics 1991, 10, 2526-2528.
(37)Feher, F. J.; Phillips, S. H.; Ziller, J. W. Chemical Communications 1997, 829-830.
(38)Feher, F. J.; Phillips, S. H. Journal of Organometallic Chemistry 1996, 521, 401-403.
(39)Laine, R. M.; Zhang, C. X.; Sellinger, A.; Viculis, L. Applied Organometallic Chemistry 1998, 12, 715-723.
(40)Calzaferri, G.; Marcolli, C.; Imhof, R.; Tornroos, K. W. Journal of the Chemical Society-Dalton Transactions 1996, 3313-3322.
(41)Martynova, T. N.; Chupakhina, T. I. J. Organometal. Chem. 1988, 345, 11.
(42)Haddad, T. S.; Lichtenhan, J. D. Macromolecules 1996, 29, 7302-7304.
(43)Lichtenhan, J. D.; Otonari, Y. A.; Carr, M. J. Macromolecules 1995, 28, 8435-8437.
(44)Feher, F. J.; Soulivong, D.; Eklund, A. G. Chemical Communications 1998, 399-400.
(45)Feher, F. J.; Soulivong, D.; Lewis, G. T. Journal of the American Chemical Society 1997, 119, 11323-11324.
(46)Feher, F. J.; Nguyen, F.; Soulivong, D.; Ziller, J. W. Chemical Communications 1999, 1705-1706.
(47)Feher, F. J.; Soulivong, D.; Nguyen, F. Chemical Communications 1998, 1279-1280.
(48)Feher, F. J.; Terroba, R.; Ziller, J. W. Chemical Communications 1999, 2309-2310.
(49)Feher, F. J.; Terroba, R.; Ziller, J. W. Chemical Communications 1999, 2153-2154.
(50)Lichtenhan, J. D. Comments on Inorganic Chemistry 1995, 17, 115-130.
(51)Schwab, J. J.; Lichtenhan, J. D. Applied Organometallic Chemistry 1998, 12, 707-713.
(52)Li, G. Z.; Wang, L. C.; Ni, H. L.; Pittman, C. U. Journal of Inorganic and Organometallic Polymers 2001, 11, 123-154.
(53)Zheng, L.; Kasi, R. M.; Farris, R. J.; Coughlin, E. B. Journal of Polymer Science Part a-Polymer Chemistry 2002, 40, 885-891.
(54)Romo-Uribe, A.; Mather, P. T.; Haddad, T. S.; Lichtenhan, J. D. Journal of Polymer Science Part B-Polymer Physics 1998, 36, 1857-1872.
(55)Zhang, W. H.; Fu, B. X.; Seo, Y.; Schrag, E.; Hsiao, B.; Mather, P. T.; Yang, N. L.; Xu, D. Y.; Ade, H.; Rafailovich, M.; Sokolov, J. Macromolecules 2002, 35, 8029-8038.
(56)Pyun, J.; Matyjaszewski, K. Macromolecules 2000, 33, 217-220.
(57)Pyun, J.; Matyjaszewski, K.; Wu, J.; Kim, G. M.; Chun, S. B.; Mather, P. T. Polymer 2003, 44, 2739-2750.
(58)Tamaki, R.; Choi, J. W.; Laine, R. M. Chemistry of Materials 2003, 15, 793-797.
(59)Choi, J. W.; Tamaki, R.; Kim, S. G.; Laine, R. M. Chemistry of Materials 2003, 15, 3365-3375.
(60)Wright, M. E.; Schorzman, D. A.; Feher, F. J.; Jin, R. Z. Chemistry of Materials 2003, 15, 264-268.
(61)Leu, C. M.; Reddy, G. M.; Wei, K. H.; Shu, C. F. Chemistry of Materials 2003, 15, 2261-2265.
(62)Leu, C. M.; Chang, Y. T.; Wei, K. H. Macromolecules 2003, 36, 9122-9127.
(63)Zheng, L.; Farris, R. J.; Coughlin, E. B. Macromolecules 2001, 34, 8034-8039.
(64)Zheng, L.; Farris, R. J.; Coughlin, E. B. Journal of Polymer Science Part a-Polymer Chemistry 2001, 39, 2920-2928.
(65)Fu, B. X.; Yang, L.; Somani, R. H.; Zong, S. X.; Hsiao, B. S.; Phillips, S.; Blanski, R.; Ruth, P. Journal of Polymer Science Part B-Polymer Physics 2001, 39, 2727-2739.
(66)Fu, B. X.; Gelfer, M. Y.; Hsiao, B. S.; Phillips, S.; Viers, B.; Blanski, R.; Ruth, P. Polymer 2003, 44, 1499-1506.
(67)Fu, B. X.; Zhang, W. H.; Hsiao, B. S.; Rafailovich, M.; Sokolov, J.; Johansson, G.; Sauer, B. B.; Phillips, S.; Balnski, R. High Performance Polymers 2000, 12, 565-571.
(68)Fu, B. X.; Hsiao, B. S.; Pagola, S.; Stephens, P.; White, H.; Rafailovich, M.; Sokolov, J.; Mather, P. T.; Jeon, H. G.; Phillips, S.; Lichtenhan, J.; Schwab, J. Polymer 2001, 42, 599-611.
(69)Hoflund, G. B.; Gonzalez, R. I.; Phillips, S. H. Journal of Adhesion Science and Technology 2001, 15, 1199-1211.
(70)Bharadwaj, R. K.; Berry, R. J.; Farmer, B. L. Polymer 2000, 41, 7209-7221.
(71)Mather, P. T.; Jeon, H. G.; Romo-Uribe, A.; Haddad, T. S.; Lichtenhan, J. D. Macromolecules 1999, 32, 1194-1203.
(72)Jeon, H. G.; Mather, P. T.; Haddad, T. S. Polymer International 2000, 49, 453-457.
(73)Kim, K. M.; Adachi, K.; Chujo, Y. Polymer 2002, 43, 1171-1175.
(74)Kim, K. M.; Keum, D. K.; Chujo, Y. Macromolecules 2003, 36, 867-875.
(75)Kim, K. M.; Ouchi, Y.; Chujo, Y. Polymer Bulletin 2003, 49, 341-348.
(76)Kim, K. M.; Chujo, Y. Journal of Polymer Science Part a-Polymer Chemistry 2001, 39, 4035-4043.
(77)Xu, H. Y.; Kuo, S. W.; Lee, J. S.; Chang, F. C. Macromolecules 2002, 35, 8788-8793.
(78)Xu, H. Y.; Kuo, S. W.; Lee, J. S.; Chang, F. C. Polymer 2002, 43, 5117-5124.
(79)Xu, H. Y.; Kuo, S. W.; Chang, F. C. Polymer Bulletin 2002, 48, 469-474.
(80)Shockey, E. G.; Bolf, A. G.; Jones, P. F.; Schwab, J. J.; Chaffee, K. P.; Haddad, T. S.; Lichtenhan, J. D. Applied Organometallic Chemistry 1999, 13, 311-327.
(81)Mantz, R. A.; Jones, P. F.; Chaffee, K. P.; Lichtenhan, J. D.; Gilman, J. W.; Ismail, I. M. K.; Burmeister, M. J. Chemistry of Materials 1996, 8, 1250-1259.
(82)Lee, A.; Lichtenhan, J. D. Macromolecules 1998, 31, 4970-4974.
(83)Li, G. Z.; Wang, L. C.; Toghiani, H.; Daulton, T. L.; Koyama, K.; Pittman, C. U. Macromolecules 2001, 34, 8686-8693.
(84)Xiao, S.; Nguyen, M.; Gong, X.; Cao, Y.; Wu, H. B.; Moses, D.; Heeger, A. J. Advanced Functional Materials 2003, 13, 25-29.
(85)Ossadnik, C.; Veprek, S.; Marsmann, H. C.; Rikowski, E. Monatshefte Fur Chemie 1999, 130, 55-68.
(86)Kreuzer, F. H.; Maurer, R.; Spes, P. Makromolekulare Chemie-Macromolecular Symposia 1991, 50, 215-228.
(87)Sellinger, A.; Laine, R. M.; Chu, V.; Viney, C. Journal of Polymer Science Part a-Polymer Chemistry 1994, 32, 3069-3089.
(88)Mehl, G. H.; Saez, I. M. Applied Organometallic Chemistry 1999, 13, 261-272.
(89)Ropartz, L.; Foster, D. F.; Morris, R. E.; Slawin, A. M. Z.; Cole-Hamilton, D. J. Journal of the Chemical Society-Dalton Transactions 2002, 1997-2008.
(90)Ropartz, L.; Morris, R. E.; Schwarz, G. P.; Foster, D. F.; Cole-Hamilton, D. J. Inorganic Chemistry Communications 2000, 3, 714-717.
(91)Ropartz, L.; Haxton, K. J.; Foster, D. F.; Morris, R. E.; Slawin, A. M. Z.; Cole-Hamilton, D. J. Journal of the Chemical Society-Dalton Transactions 2002, 4323-4334.
(92)Ropartz, L.; Morris, R. E.; Foster, D. F.; Cole-Hamilton, D. J. Journal of Molecular Catalysis a-Chemical 2002, 182, 99-105.
(93)Saez, I. M.; Goodby, J. W.; Richardson, R. M. Chemistry-a European Journal 2001, 7, 2758-2764.
(94)Morrison, J. J.; Love, C. J.; Manson, B. W.; Shannon, I. J.; Morris, R. E. Journal of Materials Chemistry 2002, 12, 3208-3212.
(95)Zhang, C. X.; Babonneau, F.; Bonhomme, C.; Laine, R. M.; Soles, C. L.; Hristov, H. A.; Yee, A. F. Journal of the American Chemical Society 1998, 120, 8380-8391.
(96)Soles, C. L.; Lin, E. K.; Wu, W. L.; Zhang, C. X.; Laine, R. M. In Materials Research Society Symposium Proceeding; Warrendale, PA, 2000; Vol. 628, p cc445.
(97)Choi, J.; Harcup, J.; Yee, A. F.; Zhu, Q.; Laine, R. M. Journal of the American Chemical Society 2001, 123, 11420-11430.
(98)Sellinger, A.; Laine, R. M. Chemistry of Materials 1996, 8, 1592.
(99)Su, R. Q.; Muller, T. E.; Prochazka, J.; Lercher, J. A. Advanced Materials 2002, 14, 1369-1373.
(100)Bakhtiar, R.; Feher, F. J. Rapid Communications in Mass Spectrometry 1999, 13, 687-694.
(101)Feher, F. J.; Soulivong, D.; Nguyen, F.; Ziller, J. W. Angewandte Chemie-International Edition 1998, 37, 2663-2666.
(102)Feher, F. J.; Budzichowski, T. A. Polyhedron 1995, 14, 3239-3253.
(103)Feher, F. J.; Blanski, R. L. Makromolekulare Chemie-Macromolecular Symposia 1993, 66, 95-107.
(104)Feher, F. J.; Budzichowski, T. A.; Ziller, J. W. Inorganic Chemistry 1997, 36, 4082-4086.
(105)Feher, F. J.; Rahimian, K.; Budzichowski, T. A.; Ziller, J. W. Organometallics 1995, 14, 3920-3926.
(106)Feher, F. J.; Tajima, T. L. Journal of the American Chemical Society 1994, 116, 2145-2146.
(107)Feher, F. J.; Blanski, R. L. Journal of the American Chemical Society 1992, 114, 5886-5887.
(108)Feher, F. J.; Walzer, J. F. Inorganic Chemistry 1991, 30, 1689-1694.
(109)Feher, F. J.; Walzer, J. F.; Blanski, R. L. Journal of the American Chemical Society 1991, 113, 3618-3619.
(110)Feher, F. J.; Budzichowski, T. A.; Ziller, J. W. Inorganic Chemistry 1992, 31, 5100-5105.
(111)Chisholm, M. H.; Budzichowski, T. A.; Feher, F. J.; Ziller, J. W. Polyhedron 1992, 11, 1575-1579.
(112)Feher, F. J.; Budzichowski, T. A. Organometallics 1991, 10, 812-815.
(113)Feher, F. J.; Blanski, R. L. Journal of the Chemical Society-Chemical Communications 1990, 1614-1616.
(114)Feher, F. J.; Phillips, S. H.; Ziller, J. W. Journal of the American Chemical Society 1997, 119, 3397-3398.
(115)Feher, F. J.; Weller, K. J.; Ziller, J. W. Journal of the American Chemical Society 1992, 114, 9686-9688.
(116)Feher, F. J.; Schwab, J. J.; Phillips, S. H.; Eklund, A.; Martinez, E. Organometallics 1995, 14, 4452-4453.
(117)Feher, F. J.; Budzichowski, T. A.; Rahimian, K.; Ziller, J. W. Journal of the American Chemical Society 1992, 114, 3859-3866.
(118)Feher, F. J.; Newman, D. A. Journal of the American Chemical Society 1990, 112, 1931-1936.

Chapter 2
1.(a) Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539; (b) Gustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J. Nature 1992, 357, 477; (c) Greenham, N. C.; Moratti, S. C.; Bradley, D. D. C.; Friend, R. H.; Holmes, A. B. Nature 1993, 365, 628; (d) Jenekhe, S. A.; Osaheni, J. A. Science 1994, 620, 765.
2.(a) Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Nature 1995, 376, 498; (b) Yu, G. ; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789; (c) Granström, M.; Petritsch, K.; Arias, A. C.; Lux, A.; Andersson, M. R.; Friend, R. H. Nature 1998, 395, 257.
3.(a) Yang, Y.; Heeger, A. J. Nature 1994, 372, 344; (b) Brown, A. R.; Pomp, A.; Hart, C.M.; de Leeuw, D. M. Science 1995, 270, 972; (c) Sirringhaus, H.; Tessler, N.; Friend, R. H. Science 1998, 280, 1741; (d) Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J.; Meijer, E. W.; Herwig, P.; de Leeuw, D. M. Nature 1999, 401, 685; (e) Babel, A.; Jenekhe, S. A. J. Am. Chem. Soc. 2003, 125, 13656.
4.(a) Grell, M.; Bradley D. D. C.; Inbasekaran, M.; Woo, E. P. Adv. Mater. 1997, 9, 798; (b) Grell, M.; Bradley, D. D. C.; Long, X.; Chamberlain, T.; Inbasekaran, M.; Woo, E. P.; Soliman, M. Acta Polym. 1998, 49, 439; (c) Grice, A. W.; Bradley D. D. C.;, Bernius, M. T.; Inbasekaran, M.; Wu, W. W.; Woo, E. P.; Appl. Phys. Lett. 1998, 73, 629; (d) Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Bredas, J. L.; Logdlund, M.; Salaneck, W. R. Nature 1999, 397, 121; (e) Grell, M.; Bradley, D. D. C.; Ungar, G.; Hill, J.; Whitehead, K. S. Macromolecules 1999, 32, 5810.
5.(a) Kreyenschmidt, M.; Klaerner, G.; Fuhrer, T.; Ashenhurst, J.; Karg, S.; Chen, W. D.; Lee, V. Y.; Scott, J. C.; Miller, R. D.; Macromolecules 1998, 31, 1099; (b) Klarner, G.; Lee, J. I.; Lee, V. Y.; Chan, E.; Chen, J. P.; Nelson, A.; Markiewicz, D.; Siemens, R.; Scott, J. C.; Miller, R. D.; Chem. Mater. 1999, 11, 1800; (c) Lee, J. I.; Klaerner, G.; Miller, R. D. Chem. Mater. 1999, 11, 1083.
6.(a) Marsitzky, D.; Klapper, M.; Mullen, K.; Macromolecules 1999, 32, 8685; (b) Marsitzky, D.; Murray, J.; Scott, J. C.; and Carter, K. R.; Chem. Mater. 2001, 13, 4285; (c) Marsitzky, D.; Vestberg, R.; Blainey, P.; Tang, B. T.; Hawker, C. J.; Carter, K. R. J. Am. Chem. Soc. 2001, 123, 6965; (d) Setayesh, S.; Grimsdale, A. C.; Weil, T.; Enkelmann, V.; Mullen, K.; Meghdadi, F.; List, E. J. W.; Leising, G. J. Am. Chem. Soc. 2001, 123, 946; (e) Ego, C.; Grimsdale, A. C.; Uckert, F.; Yu, G.; Srdanov, G.; Mullen, K. Adv. Mater. 2002, 14, 809; (f) Pogantsch, A.; Wenzl, F. P.; List, E. J. W.; Leising, G.; Grimsdale, A. C.; Mullen, K. Adv. Mater. 2002, 14, 1061; (g) Lupton, J. M.; Schouwink, P.; Keivanidis, P. E.; Grimsdale, A. C.; Mullen, K., Adv. Funct. Mater. 2003, 13, 154.
7.(a) Wu, F. I.; Reddy, D. S.; Shu, C. F.; Liu, M. S.; Jen, A. K. Y. Chem. Mater. 2003, 15, 269; (b) Shu, C. F.; Dodda, R.; Wu, F. I.; Liu, M. S.; Jen, A. K. Y. Macromolecules 2003, 36, 6698.
8.Zeng, G.; Yu, W. L.; Chua, S. J.; Huang, W. Macromolecules 2002, 35, 6907.
9.Xiao, S.; Nguyen, M.; Gong, X.; Cao, Y.; Wu, H.; Moses, D.; Heeger, A. J. Adv. Funct. Mater. 2003, 13, 25.
10.(a) Cho, H. J.; Jung B. J.; Cho, N. S.; Lee, J; Shim. H. K. Macromolecules 2003, 36, 6704; (b) Lim, E.; Jung B. J.; Shim, H. K. Macromolecules 2003, 36, 4288.
11.Kulkarni, A. P.; Jenekhe, S. A. Macromolecules 2003, 36, 5285.
12.(a) List, E. J. W.; Guentner, R.; Freitas, P. S.; Scherf, U. Adv. Mater. 2002, 14, 374; (b) Omaner, L.; Pogantsch, A.; Freitas, P. S.; Scherf, U.; Martin, Gaal.; Zojer, E.; List, J.W. Adv. Funct. Mater. 2003, 13, 597; (c) Gaal, M.; List, E. J. W.; Scherf, U. Macromolecules 2003, 36, 4236; (d) Jacob, J.; Zhang, J.; Grimsdale, A. C.; Mullen, K.; Gaal, M.; List, J. W. Macromolecules 2003, 36, 8240.
13.Agaskar, P. A. Inorg. Chem. 1991, 30, 2707.
14.Eaton, D. F. Pure Appl. Chem. 1988, 60, 1107.
15.(a) Crivello, J. V.; Malik, R. J. Polym. Sci. Polym. Chem. 1997, 35, 407; (b) Bolln, C.; Tsuchida, A.; Frey, H.; Mulhaupt, R. Chem. Mater. 1997, 9, 1475.
16.(a)Choi, J.; Harcup, J.; Yee, A. F.; J. Am. Chem. Soc. 2001, 123, 11420; (b) Tamaki, R.; Tanaka, Y.; Asuncion, M. Z.; Choi, J.; Laine, R. M. J. Am. Chem. Soc. 2001, 123, 12416; (c) Costa, R. O. R.; Vasconcelos, W. L.; Tamaki, R.; Laine, R. M. Macromolecules 2001, 34, 5398.
17.(a) Liu, W. C.; Yang, C. C.; Chen, W. C.; Dai. B. T.; Tsai, M. S.; J. Non. Cryst. Solids 2002, 311, 233; (b) Chen, W. C.; Lee, L. H.; Chen, B. F.; Yen C. T. J. Mater. Chem. 2002, 12, 3644; (c) Lee, L. H.; Chen, W. C.; Liu, W. C. J. Polym. Sci. Polym. Chem. 2002, 40, 1560; (d) Chen, W. C.; Lin, S.-C.; Dai, B.-T.; Tsai, M. S. J. Electrochem. Soc. 1999, 146, 3004; (e) Chen, W. C.; Yen, C.-T. J. Vac. Sci. Technol. B 2000, 18, 201.
18.Liu, J.; Loewe R. S.; McCullough, R. D. Macromolecules 1999, 32, 5777.
19.Zhou, X.; He, J.; Liao, L. S.; Lu M.; Ding, X. M.; Hou, X. Y.; Zhang, X. M.; He, X. Q.; Lee, S. T. Adv. Mater. 2000, 12, 265.
20.Hosoi, K; Mori, T.; Mizutani, T.; Yamamoto, T.; Kitamura, N. Thin Solid Films 2003, 438, 201.
21.Weinfurtner, K. H.; Fujikawa, H.; Tokito, S.; Taga, Y. Appl. Phys. Lett. 2000, 76, 2502.

Chapter 3
1.(a) Murphy, C. J. Science 2002, 298, 2139. (b)Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425. (c) Dresselhaus, M. S. Science 2001, 292, 650. (d) Piok, T.; Gamerith, S.; Gadermaier, C.; Plank, H.; Wenzl, F. P.; Patil, S.; Montenegro, R.; Kietzke, T.; Neher, D.; Scherf, U.; Landfester, K.; List, E. J. W. Advanced Materials 2003, 15, 800. (e)van der Kooij, F. M.; Kassapidou, K.; Lekkerkerker, H. N. W. Nature 2000, 406, 868. (f)Jin, R. C.; Cao, Y. W.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Science 2001, 294, 1901.
2. (a) Banley, R. H.; Itoh, M.; Sakakibara, A.; Suzuki, T. Chem. Rev. 1995, 95, 1409. (b) Crivello, J. V.; Malik, R. J. Polym. Sci. Polym. Chem. 1997, 35, 407. (c) Bolln, C.; Tsuchida, A.; Frey, H.; Mulhaupt, R. Chem. Mater. 1997, 9, 1475.
3.(a) Chen, W. C.; Lin, S.-C.; Dai, B.-T.; Tsai, M. S. J. Electrochem. Soc. 1999, 146, 3004. (b) Chen, W. C.; Yen, C.-T. J. Polym. Res. 1999, 6, 197. (c) Chen, W. C.; Yen, C.-T. J. Vac. Sci. Technol. B 2000, 18, 201. (d) Liu, W. C.; Yang, C. C.; Chen, W. C.; Dai. B. T.; Tsai, M. S.; J. Non. Cryst. Solids 2002, 311, 233. (e) Chen, W. C.; Lee, L. H.; Chen, B. F.; Yen C. T. J. Mater. Chem. 2002, 12, 3644. (f) Lee, L. H.; Chen, W. C.; Liu, W. C. J. Polym. Sci. Polym. Chem. 2002, 40, 1560.
4.(a) Lichtenhan, J. D.; Vu, N. Q.; Carter, J. A.; Gilman, J. W.; Feher, F. J. Macromolecules 1993, 26, 2141. (b) Lichtenhan, J. D.; Otonari, Y. A.; Carr, M. J. Macromolecules 1995, 28, 8435. (c)Zhang, C. ; Laine, R.M. J. Am. Chem. Soc. 2000, 122, 6979.
5.(a)Sellinger, A.; Laine, R. M. Chem. Mater. 1996, 8, 1592. (b) Zhang,C.; Laine, R. M. J. Organomet. Chem. 1996, 521, 199. (c) Choi, J.; Harcup, J.; Yee, A. F.; J. Am. Chem. Soc. 2001, 123, 11420. (d) Choi, J.; Yee, A. F.; Laine, R. M. Macromolecules 2003, 36, 5666. (e) Lee, A. ; Lichtenhan, J. D. Macromolecules 1998, 31, 4970. (f) Kim, G.-M.; Qin, H.; Fang, X.; Sun, F. C.; Mather, P.-T. J. Polym. Sci. Polym. Phys. 2003, 41, 3299. (g) Matejka,L. ; Dukh, O. ; Meissner, B. ; Hlavata, D.; Brus, J. ; Strachota, A. Macromolecules 2003, 36, 7977. (h) Li, G. Z.; Wang, L.; Toghiani, H.; Daulton, T. L.; Koyama, K.; Pittman, Jr. C. U. Macromolecules 2001, 34, 8686. (i) Abad, M.-J.; Barral, L.; Fasce, D.; Williams, R. J. J. Macromolecules 2003, 36, 3128.
6.(a) Tamaki, R.; Tanaka, Y.; Asuncion, M. Z.; Choi, J.; Laine, R. M. J. Am. Chem. Soc. 2001,123, 12416. (b) Choi, J. ; Tamaki, R. ; Kim, S. G. ; Laine, R. M. Chem. Mater. 2003, 15, 793. (c) Leu, C.-M. ; Chang, Y.-T. ; Wei, K.-H. Macromolecules 2003, 36, 9122.
7.Zhang C.; Babonneau, F.; Bonhomme, C.; Laine, R. M.; Soles, C. L.; Hristov, H. A.; Yee, A. F. J. Am. Chem. Soc. 1998, 120, 8380.
8.Neumann, D.; Fisher, M.;Tran, L.; Matisons, J. G. J. Am. Chem. Soc. 2002, 124, 13998.
9.(a) Costa, R.O. R.; Vasconcelos, W.L.; Tamaki, R.; Laine, R.M. Macromolecules 2001, 34, 5398. (b)Kim, K.-M.; Keum, D.-K.; Chujo, Y. Macromolecules 2003, 36, 867. (c) Kim,K.-M.; Ouchi, Y.; Chujo, Y. Polym. Bull. 2003, 49, 341. (d)Lin, W.-J.; Chen, W. C.; Wu, W. C.; Niu, Y.-H.; Jen, A. K. Y. Macromolecules 2004, 37, 2335.
10.(a) Zheng, L.; Waddon, A. J.; Farris, R. J.; Coughlin, E.B. Macromolecules 2002, 35, 2375. (b) Constable, G. S.; Lesser, A.J.; Coughlin, E. B. Macromolecules 2004, 37, 1276.
11. Kim, B. S.; Mather, P. T. Macromolecules 2002, 35, 8378.
12. (a)Tsuchida, A.; Bolln, C.; Sernetz, F. G.; Frey, H.; Mulhaupt, R. Macromolecules 1997, 30, 2818. (b) Xu, H. Y.; Kuo, S. W.; Lee, J. S.; Chang, F. C. Macromolecules 2002, 35, 8788.
13. Lamm, M. H.; Chen, T.; Glotzer, S. C. Nano Lett 2003, 3, 989.
14. (a) Sheng, Y.-J.; Jiang, S; Tsao, H.-K., Macromolecules 2002, 35, 7865-7868.; (b) Sheng, Y.-J.; Chen, J. Z. Y.; Tsao, H.-K., Macromolecules 2002, 35, 9624-9627.; (c) Sheng, Y.-J., and Liao, C. S. J. Chem. Phys. 2003, 118, 4748-4753.
15. Allen, M. P.; Tildesley, D. J. Computer Simulations of Liquids, Oxford University Press: New York, USA, 1987.
16. (a) Gelb, L. D.; Gubbins, K. E. Langmuir 1999, 15, 305-308. (b)Thomson, K. T.; Gubbins, K. E. Langmuir 2000, 16, 5761. (c) Gavalda, S.; Gubbins, K. E.; Hanzawa, Y.; Kaneko, K.; Thomson, K. T. Langmuir 2002, 18, 2141-2151.
17. Barrett, E. P.; Joyner, L. G.; Halenda, P. P. J. Am. Chem. Soc. 1951, 73, 373.
18. Hoebbel, D.; Endres, K.; Reinert, T.; Pitsch, I. Journal of Non-Crystalline Solids 1994, 176, 179-188.
19. (a)Kreuzer, F. H.; Maurer, R.; Spes, P. Makromol. Chem.-Macromol. Symp. 1991, 50, 215. (b)Kim, K. H.; Chujo, Y. Polym. Bull. 2001, 46, 15. (c)Zhang, C. X.; Bunning, T. J.; Laine, R. M. Chem. Mater. 2001, 13, 3653. (d)Kim, K. M.; Chujo, Y. J.Polym. Sci. Polym. Chem.2001, 39, 4035. (e) Mehl, G. H.; Saez, I. M. Appl. Organomet. Chem. 1999, 13, 261.
20. Feher, F. J.; Terroba, R.; Ziller, J. W. Chemical Communications 1999, 2309-2310.
21. Mantz, R. A.; Jones, P. F.; Chaffee, K. P.; Lichtenhan, J. D.; Gilman, J. W.; Ismail, I. M. K.; Burmeister, M. J. Chem Mater 1996, 8, 1250-1259.

Chapter 4
(1)Laine, R. M.; Sanchez, C.; Brinker, C. J.; Giannelis, E. Organic/Inorganic Hybrid Materials; Materials Research Society, Warrendale, 1998; Vol. 519.
(2)Kelin, L. C.; Francis, L. F.; De Duire, M. R.; Mark, J. E. Organic/Inorganic Hybrid Materials II; Materials Research Society, Warrendale, 1999; Vol. 576.
(3)Laine, R. M.; Sanchez, C.; Brinker, C. J.; Giannelis, E. Organic/Inorganic Hybrid Materials-2000; Materials Research Society, Warrendale, 2000; Vol. 628.
(4)Wen, J. Y.; Wilkes, G. L. Chemistry of Materials 1996, 8, 1667-1681.
(5)Beecroft, L. L.; Ober, C. K. Chemistry of Materials 1997, 9, 1302-1317.
(6)Ogoshi, T.; Itoh, H.; Kim, K. M.; Chujo, Y. Macromolecules 2002, 35, 334-338.
(7)Ahmad, Z.; Mark, J. E. Chemistry of Materials 2001, 13, 3320-3330.
(8)Nandi, M.; Conklin, J. A.; Salvati, L.; Sen, A. Chemistry of Materials 1991, 3, 201-206.
(9)Morikawa, A.; Iyoku, Y.; Kakimoto, M. A.; Imai, Y. Polymer Journal 1992, 24, 689-692.
(10)Morikawa, A.; Yamaguchi, H.; Kakimoto, M.; Imai, Y. Chemistry of Materials 1994, 6, 913-917.
(11)Wang, S. H.; Ahmad, Z.; Mark, J. E. Chemistry of Materials 1994, 6, 943-946.
(12)Shang, X. Y.; Zhu, Z. K.; Yin, J.; Ma, X. D. Chemistry of Materials 2002, 14, 71-77.
(13)Chen, Y.; Iroh, J. O. Chemistry of Materials 1999, 11, 1218-1222.
(14)Chang, C. C.; Chen, W. C. Chemistry of Materials 2002, 14, 4242-4248.
(15)Chang, C. C.; Chen, W. C. Journal of Polymer Science Part a-Polymer Chemistry 2001, 39, 3419-3427.
(16)Sysel, P.; Pulec, R.; Maryska, M. Polymer Journal 1997, 29, 607-610.
(17)Tamaki, R.; Tanaka, Y.; Asuncion, M. Z.; Choi, J. W.; Laine, R. M. Journal of the American Chemical Society 2001, 123, 12416-12417.
(18)Tamaki, R.; Choi, J. W.; Laine, R. M. Chemistry of Materials 2003, 15, 793-797.
(19)Lichtenhan, J. D.; Otonari, Y. A.; Carr, M. J. Macromolecules 1995, 28, 8435-8437.
(20)Feher, F. J.; Rahimian, K.; Budzichowski, T. A.; Ziller, J. W. Organometallics 1995, 14, 3920-3926.
(21)Lee, L. H.; Chen, W. C.; Liu, W. C. Journal of Polymer Science Part a-Polymer Chemistry 2002, 40, 1560-1571.
(22)Chen, W. C.; Lin, S. C.; Dai, B. T.; Tsai, M. S. Journal of the Electrochemical Society 1999, 146, 3004-3008.
(23)Chen, W. C.; Yen, C. T. Journal of Vacuum Science & Technology B 2000, 18, 201-207.
(24)Liu, W. C.; Yang, C. C.; Chen, W. C.; Dai, B. T.; Tsai, M. S. Journal of Non-Crystalline Solids 2002, 311, 233-240.
(25)Chen, W. C.; Lee, L. H.; Chen, B. F.; Yen, C. T. Journal of Materials Chemistry 2002, 12, 3644-3648.
(26)Iyoku, Y.; Kakimoto, M.; Imai, Y. High Perform. Polym. 1994, 6, 43.
(27)Jung, J. C.; Lee, K. K.; Jhon, M. S. Polymer Bulletin 1996, 36, 67-72.
(28)Tsai, M. H.; Whang, W. T. Polymer 2001, 42, 4197-4207.
(29)Iyoku, Y.; Kakimoto, M.; Imai, Y. High Perform. Polym. 1994, 6, 53.
(30)Hedrick, J. L.; Cha, H. J.; Miller, R. D.; Yoon, D. Y.; Brown, H. R.; Srinivasan, S.; Di Pietro, R.; Cook, R. F.; Hummel, J. P.; Klaus, D. P.; Liniger, E. G.; Simonyi, E. E. Macromolecules 1997, 30, 8512-8515.
(31)Prado, L. A. S. D.; Radovanovic, E.; Pastore, H. O.; Yoshida, I. V. P.; Torriani, I. L. Journal of Polymer Science Part a-Polymer Chemistry 2000, 38, 1580-1589.
(32)Wilson, D.; Stenzenberger, H. D.; Hergenrother, P. M. In Polyimides; , Blackie & Son Ltd., New York, 1990.
(33)Bessonov, M. I.; Koton, M. M.; Kudryavtsev, V. V.; Laius, L. A. In Polyimides; IConsultants Bureau, New York, 1987.

Appendix A
(1)Thompson, L. F. In Introduction to Microlithography, 2nd ed.; Thompson, L. F.; Wilson, C. G.; Bowden, M. J., Eds.; American Chemical Society: Washington, D. C., 1994, Chapter 4.
(2)Satou, H.; Makino, D. In Polymers For Electronic and Photonic Applications; Wang, C. P., Ed.; Academic Press, Inc., 1993, Chapter 5.
(3)Batchelder, T.; Piatt, J. Solid State Technol. 1983, 26, 211.
(4)Schlegel, L.; Ueno, T.; Hayashi, N.; Iwayanagi, T. Jpn. J. Appl. Phys. 1991, 30, 3132.
(5)Hinsberg, W. D.; MacDonald, S. A.; Clecak, N. J.; Snyder, C. D. Chem. Mater. 1984, 6, 481.
(6)Vinet, F.; Buffet, N.; Fanton, P.; Pain, L.; Paniez., P. J. SPIE 1995, 2438, 202.
(7)Okazaki, M.; Shioda, K.; Masuda, K.; Toei, R. J. Chem. Eng. Jpn. 1974, 7, 99.
(8)Tu, Y. O.; Drake, R. L. Journal of Colloid and Interface Science 1990, 135, 562-572.
(9)Guerrier, B.; Bouchard, C.; Allain, C.; Benard, C. Aiche Journal 1998, 44, 791-798.
(10)Alsoy, S.; Duda, J. L. Journal of Polymer Science Part B-Polymer Physics 1999, 37, 1665-1675.
(11)Paniez, J. P.; Festes, G.; Chollet, J. P. SPIE 1992, 1672, 623.
(12)Fadda, E.; Clarisse, C.; Paniez, P. J. SPIE 1996, 2724, 460.
(13)Paniez, P. J.; Vareille, A.; Ballet, P.; Mortini, B. SPIE 1998, 3333, 289.
(14)Lin, S. H.; Liu, B. T.; Chen, W. C.; Hsu, J. P. Journal of the Electrochemical Society 1998, 145, 4256-4259.
(15)Mack, C. A.; DeWitt, D. P.; Tsai, B. K.; Yetter, G. SPIE 1994, 584.
(16)Yang, C. Y.; Chen, W. C., unpublished results from our laboratory.
(17)Crank, J. In The Mathematics of Diffusion, 2nd ed.; Clarendon Press: Oxford, 1975; p 60.
(18)Fujita, H.; Kishimoto, A.; Matsumoto, K. Trans. Faraday Soc. 1960, 56, 424.
(19)Vrentas, J. S.; Duda, J. L. AIChE J. 1982, 25, 279.
(20)Deppe, D. D.; Miller, R. D.; Torkelson, J. M. Journal of Polymer Science Part B-Polymer Physics 1996, 34, 2987-2997.
(21)Vonmeerwall, E.; Skowronski, D.; Hariharan, A. Macromolecules 1991, 24, 2441-2449.
(22)Flack, W. W.; Soong, D. S.; Bell, A. T.; Hess, D. W. J. Appl. Phys. 1984, 56, 1199.
(23)Bornside, D. E.; Macosko, C. W.; Scriven, L. E. J. Appl. Phys. 1989, 66, 5185.
(24)Zielinski, J. M.; Duda, J. L. AIChE Journal 1992, 38, 405-415.
(25)Park, K. S.; Kim, D. Polymer-Korea 2000, 24, 194-200.
(26)Park, K. S.; Kim, D. Polymer Journal 2000, 32, 415-421.
(27)Hsu, J. P.; Huang, S. W.; Tseng, S. Journal of the Electrochemical Society 2000, 147, 1920-1924.

Appendix B
(1)Swalen, J. D.; Frank, C. W.; American Chemical Society: New York, USA, 1998.
(2)Waggoner, R. A.; Blum, F. D. J. Coat. Technol. 1989, 61, 51.
(3)Paniez, P. J.; Vareille, A.; Ballet, P.; Mortini, B. SPIE 1998, 3333, 289.
(4)Kook, H. J.; Kim, D. Polymer-Korea 1998, 22, 424-434.
(5)Park, K. S.; Kim, D. Polymer Journal 2000, 32, 415-421.
(6)Okazaki, M.; Shioda, K.; Masuda, K.; Toei, R. J. Chem. Eng. Jpn. 1974, 7, 99.
(7)Duda, J. L.; Vrentas, J. S.; Ju, S. T.; Liu, H. T. AIChE J. 1982, 28, 285.
(8)Tu, Y. O.; Drake, R. L. Journal of Colloid and Interface Science 1990, 135, 562-572.
(9)Sano, Y. Drying Technology 1992, 10, 591-622.
(10)Vrentas, J. S.; Vrentas, C. M. Journal of Polymer Science Part B-Polymer Physics 1994, 32, 187-194.
(11)Alsoy, S.; Duda, J. L. Drying Technology 1998, 16, 15-44.
(12)Guerrier, B.; Bouchard, C.; Allain, C.; Benard, C. Aiche Journal 1998, 44, 791-798.
(13)Alsoy, S.; Duda, J. L. Journal of Polymer Science Part B-Polymer Physics 1999, 37, 1665-1675.
(14)Alsoy, S.; Duda, J. L. AIChE Journal 1999, 45, 896-905.
(15)Price, P. E.; Cairncross, R. A. Drying Technology 1999, 17, 1303-1311.
(16)Alsoy, S. Industrial & Engineering Chemistry Research 2001, 40, 2995-3001.
(17)Hsu, J. P.; Lin, S. H.; Chen, W. C.; Tseng, S. J. Journal of Applied Physics 2001, 89, 1861-1865.
(18)Lin, W. J.; Chen, W. C. Journal of the Electrochemical Society 2001, 148, G620-G626.
(19)Edwards, D. A. Siam Journal on Applied Mathematics 1999, 59, 1134-1155.
(20)Zielinski, J. M.; Duda, J. L. AIChE Journal 1992, 38, 405-415.
(21)Cussler, E. L. Diffusion Mass Transfer in Fluid Systems, 2nd ed.; Cambridge University Press: Cambridge, UK, 1997.
(22)Urtiaga, A. M.; Gorri, E. D.; Ortiz, I. Separation and Purification Technology 1999, 17, 41-51.
(23)Saure, R.; Wagner, G. R.; Schlunder, E. U. Surface & Coatings Technology 1998, 99, 253-256.
(24)Saure, R.; Wagner, G. R.; Schlunder, E. U. Surface & Coatings Technology 1998, 99, 257-265.
(25)Hong, S. U.; Benesi, A. J.; Duda, J. L. Polymer International 1996, 39, 243-249.
(26)Mark, J. E. Physical Properties of Polymers Handbook; American Institute of Physics Press: New York, USA, 1996.
(27)Coulson, J. M.; Richardson, J. F. Chemical Engineering, 5th ed.; Butterworth-Heinemann: Oxford, UK, 1996; Vol. 1.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔