(3.210.184.142) 您好!臺灣時間:2021/05/13 18:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林明德
研究生(外文):Min-Te Lin
論文名稱:多成份蒸餾塔的溫度控制
論文名稱(外文):Interpretation of Temperature Control for Multicomponent Distillation
指導教授:余政靖
指導教授(外文):Cheng-Ching Yu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:124
中文關鍵詞:溫度控制
外文關鍵詞:Temperature Control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Despite recent advances in on-line composition measurement, temperature control remains as the major control configuration in distillation control. In a control of industrial ternary distillation column, with non-monotonic composition profile for the intermediate boiler, significant different closed-loop composition dynamics were observed when the temperature control tray was above or below the intermediate boiler composition turning point (e.g., above or below the tray where the intermediate exhibits a maximum). In this work, the role of direct temperature control is interpreted in the composition space. First, the temperature isotherm is established in the triangular composition space and the process direction and control direction can be clearly distinguished. Then, a quantitative measure, the traveling distance for all tray compositions under a specific temperature control configuration is defined and it can be computed directly from process and load transfer function matrices. Rigorous distillation column simulation confirms that a temperature control with a large traveling distance results in slow composition dynamics (e.g., considering the tray composition can be changed with a fixed rate) and, consequently, poorer control performance. The situation, the difference in the traveling distance, can become worse when we are controlling two temperatures in the column, dual-end temperature control. The interaction between temperature control and the column composition profile explains the conflict between the process direction and the control direction which leads to a large traveling distance. That is the result of quantitative measure can be visualized directly from the composition space provided with the isotherm of the temperature control tray. Next, the effects of product purities, relative volatilities, feed composition, and types of separation (e.g., direct, indirect, and transition separations) are explored and the results can be interpreted quantitatively with the traveling distance or qualitatively by inspecting the possible conflict between the process/control direction in the composition space. Finally, this concept is extended directly to composition control of multicomponent distillation systems. The results clearly show that improved temperature or composition control can be achieved by avoiding potential conflict in the process/control direction.
摘要 I
Abstract II
目 錄 III
圖索引 VI
表索引 XI
第一章 緒論 1
1.1前言 1
1.2文獻回顧 2
1.3研究動機 4
1.4組織章節 6
第二章 溫度與組成間的交互作用 7
2.1程序描述與設計 7
2.2 組成平面與等溫線間的關係 11
2.3 問題描述與觀察結果 14
2.4分析 20
2.4.1定性上的解釋 20
2.4.2 定量上的測量 24
2.5 雙點控制 31
2.6 結論 36
第三章 組成控制 39
3.1 前言 39
3.2 等組成線與組成平面的關係 39
3.3 單點控制 41
3.4 雙點控制(Dual-end control) 49
3.5 結論 54
第四章 其他因素的效應 59
4.1產品規格改變 59
4.1.1 程序描述 60
4.1.2 動態控制 62
4.1.3 結論 70
4.2相對揮發度改變 73
4.2.1程序描述 73
4.2.2動態控制 79
4.2.3結論 87
4.3進料組成改變 91
4.3.1 程序描述 91
4.3.2 動態控制 93
4.3.3 結論 96
第五章 其他分離程序的影響 101
5.1 程序描述 101
5.2動態控制 104
5.2.1 非直接分離(indirect separation) 104
5.2.2過渡分離(transition separation) 111
5.3結論 118
第六章 119
總結 119
參考文獻 121
[1]Cao, Y.; Rossiter, D., “An input pre-screening technique for control structure selection”, Computer chem. Engineering, 21, 563-569 (1997)

[2]Chang, J. W.;Yu, C. C. “Relative Disturbance Gain Array”, AICHE J., 38, 521-534 (1990).

[3]Doherty, M. F.; Malone, M. F. “Conceptual Design of Distillation System”, McGraw-Hill, New York,(2001).

[4]Downs, J.J.; Moore, C.F., “Steady State Gain Analysis For Azeotropic Distillation” , IEEE, 1, WP-7C, (1981)

[5]Hwang, Y. L.; Graham, G. K., “Experimental Study of Wave Propagation Dynamics of Multicomponent Distillation Columns”, Ind. Eng. Chem. Res., 38, 3588-3605 (1999)

[6]Joseph, B.; Brosilow, C. B.; “Inferential Control Of Process EM DASH 1. Steady State Analysis and Design”, AIChE Journal, 24, 485-492(1978)

[7]Kano, M. ; Showchaiya, N.; Hasebe, S. ; Hashimoto, I., “Inferential control of distillation compositions: selection of model and control configuration”, Control Engineering Practice 11, 927–933 (2003)


[8]Kano, M.; Miyazaki,K.; Hasebe, S.;Hashimoto, I. “Inferential control system of distillation compositions using dynamic partial least squares regression”, Journal of Process Control,10, 157-166 (2000)

[9]Kienle, A., “Low-order dynamic models for ideal multi- component distillation processes using nonlinear wave propagation theory”, Chemical Engineering Science, 55, 1817-1828 (2000)

[10]Lu, M.D.; Motard, R.L., “A Strategy for the Synthesis of Separation Sequence”, Inst. Chem. Eng. Symp. Ser.74 (1982)

[11]Luyben, W. L. “Process Modeling, Simulation and Control for Chemical Engineers”, 2nd Ed., McGraw-Hill:, New York,(1990).

[12]Luyben, W. L. “Practical Distillation Control”, Van Nostrand Rein-hold:, New York,(1992).

[13]Luyben, M. L. ; Tyreus, B. D. ; Luyben, W. L., “Plantwide Control Design Procedure” , AICHE J., 43, 3161-3174 (1997)

[14]Nadgir, V. M.; Liu, Y.A., “Studies in Chemical Process Design and Synthesis. V. A
Simple Heurixstic Method for the Systematic Synthesis of Initial Sequences for
Multicomponent Separations”, AIChE J, 29, 926-934 (1983)

[15]Nishida, N.; Stephanopoulos, G.; Westergerg, A.W. “A Review of Process synthesis”, AIChE J, 27, 321 (1981)
[16]Park, S. ; Han, M. ; Seo, H. ;Shin, J., “A nonlinear profile observer using tray temperatures for high-purity binary distillation column control” ,Chemical Engineering Science , 55, 807-816 (2000)

[17]Park, S.; Han, M. “Profile Position Control of Batch Distillation Based on a Nonlinear Wave Model”, Ind. Eng. Chem. Res., 40, 4111-4120 (2001)

[18]Shen, S. H.;Yu, C. C. “Selection of Secondary Measurement for Parallel Cascade Control”, AICHE J., 36, 1267-1271 (1990)

[19]Shen, S. H.;Yu, C. C. “Indirect Feedforward Control: Multivariable Systems”, Chem. Eng. Sci., 47, 3085-3097 (1992)

[20]Shen, S. H.; Yu, C. C. “Use of Relay-Feedback Test for Automatic Tuning of Multivariable Systems”, AICHE J., 40, 627-645 (1994)

[21]Skogestad, S.; Wolff, E. A., “Temperature Cascade Control of Distillation Columns”, Ind. Eng. Chem. Res., 35, 475-484, (1996)

[22]Skogestad, S. ; Mejedll, T., “Estimation of distillation composition from multiple temperature measurements using PLS regression” , Ind. Eng. Chem. Res., 30, 2543-2555, (1991)

[23]Skogestad, S.; Mejedll, T., “Composition estimator in a pilot plant distillation column using multiple temperatures” ,Ind. Eng. Chem. Res., 30, 2555-2564, (1991)

[24]Skogestad, S.; Morari, M., “Control configuration Selection for Distillation Columns”, AICHE J., 33, 1620-1635(1987)

[25]Ye, N.; Gang, C. “Nonlinear Inferential Parallel Cascade Control” , Ind. Eng. Chem. Res., 35, 130-137 (1996)

[26]Yu, C. C., Luyben, W. L. “Use of Multiple Temperatures for the Control of Multicomponent Distillation Columns”, Ind. Eng. Chem. Process Des. Dev., 23, 590-597 (1984)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔