(3.236.214.19) 您好!臺灣時間:2021/05/09 22:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李元皓
研究生(外文):Yuan-Hao Lee
論文名稱:迷你乳化聚合製備水性聚胺酯之研究
論文名稱(外文):Study on Synthesis of Polyurethane Dispersion via Miniemulsion Polymerization
指導教授:謝國煌謝國煌引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:107
中文關鍵詞:迷你乳化水性聚胺酯分子量機械性質
外文關鍵詞:miniemulsionpolyurethane dispersionmolecular w
相關次數:
  • 被引用被引用:1
  • 點閱點閱:135
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究宗旨是利用迷你乳化合成水性聚胺酯(PU)乳液,探討影響分子量之因素,使成膜後之產物具有優良之機械性質,並進一步探討薄膜之熱性質。
在本研究中,以傅立葉轉換紅外線光譜儀(FTIR)來監測反應程度並鑑定產物之化學結構,再使用雷射煙塵粒徑分析儀來分析乳液之粒徑分佈,並對於粒徑分佈影響因素有一系列之探討。在乳液成膜後,以凝膠滲透色層分析儀(GPC)來分析其分子量分佈,討論包括反應溫度、界面活性劑、共安定劑、軟硬鏈段組成比例、Isocyanate Index、催化劑(T-12)、於有機相加入溶劑等變因對分子量之影響,之後進行機械性質之測試,包含抗張強度及伸長率,其中最佳的抗張強度可達到343.9 kg/cm2。在熱性質方面,分別以以熱重損失分析儀(TGA)、微差熱掃瞄分析儀(DSC)、動態機械分析儀(DMA)探討材料之熱裂解溫度及玻璃轉移溫度與材料結構之關係。
The target of the research was to synthesize polyurethane (PU) dispersion via miniemulsion process. We study the effect of parameters on molecular weight of PU that made PU film have strong mechanical properties. Also, the thermal properties of PU were investigated.
In this research, Fourier Transform Infrared Spectrometer (FTIR) was used to trace the extent of reaction and characterize the formation of PU. The droplet size distribution was characterized by Laser Diffraction Particle Size Analyzer, and effect of parameters on droplet size distribution was discussed. The influence of several factors, such as reaction temperature, surfactant, costabilizer, hard segment content, isocyanate index, catalyst, adding solvent in organic phase, on the molecular weight had been studied in detail by Gel Permeation Chromatogapher (GPC). The mechanical properties of PU film were studied including tensile strength and elongation, and the strongest tensile strength reached to 343.9 kg/cm2. Thermogravimetric Analysis (TGA), Differential Scanning Colarimetry (DSC), Dynamic Mechanical Analysis (DMA), were used to characterize thermal properties of PU.
目錄

摘要 Ⅰ
Abstract Ⅱ
目錄 Ⅲ
表索引 Ⅴ
圖索引 Ⅶ

第一章 緒論 1
第二章 文獻回顧 3
2.1 傳統水性PU之合成方法 3
2.2 迷你乳化聚合 5
2.2.1 迷你乳化之製備法 6
2.2.2 均質裝置與粒徑 7
2.2.3 乳液之安定 11
2.3 運用迷你乳化聚合於加成或縮合聚合 16
2.4 研究目標 20
第三章 實驗 21
3.1 實驗藥品 21
3.2 實驗儀器 24
3.3 實驗流程 26
3.3.1 水性PU乳液合成步驟 26
3.3.2 PU薄膜的製備及性質測試步驟 26
3.4 材料合成步驟 28
3.4.1 水性PU乳液合成步驟 28
3.4.2 PU薄膜的製備及性質測試步驟 28
3.5 材料性質分析與測試條件 29
3.5.1 傅立葉轉換紅外線光譜(FTIR)測試 29
3.5.2 雷射煙塵粒徑分析儀測試 29
3.5.3 應力-應變性質測試 29
3.5.4 凝膠滲透色層分析儀(GPC)測試 30
3.5.5 熱重損失分析儀(TGA)測試 30
3.5.6 微差熱分析掃描卡計( DSC )測試 31
3.5.7 動態機械分析儀( DMA )測試 31
3.6 實驗代號說明 32



第四章 結果與討論 34
4.1 合成物鑑定分析 (FTIR) 34
4.2 PU粒徑大小之影響因素 36
4.2.1 組織均質機分散時間對PU粒徑大小之影響 36
4.2.2 超音波震盪器操作時間對PU粒徑大小之影響 36
4.2.3 界面活性劑濃度對PU粒徑大小之影響 37
4.2.4 固含量對PU粒徑大小之影響 38
4.2.5 聚醇分子量對PU粒徑大小之影響 38
4.3 凝膠滲透色層分析儀(GPC)分析 39
4.3.1 反應溫度對分子量之影響 40
4.3.2 界面活性劑及共安定劑對分子量之影響 40
4.3.3 催化劑對分子量之影響 42
4.3.4 Isocyanate Index對分子量之影響 42
4.3.5 有機相加入溶劑對分子量之影響 43
4.4 機械性質分析 44
4.4.1 分子量對機械性質之影響 44
4.4.2 界面活性劑及共安定劑對機械性質之影響 44
4.4.3 軟硬鏈段比例對機械性質之影響 45
4.4.4 有機相加入溶劑對機械性質之影響 46
4.5 熱重損失分析儀(TGA)分析 47
4.5.1 反應溫度對熱裂解溫度之影響 47
4.5.2 界面活性劑對熱裂解溫度之影響 47
4.5.3 軟硬鏈段比例對熱裂解溫度之影響 48
4.5.4 Isocyanate Index對熱裂解溫度之影響 48
4.6 微差掃瞄卡計儀(DSC)分析 49
4.6.1 反應溫度對玻璃轉移溫度之影響 49
4.6.2 界面活性劑對玻璃轉移溫度之影響 49
4.6.3 軟硬鏈段比例對玻璃轉移溫度之影響 50
4.6.4 Isocyanate Index對玻璃轉移溫度之影響 50
4.7 動態機械分析儀(DMA)分析 51
4.7.1 損失模數對溫度之曲線圖 51
4.7.2 tan δ對溫度之曲線圖 51
第五章 結論 53
第六章 參考文獻 55
附表 59
附圖 80
第六章 參考文獻

1.Dieterich, D. in Polyurethane Handbook; Oertel, G., Ed. (ed. Schmelzer, H. G.) 29 (Hanser Publishers, Munich, 1994).
2.Tiarks, F., Landfester, K. & Antonietti, M. One-step preparation of polyurethane dispersions by miniemulsion polyaddition. Journal of Polymer Science Part a-Polymer Chemistry 39, 2520-2524 (2001).
3.Odian, G. in Principles of polymerization 3rd ed 335-353 (Wiley, 1991).
4.Chou YJ, E.-A. M., Vanderhoff JW. Mechanism of emulsification of styrene using hexadecyltrimethyl ammonium bromide-cetyl. J Dispersion Sci Technol, 50-129 (1980).
5.Kim, B. K. Aqueous polyurethane dispersions. Colloid and Polymer Science 274, 599-611 (1996).
6.James W. Rosthauser, K. N. Waterborne Polyurethanes (ed. Kurt C. Frisch, D. K.) (Technomic Publishing Co., Inc., Lancaster, Pennsylvania, 1984).
7.Dieterich, D., Reiff, H. Adv. Urethane Sci. Technol. 4, 112 (1976).
8.Dieterich, D. Prog. Org. Coat., 281 (1981).
9.Ugelstad J, E.-A. M., Vanderhoff JW. Emulsion polymerization: initiation of polymerization in monomer droplets. J Polym Sci Lett Ed, 13-503 (1973).
10.BW, B. Self-bodying action of the mixed emulsifier sodium dodecyl sulfate/cetyl alcohol. J Colloid Interface Sci 28, 82-91 (1968).
11.Lim, M. S. & Chen, H. Miniemulsion polymerization of styrene with a block copolymer surfactant. Journal of Polymer Science Part a-Polymer Chemistry 38, 1818-1827 (2000).
12.Choi YT, E.-A. M., Sudol ED, Vanderhoff JW. polymerization of styrene miniemulsions. J Polym Sci Polym Chem Ed 23, 2973-87 (1985).
13.Alduncin, J. A., Forcada, J. & Asua, J. M. Miniemulsion Polymerization Using Oil-Soluble Initiators. Macromolecules 27, 2256-2261 (1994).
14.Asua, J. M. Miniemulsion polymerization. Progress in Polymer Science 27, 1283-1346 (2002).
15.Tang, P. L., Sudol, E. D., Silebi, C. A. & Elaasser, M. S. Miniemulsion Polymerization - a Comparative-Study of Preparative Variables. Journal of Applied Polymer Science 43, 1059-1066 (1991).
16.Mason TJ, L. J. Sonometry: theory, application and uses of ultrasound in chemistry. Chichester: Ellis Horwood, 27 (1988).
17.Fontenot K, S. F. Sensitivities of droplet size and stability in monomeric emulsions. Ind Engng Chem Res 32, 373-85 (1993).
18.Behrend, O., Ax, K. & Schubert, H. Influence of continuous phase viscosity on emulsification by ultrasound. Ultrasonics Sonochemistry 7, 77-85 (2000).
19.Mujumdar S, K. P., Pandit AB. Emulsification by ultrasound: relation between intensity and emulsion quality. Indian J Chem Technol 4, 277-84 (1997).
20.Abismail, B., Canselier, J. P., Wilhelm, A. M., Delmas, H. & Gourdon, C. Emulsification by ultrasound: drop size distribution and stability. Ultrasonics Sonochemistry 6, 75-83 (1999).
21.Miller, C. M., Venkatesan, J., Silebi, C. A., Sudol, E. D. & Elaasser, M. S. Characterization of Miniemulsion Droplet Size and Stability Using Capillary Hydrodynamic Fractionation. Journal of Colloid and Interface Science 162, 11-18 (1994).
22.AN, K. The local structure of turbulance in incompressible viscous fluids for very large Renolds numbers. Doklady Akad Nauk SSSR 30, 301-5 (1941).
23.FB, S. Drop size distribution in strongly coalescing agitated liquid-liquid systems. AIChE J 13, 955-8 (1967).
24.Baldyga, J., Bourne, J. R., Pacek, A. W., Amanullah, A. & Nienow, A. W. Effects of agitation and scale-up on drop size in turbulent dispersions: allowance for intermittency. Chemical Engineering Science 56, 3377-3385 (2001).
25.Kelvin), W. T. L. Procedings of the Royal Society 7, 63 (1871).
26.Kabalnov, A. S., Makarov, K. N., Pertzov, A. V. & Shchukin, E. D. Ostwald Ripening in Emulsions .2. Ostwald Ripening in Hydrocarbon Emulsions - Experimental-Verification of Equation for Absolute Rates. Journal of Colloid and Interface Science 138, 98-104 (1990).
27.Weiss, J., Canceliere, C. & McClements, D. J. Mass transport phenomena in oil-in-water emulsions containing surfactant micelles: Ostwald ripening. Langmuir 16, 6833-6838 (2000).
28.Kabalnov, A. S. & Shchukin, E. D. Ostwald Ripening Theory - Applications to Fluorocarbon Emulsion Stability. Advances in Colloid and Interface Science 38, 69-97 (1992).
29.Mishchuk, N. A., Verbich, S. V., Dukhin, S. S., Holt, O. & Sjoblom, J. Rapid Brownian coagulation in dilute polydisperse emulsions. Journal of Dispersion Science and Technology 18, 517-537 (1997).
30.Chern, C. S. & Chen, T. J. Miniemulsion polymerization of styrene using alkyl methacrylates as the reactive cosurfactant. Colloid and Polymer Science 275, 546-554 (1997).
31.Landfester, K. Recent developments in miniemulsions - Formation and stability mechanisms. Macromolecular Symposia 150, 171-178 (2000).
32.Katsumoto, Y., Ushiki, H., Graciaa, A. & Lachaise, J. Time evolution of the size distribution of nano-sphere droplets in the hexadecane-in-water miniemulsion stabilized by nonionic surfactants. Colloid and Polymer Science 279, 122-130 (2001).
33.Landfester, K., Tiarks, F., Hentze, H. P. & Antonietti, M. Polyaddition in miniemulsions: A new route to polymer dispersions. Macromolecular Chemistry and Physics 201, 1-5 (2000).
34.Barrere, M. & Landfester, K. High molecular weight polyurethane and polymer hybrid particles in aqueous miniemulsion. Macromolecules 36, 5119-5125 (2003).
35.Ni, H., Nash, H. A., Worden, J. G. & Soucek, M. D. Effect of catalysts on the reaction of an aliphatic isocyanate and water. Journal of Polymer Science Part a-Polymer Chemistry 40, 1677-1688 (2002).
36.Pavia, D. L., et al., Infrared spectroscory. in Introduction to Spectroscopy 3rd ed., Harcourt. p.13-101 (2001)
37.Saam, J. C., et al., Journal of Polymer Science Part a-Polymer Chemistry 20, p. 3351-3368 (1982)
38.Manabe, K., et al., Dehydration reactions in water. Bronsted acid-surfactant-combined catalyst for ester, ether, thioether, and dithioacetal formation in water. Journal of the American Chemical Society 124(40), p. 11971-11978 (2002)
39.Keitz, J. D., et al., Journal of Applied Polymer Science 29, p. 3131 (1984)
40.Bussi, P. and H. Ishida, Dynamic-Mechanical Properties of Epoxy-Resin Epoxidized Rubber Blends - Effect of Phase-Separated Rubber. Journal of Polymer Science Part B-Polymer Physics 32(4), p. 647-657 (1994)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔