跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/16 23:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊文學
研究生(外文):Wen-Shiue Young
論文名稱:銅催化氧化矽奈米線的製備
論文名稱(外文):Synthesis of Silicon Oxide Nanowires with Copper as Catalyst
指導教授:吳乃立
指導教授(外文):Nae-Lih Wu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:93
中文關鍵詞:奈米線氧化矽
外文關鍵詞:nanowirescoppersilicon oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
為了得到更精簡更經濟的製程生產氧化矽奈米線,本研究在審慎的考量下採用銅金屬做為其奈米線成長觸媒,並在1000oC,1%H2/N2的氣氛下,成本s備出高排列規則性的氧化矽奈米線陣列,其平均直徑約40nm,長度約數微米。在實驗參數的研究上,對於反應溫度,時間,氣氛、基材與銅觸媒量都有研究,並提出成長機制模型。且在奈米線成長機制上,對於氣液固成長機制與氧化物輔助機制做了詳細的討論,再加上本研究的實驗結果歸納出兩者間的差異,其中最重要的是強調在有合適觸媒的情況下,反應傾向於由氣液固成長機制而非氧化物輔助機制。且在氧化矽奈米線陣列的光致發光研究上,發現其在波長250nm的激發光下,會在2.8eV (440 nm)至4.0 eV (310 nm)之間產生放射光。
In order to obtain a simpler and cheaper process to produce silicon oxide nanowires, copper metal was adapt as catalyst for nanowire growing under deliberate consideration, and highly orientated silicon oxide nanowires array with 40nm diameter in average and several micrometer in length was produced at 1000oC under 1% H2/N2 atmosphere. For experimental parameters research, we studied reaction temperature, reaction time, atmosphere, base material and mount of copper catalyst, and modeled the growth mechanism. In addition, we had a detail discussion on gas-liquid-solid mechanism and oxide-assisted mechanism in nanowires growth mechanism, and within our experimental result we finally concluded the differences between this two mechanisms. In these differences, the most important one is that within proper catalyst, the reaction preferred gas-liquid-solid mechanism to oxide-assisted mechanism. Moreover, in the photoluminescence study of silicon oxide nanowires array, we found that it would emit strong light between 2.8 eV (440 nm) to 4.0 eV (310 nm) under the excitation of 250nm wavelength light.
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 XII

第一章 緒論 1
第二章 理論與文獻回顧 3
2-1 氧化矽奈米線的製備方式 3
2-1-1 高溫氣化法 3
2-1-2 雷射消融法 9
2-1-3 化學氣相沈積法 11
2-1-4 模版法 13
2-2 奈米線合成機制 18
2-2-1 VLS mechanism 19
2-2-2 O-A mechanism 22
2-2-3 VLS mechanism與O-A mechanism的比較 24
2-3 光致發光簡介 30
2-3-1 冷光簡介 30
2-3-2 本質(intrinsic)與非本質(extrinsic)冷光 31
2-3-3 光的吸收與放射 36
2-4 氧化矽的PL性質 40
2-4-1 氧化矽的PL研究 40
2-4-2 SiONWs之PL研究 44
第三章 實驗方法 48
3-1 實驗藥品 48
3-2 實驗步驟 49
3-2-1 氧化鋁板上SiONWs的合成 49
3-2-2 銅箔上SiONWs的合成 51
3-2-3 SiONWs的特性分析 51
第四章 實驗結果與討論 53
4-1 Al-SiONWs的製備與PL光譜分析 53
4-2 銅金屬及反應溫度對Al-SiONWs生長的影響 58
4-3 Cu-SiONWs的製備與PL光譜分析 62
4-4 反應溫度與反應時間對Cu-SiONWs成長的影響 68
4-5 反應氣氛對Cu-SiONWs生長形態的影響 71
4-6 SiONWs反應機制 78
第五章 結論與建言 82
第六章 參考文獻 84
附錄A 氣液固成長法觸媒與最低合金熔點 91
[1] A. Sengupta, K. C. Mandal, and J. Z. Zhang, “Ultrafast electronic relaxation dynamics in layered iodide semiconductors: a comparative study of colloidal BiI3 and PbI2 nanoparticles”, J. Phys. Chem. B, 104, 9396-9403 (2000).
[2] M. Brachez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels”, Science, 281, 2013-2016 (1998).
[3] X. T. Zhou, J. Q. Hu, C. P. Li, D. D. D. Ma, C. S. Lee, and S. T. Lee, “Silicon nanowires as chemical sensors”, Chem. Phys. Lett., 369, 220-224 (2003).
[4] S.-W. Chung, J.-Y. Yu, and J. R. Heath, “Silicon nanowire devices”, Appl. Phys. Lett., 76, 2068-2070 (2000).
[5] J.-Y. Yu, S.-W. Chung, J. R. Heath, “Silicon nanowires: preparation, device fabrication, and transport properties”, J. Phys. Chem. B, 104, 11864-11870 (2000).
[6] Y. Cui, and C. M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks”, Science, 291, 851-853 (2001).
[7] Y. Cui, Z. Zhong, D. L. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors”, Nano Lett., 3, 149-152 (2003).
[8] G. W. Zhou, H. Li, H. P. Sun, D. P. Yu, Y. Q. Wang, X. J. Huang, L. Q. Chen, and Z. Zhang, “Controlled Li doping of Si nanowires by electrochemical insertion method”, Appl. Phys. Lett., 75, 2447-2449 (1999).
[9] J. L. Gole, and M. G. White, “Nanocatalysis: selective conversion of ethanol to acetaldehyde using mono-atomically dispersed copper on silica nanospheres”, J. Catal., 204, 249-252 (2001).
[10] D. C. Lim, H. S. Ahn, D. J. Choi, C. H. Wang, and H. Tomokage, “The field emission properties of silicon carbide whiskers grown by CVD”, Surf. Coat. Tech., 168, 37-42 (2003).
[11] C. S. Chang, S. Chattopadhyay, L. C. Chen, K. H. Chen, C. W. Chen, Y. F. Chen, R. Collazo, and Z. Sitar, “Band-gap dependence of field emission from one-dimensional nanostructures grown on n-type and p-type silicon substrates”, Phys. Rev. B, 68, 125322-1-125332-5 (2003).
[12] Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires”, J. Am. Chem. Soc., 124, 1817-1822 (2002).
[13] B. Zheng, Y. Wu, P. Yang, and J. Liu, “Synthesis of ultra-long and highly oriented silicon oxide nanowires from liquid alloys”, Adv. Mater., 14, 122-124 (2002).
[14] J. Qi, T. Matsumoto, and Y. Masumoto, “Characterizations of simultaneously fabricated silicon and silicon monoxide nanowires”, Jpn. J. Appl. Phys., 40, L134-L136 (2001).
[15] Y. J. Zhang, Q. Zhang, N. L. Wang, Y. J. Yan, H. H. Zhou, and J. Zhu, “Synthesis of thin Si whiskers (nanowires) using SiCl4”, J. Cryst. Growth, 226, 185-191 (2001).
[16] N. R. B. Coleman, M. A. Morris, T. R. Spalding, and J. D. Holmes, “The formation of dimensionally ordered silicon nanowires within mesoporous silica”, J. Am. Chem. Soc., 123, 187-188 (2001).
[17] D. M. Lyons, K. M. Ryan, M. A. Morris, and J. D. Holmes, “Tailoring the optical properties of silicon nanowire arrays through strain”, Nano Lett., 2, 811-816 (2002).
[18] J. J. Niu, J. Sha, X. Y. Ma, J. Xu, and D. R. Yang, “Array-orderly single crystalline silicon nano-wires”, Chem. Phys. Lett., 367, 528-532 (2003).
[19] A. M. Mohammad, S. Dey, K. K. Lew, J. M. Redwing, and S. E. Mohney, “Fabrication of cobalt silicide nanowire contacts to silicon nanowires”, J. Electrochem. Soc., 150, G577-G580 (2003).
[20] M. Trau, N. Yao, E. Kim, Y. Xia, G. M. Whitesides, I. A. Aksay, “Microscopic patterning of orientated mesoscopic silica through guided growth”, Nature, 390, 674-676 (1997).
[21] R. Fan, Y. Y. Wu, D. Y. Li, M. Yue, A. Majumdar, and P. D. Yang, “Fabrication of silica nanotube arrays from vertical silicon nanowire templates”, J. Am. Chem. Soc., 125, 5254-5255 (2003).
[22] K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry”, Adv. Mater., 14, 1164-1167 (2002).
[23] K. Q. Peng, and J. Zhu, “Simultaneous gold deposition and formation of silicon nanowire arrays”, J. Electroanal. Chem., 558, 35-39 (2003).
[24] X. H. Chen, Y. G. Xing, J. Xu, J. Xiang, and D. P. Yu, “Rational growth of highly oriented amorphous silicon nanowire films”, Chem. Phys. Lett., 374, 626-630 (2003).
[25] J. J. Wu, T. C. Wong, and C. C. Yu, “Growth and characterization of well-aligned nc-Si/SiOx nanowires”, Adv. Mater., 14, 1643-1646 (2002).
[26] T. Ono, H. Saitoh, and M. Esashi, “Si nanowire growth with ultrahigh vacuum scanning tunneling microscopy”, Appl. Phys. Lett., 70, 1852-1854 (1997).
[27] M. K. Sunkara, S. Sharma, R. Miranda, G. Lian, and E. C. Dickey, “Bulk synthesis of silicon nanowires using a low-temperature vapor–liquid–solid method”, Appl. Phys. Lett., 79, 1546-1548 (2001).
[28] C. N. R. Rao, F. L. Deepak, G. Gundiah, and A. Govindara, “Inorganic nanowires”, Prog. Solid. State. Ch., 31, 5-147 (2003).
[29] M. Zheng, L. Zhang, X. Zhang, J. Zhang, and G. Li, “Fabrication and optical absorption of ordered indium oxide nanowire arrays embedded in anodic alumina membranes”, Chem. Phys. Lett., 334, 298-302 (2001).
[30] N. Li, and C. R. Martin, “A high-Rate, high-Capacity, nanostructured Sn-based anode prepared using sol-gel template synthesis”, J. Electrochem. Soc., 148, A164-A170 (2001).
[31] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis characterization and applications”, Adv. Mater., 15, 353-389 (2003).
[32] Y. Y. Yu, S. S. Chang, C. L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties”, J. Phys. Chem. B, 101, 6661-6664 (1997).
[33] R. S. Wagner, and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth”, Appl. Phys. Lett., 4, 89-90 (1964).
[34] Y. Wu, and P. Yang, “Direct observation of vapor-liquid-solid nanowire growth”, J. Am. Chem. Soc., 123, 3165-3166 (2001).
[35] S. T. Lee, N. Wang, Y. F. Zhang, Y. H. Tang, “Oxide-assisted semiconductor nanowire growth”, MRS Bull., 24, 36-42 (1999).
[36] H. Y. Peng, Z. W. Pan, L. Xu, X. H. Fan, N. Wang, C. S. Lee, and S. T. Lee, “Temperature dependence of Si nanowire morphology”, Adv. Mater., 13, 317-320 (2001).
[37] B. G. Yacobi, and D. B. Holt, “Cathodoluminescence microscopy of inorganic solids”, New York: Plenum Press, (1990).
[38] J. H. Stathis, and M. A. Kastner, “Photoinduced paramagnetic defects in amorphous silicon dioxide”, Phys. Rev. B, 29, 7079-7081 (1984).
[39] K. Arai, H. Imai, H. Hosono, Y. Abe, and H. Imagawa, “Two-photon processes in defect formation by excimer lasers in synthetic silica glass”, Appl. Phys. Lett., 53, 1891-1893 (1988).
[40] T. E. Tsai, D. L. Griscom, and E. J. Friebele, “Mechanism of intrinsic Si E''-center photogeneration in high-purity silica”, Phys. Rev. Lett., 61, 444-446 (1988).
[41] R. A. B. Devine, “Defect creation and two-photon absorption in amorphous SiO2”, Phys. Rev. Lett., 62, 340-340 (1989).
[42] H. Hishikawa, R. Nakamura, R. Tohmon, Y. Ohki, Y. Sakurai, K. Nagasawa, and Y. Hama, “Generation mechanism of photoinduced paramagnetic centers from preexisting precursors in high-purity silicas”, Phys. Rev. B, 41, 7828-7834 (1990).
[43] C. M. Gee, and M. A. Kastner, “Intrinsic-defect photoluminescence in amorphous SiO2”, Phys. Rev. Lett., 42, 1765-1769 (1979).
[44] J. H. Stathis, and M. A. Kastner, “Time-resolved photoluminescence in amorphous silicon dioxide”, Phys. Rev. B, 35, 2972-2979 (1987).
[45] H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation”, Phys. Rev. B, 45, 586-591 (1992).
[46] R. Tohmon, H. Mizuno, Y. Ohki, K. Sasagane, K. Nagasawa, and Y. Hama, “Correlation of the 5.0- and 7.6-eV absorption bands in SiO2 with oxygen vacancy”, Phys. Rev. B, 39, 1337-1345 (1989).
[47] S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, “Various types of nonbridging oxygen hole center in high-purity silica glass”, J. Appl. Phys., 68, 1212-1217 (1990).
[48] R. Tohmon, Y. Shimogaichi, H. Mizuno, Y. Ohki, K. Nagasawa, and Y. Hama, “2.7-eV luminescence in as-manufactured high-purity silica glass”, Phys. Rev. Lett., 62, 1388-1391 (1989).
[49] M. Kohketsu, K. Awazu, H. Kawazoe, and M. Yamane, “Photoluminescence centers in VAD SiO2 glasses sintered under reducing or oxidizing atmospheres”, Jpn. J. Appl. Phys., 28, 615-621 (1989).
[50] C. Itoh, T. Suzuki, and N. Itoh, “Luminescence and defect formation in undensified and densified amorphous SiO2”, Phys. Rev. B, 41, 3794-3799 (1990).
[51] G. G. Qin, J. Lin, J. Q. Duan, and G. Q. Yao, “A comparative study of ultraviolet emission with peak wavelengths around 350 nm from oxidized porous silicon and that from SiO2 powder”, Appl. Phys. Lett., 69, 1689-1691 (1996).
[52] D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, “Amorphous silica nanowires: intensive blue light emitters”, Appl. Phys. Lett., 73, 3076-3078 (1998).
[53] X. C. Wu, W. H. Song, K. Y. Wang, T. Hu, B. Zhao, Y. P. Sun, and J. J. Du, “Preparation and photoluminescence properties of amorphous silica nanowires”, Chem. Phys. Lett., 336, 53-56 (2001).
[54] Y. W. Wang, C. H. Liang, G. W. Meng, X. S. Peng, and L. D. Zhang, “Synthesis and photoluminescence properties of amorphous SiOx nanowires”, J. Mater. Chem., 12, 651-653 (2002).
[55] R. F. Pinizzotto, H. Yang, J. M. Perez, and J. L. Coffer, “The observation of silicon nanocrystals in siloxene”, J. Appl. Phys., 75, 4486-4488 (1994).
[56] M. S. Brandt, H. D. Fuchs, M. Stutzmann, J. Weber, and M. Cardona, “The origin of visible luminescence from porous silicon – a new interpretation”, Solid. State. Commun., 81, 307-312 (1992).
[57] A. M. Ali, T. Inokuma, Y. Kurata, and S. Hasegawa, “Luminescence properties of nanocrystalline silicon films”, Mater. Sci. Eng. C, 15, 125-128 (2001).
[58] X. Zhao, O. Schoenfeld, J. Kusano, Y. Aoyagi, and T. Sugano, “Violet and blue light emissions from nanocrystalline silicon thin films”, Jpn. J. Appl. Phys., 33, L649-L651 (1994).
[59] M. Hansen, “Constitution of binary alloys”, New York: McGraw-Hill, (1958).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top