(3.227.0.150) 您好!臺灣時間:2021/05/08 09:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王世育
研究生(外文):Shi-Yu Wang
論文名稱:四氧化三鐵/碳材超高電容器之特性與機制探討
論文名稱(外文):Characterization and Mechanism of Fe3O4/Carbon Supercapacitors
指導教授:吳乃立
指導教授(外文):Nae-Lih Wu
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:238
中文關鍵詞:氧化鐵超高電容器電化學石英晶體微量天平機制
外文關鍵詞:CarbonMechanismFe3O4EQCMSupercapacitor
相關次數:
  • 被引用被引用:6
  • 點閱點閱:343
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
包含一非導電性之高比表面積(1436 m2/g)活性碳和一導電性之低比表面積(220 m2/g)碳黑(CB)所形成的複合電極,觀察此複合電極在KOH和Na2SO4電解液的電容行為,無論是那種電解液,最大的電容值均發生於導電的CB組成在所對應的穿透門檻上,在CB含量小於這門檻時,其電容值主要受限於電極本身的電阻;當CB含量大於此門檻後,其比表面積將是影響電容值的最大因素。在1 M KOH(aq)且掃瞄速率為20 mV/s下,有最大的電容值(108 F/g)發生,而此CB的含量在25 wt.%(或體積分率~ 14 vol.%)。
探討Fe3O4超高電容器於不同電解液中的操作特性,其中包含了Na2SO3、KOH與Na2SO4三種電解液之電容值、漏電流、操作電壓的範圍、循環次數的穩定性及自放電的行為。從實驗中可知,氧化鐵的電容量與電解液的成分有很大的關係,尤其在Na2SO3(aq)有最高的電容表現30 F/g-Fe3O4或表面積下之80 �媹/cm2;而自放電機制則均呈現相同的表現行為。另外,在電解液中的溶氧量(DOC) 對電極之循環次數的穩定性有很大影響,同時溶氧量的減少也可降低漏電流發生,其操作環境在電解液之溶氧量小於0.1 ppm且操作電壓為1.1 V下,此氧化鐵電極可經一萬次的循環次數下不會發生衰退現象。
因為Fe3O4顆粒表面,在低掃瞄速率下(≦ 20 mV/s)較容易發生可逆的氧化還原反應,所以共沈降電極的比電容值會隨著Fe3O4含量的增加而增加,而由於分散性的關係,其Fe3O4的貢獻電容值隨著Fe3O4含量的減少而變大,其共沈電極最大的電容值和Fe3O4的貢獻電容值分別是42.4 F/g (66.4 wt.%)和375 F/g- Fe3O4 (5.6 wt.%)。除此之外,當掃瞄速率大於20 mV/s時電容的衰退效應主要是受制於CB的導電度。我們也發現,摻雜適當的Ni含量所形成的Ni-doped Fe3O4共沈電極,在較低的掃瞄速率下,其電容效應均較沒有摻雜Ni之Fe3O4大。
經由電鍍的方法所製得的薄膜Fe3O4電極,因其導電性較佳的原因,在1 M Na2SO3(aq)下的電容值為130 F/g,為了探討Fe3O4在Na2SO3(aq)中的偽電容機制,我們結合CV和EQCM的測試,此方法提供我們瞭解可逆的氧化和還原反應的路徑,在此發現SO32-離子會吸附在Fe3O4表面結構的Fe原子上,而且在還原的過程中會脫氧轉變成S2-離子,同時也會吸附在Fe原子上;在氧化的過程中,S2-離子會再變回原本的SO32-離子且吸附在Fe原子上。另一方面,Fe3O4表面結構於氧化或還原的過程中,也可能轉換為另一Fe2O3相,不管是SO32-離子的反應或是Fe3O4的相變化均發生在Fe3O4表面結構上,這結果將使得此偽電容電容器為一可逆的反應。


Composite electrodes which comprise a non-conductive activated carbon of large surface area (1436 m2/g) and a conductive carbon black (CB) of small surface area (220 m2/g) have been prepared and studied for their capacitive properties in aqueous KOH and Na2SO4 electrolytes. For either electrolyte, maximum capacitance exists at the composition believed to correspond to the percolation threshold for CB, the conductive phase. At a CB content less than the threshold, the capacitance is limited mainly by the electronic resistance on the electrode side. The interfacial surface area becomes the limiting factor as the threshold is exceeded. A maximum capacitance of 108 F/g at a voltage sweep rate of 20 mV/s is obtained in 1 M KOH aqueous electrolyte with a CB content of 25 wt.% (or ~ 14 vol.%).
Magnetite (Fe3O4) supercapacitor contained 10 wt.% CB as conductive additive (≧ percolation threshold), operating characteristics in aqueous electrolytes of Na2SO3, KOH and Na2SO4 were investigated. While the capacitance of the oxide was found to depend heavily on electrolyte composition, the self-discharge mechanism in these electrolytes appeared to be the same. Reduction in dissolved oxygen content (DOC) of electrolyte reduced leakage current and profoundly improved the cycling stability. In particular, Na2SO3(aq) gives the highest capacitance, nearly 30 F/g-Fe3O4 or 80 �媹/cm2 of actual surface area, with an operating range of 1.1 V and the electrode showed no deterioration after 104 cycles under a DOC < 0.1 ppm.
Since the surface Fe3O4 particles will easily raise the reversible redox below the low sweep rates (≦ 20 mV/s), the specific capacitances of coprecipitated electrode increased as magnetite loading content. The contributive specific capacitances of magnetite increased as decreasing magnetite content because of the dispersion of magnetite. The largest specific capacitances of coprecipitated electrode and magnetite were 42.4 F/g (66.4 wt.%) and 375 F/g-Fe3O4 (5.6 wt.%), respectively. We found that the capacitive behavior of magnetite with the optimal Ni-doped content would be larger than that without Ni-doped magnetite at the lower sweep rate.
The specific capacitance of thin film magnetite possess 130 F/g in 1 M Na2SO3(aq) which is due to higher conductivity by electroplating process. In order to explore the pseudocapacitive mechanism of magnetite in Na2SO3(aq), combined use of CV and EQCM affords a route to obtain the reversible oxdation and reduction reaction. We found that SO32- ions adsorbed on Fe atom of Fe3O4 surface structure, however, SO32- ions transformed into S2- ion (deoxidization) and adsorbed yet on Fe atom during the reduction process. During the oxidation process, S2- ions were returned to original SO32- ion on Fe atom site. On the other hand, the structure of Fe3O4 surface maybe has been transferred to another Fe2O3 phase during the oxidation or reduction process. The reaction of SO32- ions or phase transformations of Fe3O4 both take place on Fe3O4 surface structure and there was a consequent reversible pseudocapacitor.


中文摘要……………………………………………………………....Ⅰ
英文摘要……………………………………………………………....Ⅲ
目錄………………………………………………………………...….Ⅴ
圖表索引…………………………………………………………..…..Ⅷ

第一章 緒論………………………………………………….……….1
第二章 理論與文獻回顧…………………………………….……….5
2.1 超高電容器之簡介…………………………………….………5
2.1.1 超高電容的理論……………….………………..…….…5
2.1.2 超高電容之特性分析與應用………….………..…...…12
2.1.3 超高電容器之特性分析與應用….………………..…...17
2.2 文獻回顧……………………………………………..……….22
2.2.1 各種偽電容材料之機制探討………………….……….29
2.2.2 電解液……………………………………….....……….34
2.2.3 漏電流(leakage current)測試………………….………..36
2.2.4 電化學電容器之自放電(self-discharge)機制……...…..37
2.3 Fe3O4的簡介………………………………..…………..…….41
2.3.1 Fe3O4的物性與結構……………………………..…....41
2.3.2 Fe3O4的相變化及電性………………………….....….44
2.3.3 Fe3O4的應用…………………………………….....….46
2.4 電凝結程序………………………………………………...…48
2.5 研究目的………………………………………………….…..52
第三章 電極材料製備與電化學分析………………………………54
3.1 實驗藥品………………………………………………….…..54
3.2 電鍍Fe3O4薄膜電極的製備…….……………..………….…56
3.3 Fe3O4及Fe3O4/碳複合材料的製備….…….……..……......…58
3.4 電極的製備………………………………..…….………........59
3.5 樣品之基本物性量測…...……..…………………….……….61
3.5.1 X光繞射分析………………………..……….........….61
3.5.2 掃瞄式與穿透式電子顯微鏡(SEM 、TEM).........….62
3.5.3 比表面積的測試………………………..…….....…….63
3.6 超高電容器的電性分析………………………..……....…….64
3.6.1 操作電壓…...……..…………………….…….……….66
3.6.2 掃瞄速度的影響….…………………….…….……….67
3.7 電化學石英晶體微量天平(EQCM)之操作原理…………….69
3.7.1 EQCM之簡介………………………..…….........…….69
3.7.2 外加質量對震盪頻率的影響………..…….........…….70
第四章 碳/碳混合電極在電化學電容器之導電度穿透理論……...73
4.1 碳材的微結構性質……………………………..…….………73
4.2 碳材的電化學電容器性質…...……………………………....78
第五章 Fe3O4/碳黑複合材料之超高電容器………….…………....95
5.1 Fe3O4/碳黑物理混合材料之電化學分析…………....……....95
5.1.1 Fe3O4/碳黑物理混合材料在水溶液下之分析.………95
5.1.2 Fe3O4/碳黑物理混合材料在有機系下之分析….…...105
5.2 Fe3O4在水溶液下之操作特性.……………………….….…108
5.3 Fe3O4在水溶液下之反應動力學……………..…………….115
5.4 Fe3O4/碳黑共沈和摻雜Ni複合材料之電化學分析.……….117
5.4.1 Fe3O4/碳黑共沈複合材料之電化學分析………...….117
5.4.2 Fe3O4/碳黑摻雜Ni2+的共沈材料之電化學分析……125
第六章 電鍍Fe3O4薄膜之超高電容器及其機制的探討.………..130
6.1 電鍍Fe3O4薄膜與電化學分析.……………..………...…..131
6.1.1 在不同電鍍Fe3O4薄膜環境下之結構分析.………......131
6.1.2 電鍍Fe3O4薄膜在電化學上的分析……………..…......138
6.2 電鍍Fe3O4薄膜在水溶液下之偽電容機制…….………......148
6.2.1 Fe3O4薄膜與SO32-離子在氧化還原反應的可能電位推 導…………..……………………………………………..148
6.2.2 電鍍Fe3O4薄膜在水溶液下之偽電容機制…….…......152
6.2.3 Fe3O4薄膜的偽電容機制……........................................166
6.3 Fe3O4薄膜在其它電解液的電雙層機制……….......……....178
6.4 Fe3O4與SnO2在電解液中之電容機制的比較……..….......186
第七章 建議與目標………………………………………………..189
第八章 參考文獻…………………………………………………..191
附錄一………………………………………………………………..207
附錄二………………………………………………………………..211


[1] B. E. Conway, Electrochemical Supercapacitor, Kluwer Academic /Plenum Publisher, New York (1999).
[2] B. E. Conway, Transition from Supercapacitor to Battery Behavior in Electrochemical Energy Storage, J. Electrochem. Soc., 138, 1539 (1991).
[3] B. E. Conway, V. Birss, and J. Wojtowicz, The role and Utilization of pseudocapacitance for energy storage by supercapacitors, J. Power Sources, 66, 1(1997).
[4] 劉丙寅,摻雜銻之二氧化錫奈米材料在電化學電容器之應用,國立台灣大學化學工程研究所碩士論文(2000),台北.
[5] G. Salitra, A. Soffer, L. Eliad,Y. Cohen, and D. Aurbach, Carbon Electrode for Double-Layer Capacitors, J. Electrochem. Soc., 147, 2486(2000).
[6] N. L. Wu, J. Y. Hwang, P. Y. Liu, C. Y. Han, S. L. Kuo, K. H. Liao, M. H. Lee, and S. Y. Wang, Synthesis and Characterization of Sb-Doped SnO2 Xerogel Electrochemical Capacitor, J. Electrochem. Soc., 148 (6), A550 (2001).
[7] A. Laforgue, P. Simon, C. Sarrazin, and J. Fauvarque, Polythiophene-based Supercapacitors, J. Power Sources, 80, 142(1999).
[8] M. Mastragostino, C. Arbizzani, R. Paraventi, and A. Zanelli , Polymer Selection and Cell Design for Electric-Vehicles Supercapacitors, J. Electrochem. Soc., 147, 407(2000).
[9] K. Naoi, S. Suematsu, and A. Manago, Electrochemistry of Poly(1,5-diaminoanthraquinone) and Its Application in Electrochemical Capacitor Materials, J. Electrochem. Soc., 147, 420(2000).
[10] D. Belanger, X. Ren, J. Davey, F. Uribe, and S. Gottesfeld, Characterization and Long-Term Performance of Polyaniline-Based Electrochemical Capacitors, J. Electrochem. Soc., 147, 2923(2000).
[11] M. Mastragostino, R. Paraventi, and A. Zanelli , Supercapacitors Based on Composite Polymer Electrodes, J. Electrochem. Soc., 147, 3167(2000).
[12] A. Laforgue, P. Simon, J. F. Fauvarque, J. F. Sarrau, and P. Lailler, Hybrid Supercapacitors Based on Activated Carbons and Conducting Polymers, J. Electrochem. Soc., 148, A1130(2001).
[13] I. Tanahashi, A. Yoshida, and A. Nishino, Preparation and Characterization of Activated Carbon Tablets for Electric Double Layer Capacitors, Bulletin of the Chemical Society of Japan 63, 2755 (1990).
[14] J. M. Parnaut and G. Goulart, Electrochemical Capacitor Using Polmer/Carbon Composites, J. Power Sources, 35, 93 (1995).
[15] A. Yoshida, S. Nonaka, I. Aoki, and A. Nishino, Electric Double-Layer Capacitors with Sheet-Type Polarizable Electrode and Application of the Capacitors, J. Power Sources, 60, 213 (1990).
[16] Y. Kibi, T. Saito, M. Kurata, J. Tabuchi, and A. Ochi, Fabrication of High-Power Electric Double-Layer Capacitors, J. Power Sources, 60, 219 (1996).
[17] H. Shi, Activated Carbons and Double Layer Capacitance, Electrochim. Acta, 41, 1633 (1996).
[18] M. Ishikawa, A. Sakamto, M. Morita, Y. Matsuda, and K. Ishida, Effect of Treatment of Activated Carbon Fiber Cloth Polarizable Electrodes for Electric Double-Layer Capacitors, J. Power Sources, 60 233 (1996).
[19] X. Liu, T. Momma and T. Osaka, Improvement of Active Carbon Fiber Electrode for Electric Double Layer Capacitor by Electrochemical Redox Pretreatment, Denki Kagaku, 60, 143 (1996).
[20] L. Bonnefoi, P. Simon, J. F. Fauvarque, C. Sarrazin, J. F. Sarrau, and A. Dugast, Electrode Optimization for Carbon Power Supercapacitors, J. Power Sources, 80, 149 (1999).
[21] 謝建德,微孔洞碳材固/液介面的吸附及電容行為,國立成?
大學化學工程研究所博士論文,台南(2001).
[22] Suzuki and M., Adsorption Engineering, Elsevier, Tokyo (1990).
[23] Mattson, J. S., Mark, and Jr. H. B., Activated Carbon: Surface Chemistry and Adsorption from Solution, Wiley-Vch, New York (1998).
[24] K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties, John Wiley & Sons, New York (1988).
[25] X. Liu, T. Momma, X. Liu, T. Osaka, Dependence on the Electrilyte Solution of the Capacitance of Active Carbon Fiber Electrode for Electric Double Layer Capacitor, Denki Kagaku, 64, 831 (1996).
[26] M. Takeuchi, K. Koike, T. Maruyama, A. Mogami, and M. Okamura, Electrochemical Intercalation of Tetraethylammonium Tetrefluoroborate into KOH-Treated Carbon Consisting of Multi-Graphene Sheets for an Electric Double Layer Capacitor, D enki Kagaku, 64, 1311 (1998).
[27] S. T. Mayer, R. W. Pekala, and J. L. Kaschmitter, The Aerocapacitor: An Electrochemical Double-Layer Energy-Storage Device, J. Electrochem. Soc., 140, 446 (1993).
[28] C. Liu, E. K. Sichel, R. Hoch, D. Moy, and H. Tennent, High Power Electrochemical Capacitors Based on Carbon Nanotube Electrodes, Appl. Phys. Lett., 70, 1480 (1997).
[29] R. Z. Ma, J. Liang, B. Q. Wei, B. Zhang, C. L. Xu, and D. H. Wu, Study of Electrochemical Capacitors Utilizing Carbon Nanotube Electrodes, J. Power Sources, 84, 126 (1999).
[30] K. K. Liu and M. A. Anderson, Porous Nickel Oxide/Nickel Films for Electrochemical Capacitors, J. Electrochem. Soc., 143, 124 (1996).
[31] C. Liu, J. A. Ritter and B. N. Popov, Characterization of Sol-Gel-Derived Cobalt Oxide Xerogels as Electrochemical Capacitors, J. Electrochem. Soc., 145, 4097 (1998).
[32] S. C. Pang, M. A. Anderson, and T. W. Chapman, Novel Electrode Materials for Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Dioxide, J. Electrochem. Soc., 147, 444 (2000).
[33] Y. Takasu, S. Mizutani, M. Kumagai, S. Sawaguchi, and Y. Murakami, Ti-Vi-W-O/Ti Oxide Electrodes as Candidates for Electrochemical Capacitors, Electrochem. Solid-State Lett., 2, 1 (1999).
[34] Y. Takasu, T. Nakamura, H. Ohkawauchi, and Y. Murakami, Dip-Coated Ru-V Oxide Electrodes for Electrochemical Capacitors, J. Electrochem. Soc., 144, 2601 (1997).
[35] K. Kameyama, K. Tsukada, K. Yahikozawa, and Y. Takasu, Surface Characterization of RuO2-IrO2-TiO2 Coated Titanium Electrodes, J. Electrochem. Soc., 141, 643 (1994).
[36] O. R. Camara and S. Trasatti, Surface Electrochemical Properties of Ti/(RuO2+ZrO2) Electrodes, Electrochim. Acta, 41, 419 (1996).
[37] M. Ito, Y. Murakami, H. Kaji, K. Yahikozawa, and Y. Takasu, Surface Characterization of RuO2-SnO2 Coated Titanium Electrodes, J. Electrochem. Soc., 143, 32 (1996).
[38] L. Nanni, S. Polozzi, A. Benedetti, and A. De Battisti, Morphology, Microstructure, and Electrocatalytic Properties of RuO2-SnO2 Thin Films, J. Electrochem. Soc., 146, 220 (1999).
[39] P. M. Wilde, T. J. Guther, R. Oesten, and J. Garche, Strontium Ruthenate Perovskite as the Active Material for Supercapacitors, J. Electroanal. Chem., 461, 154 (1999).
[40] Y. U. Jeong and A. Manthiram, Amorphous Ruthenium-Chromium Oxides for Electrochemical Capacitors, Electrochem. Solid-State Lett., 3, 206 (2000).

[41] A.Rudge, J. Davey, I. Raistrick, and S. Gottesfeld, Conducting Polymers as Active Materials in Electrochemical Capacitors, J. Power Sources, 47, 89 (1994).
[42] C. Arbizzani, M. Mastragostino, and L. Meneghello, Polymer-Based Redox Supercapacitors: a Comparative Study, Electrochim. Acta, 41, 21 (1996).
[43] C. Arbizzani, M. Mastragostino, L. Meneghello, and R. Paraventi, Electronically Conducting Polymers and Activated Carbon: Electrode Materials in Supercapacitor Technology, Adv. Mater., 8, 331 (1996).
[44] V. Barsukov and S. Chivikov, The Capacitor Concept of the Current-Producing Process Mechanism in Polyaniline-Type Conducting Polymers, Electrochim. Atca, 41, 1773 (1996).
[45] S. Yata, E. Okamoto, H. Satake, H. Kubota, M. Fujji, T. Taguchi, and H. Kinoshita, Polyacene Capacitors, J. Power Sources, 60, 207 (1999).
[46] A. Laforgue, P. Simon, C. Sarrazin, and J. F. Fauvarque, Polythiophene-Based Supercapacitors, J. Power Sources, 80, 142 (1999).
[47] J. P. Ferraris, M. M. Eissa, I. D. Brotherston, and D. C. Loveday, Performance Evaluation of Poly 3-(Phenylthiophene) Derivatives as Active Materials for Electrochemical Capacitor Applications, Chem. Mater., 10, 3528 (1998).
[48] J. C. Carlberg and O. Inganäs, Poly(3,4-ethylenedioxythiophene) as Electrode Material in Electrochemical Capacitors, J. Electrochem. Soc., 144, L61 (1997).
[49] A. Yamada and J. B. Goodenough, Keggin-Type Heteropolyacids as Electrode Materials for Electrochemical Supercapacitors, J. Electrochem. Soc., 145, 737 (1998).
[50] T. Kanbara, K. Nishimura, T. Yamamoto, and Tokuda, Electric Double-Layer Capacitors using Porous and Electrically Conducting Clay-Carbon Composite as Electrodes, J. Power Sources, 32, 165 (1990).
[51] C. Z. Deng, R. A. J. Pynenburg, and K. C. Tsai, Improved Porous Mixture of Molybdenum Nitride and Tantalum Oxide as a Charge Storage Material, J. Electrochem. Soc., 145, L61 (1998).
[52] H. B. Gu, J. U. Kim, H. W. Song, G. C. Park, and B. K. Park, Electrochemical Properties of Carbon Composite Electrode with Polymer Electrolyte for Electric Double-Layer Capacitor, Electrochim. Acta, 45, 1533 (2000).
[53] J. M. Miller, B. Dunn, T. D. Tran, and R. W. Pekala, Deposition of Ruthenium Nanoparticles on Carbon Aerogels for High Energy Density Supercapacitor Electrodes, J. Electrochem. Soc., 144, L309 (1997).
[54] C. Lin, J. A. Ritter, and B. N. Popov, Development of Carbon-Metal Oxide Supercapacitors from Sol-Gel Derived Carbon-Ruthenium Xerogels, J. Electrochem. Soc., 146, 3155 (1999).
[55] S. Gottesfeld, S. P. Wolsky, and N. Marincic, in Proc. First Intl. Seminar om Double-Layer Capacitors and Similar Energy Storage Devices, Florida Educational Seminars, Boca Raton, Fla. (1991).
[56] K. Hiratsuka, Y. Sanada, T. Muranaka, and K. Kurihara, Electrochemical Properties of Organic Electrolyte Containing Quarternary Phosphonim Salt for Electric Double Layer Capacitor, Denki Kagaku, 59, 209 (1980).
[57] K. Hiratsuka, Y. Sanada, T. Muranaka, and K. Kurihara, Evalution of Activated Carbon Electrodes for Electric Double Layer Capacitors using an Organic Electrolyte Solution, Denki Kagaku, 59, 607 (1991).
[58] M. Morita, M. Goto, and Y. Matsuda, Ethylene Carbonated-Based Organic Electrolytes for Electric Double Layer Capacitors, J. Appl. Electrochem., 22, 901 (1992).
[59] Y. Sanada, K. Hiratsuka, T. Morimoto, and K. Kurihama, Electric Double Layer Capacitor Using Sulfolane-Based Electrolytic Solution, Denki Kagaku, 61, 448 (1993).
[60] T. Morimoto, K. Hiratsuka, Y. Sanada, K. Kurihama, and Y. Kimura, Development of High Energy Density Electric Double Layer Capacitor Using Novel Organic Electrolyte, Denki Kagaku, 63, 587 (1995).
[61] T. Morimoto, K. Hiratsuka, Y. Sanada, K. Kurihama, and Y. Kimura, Electric Double-Layer Capacitor Using Organic Electrolyte, J. Power Sources, 60, 239 (1996).
[62] M.Ue, M. Takehara, and M. Takeda, Triethymethylammonium Tetrafluoroborate as a Highly Soluble Supporting Electrolyte Salt for Electrochemical Capacitors, Denki Kagaku, 65, 969 (1997).
[63] A. B. Mcewen, H. L. Ngo, K. Lecompte, and J. L. Goldman, Electrochemical Properties of Imidazolium Salt Electrolytes for Electrochemical Capacitor Applications, J. Electrochem. Soc., 146, 1687 (1999).
[64] T. Kanbara, M. Inami, and T. Yamamtot, New Solid-State Electric Double-Layer Capacitor Using Poly(vinyl alcohol)-Based Polymer Solid Electrolyte, J. Power Sources, 36, 87 (1991).
[65] M. Ishikawa, M. Morita, M. Ihara, and Y. Matsuda, Electric Double-Layer Capacitor Composed of Activated Carbon Fiber Cloth Electrodes and Solid Polymer Electrolytes Containing Alkylammonium Salts, J. Electrochem. Sco., 141, 1730 (1994).
[66] J. M. Pernaut and G. Goulart, Electrochemical Capacitor Using Polymer/Carbon Composites, J. Power Sources, 55, 93 (1995).
[67] X. Liu and T. Osaka, All-Solid-State Electric Double-Layer Capacitor with Isotropic High-Density Graphite Electrode and Polyethylene Oxide/LiClO4 Polymer Electrolyte, J. Electrochem. Soc., 143, 3982 (1996).
[68] M. Ishikawa, M. Morita, M. Ihara, and Y. Matsuda, Electric Double-Layer Capacitor with Gel Electrolyte Containing Poly(acrylonitrile) and Tetraalkylammonium Salts, Denki Kagaku, 62, 722 (1994).
[69] X. Liu and T. Osaka, Properties of Electric Double-Layer Capacitors with Various Polymer Gel Electrolytes, J. Electrochem. Soc., 144, 3066 (1997).
[70] A. Matsuda, H. Honjo, M. Tatsumisago, and T. Minami, Proton Conductive Silica Gels Doped with Several Acids and Their Application to Electric Double-Layer Capacitor, Chem. Lett., 1189 (1998).
[71] T. Osaka, X. Liu, and M. Nojima, Acetylene Black/Poly(vinylidene fluoride) Gel Electrolyte Composite Electrode for an Electric Double-Layer Capacitor, J. Power Sources, 74, 122 (1998).
[72] A. Matsuda, H. Honjo, M. Tatsumisago, and T. Minami, Electric Double-Layer Capacitor Using Composites Composed of Phosphoric Acid-Doped Silica Gel and Styrene-Ethylene-Butylene-Styrene Elastomer as a Solid Electrolyte, J. Power Sources, 77, 12 (1999).
[73] T. Osaka, X. Liu, M. Nojima, and T. Momma, An Electrochemical Double Layer Capacitor Using an Activated Carbon Electrode with Gel Electrolyte Binder, J. Electrochem. Soc., 146, 1724 (1999).
[74] N. Kubota, H. Watanabe, G. Konaka, and Y. Eguchi, Ionically Conductive Polymer Gel Electrolytes Prepared from Vinyl Acetate and Methyl Methacrylate for Electric Double Layer Capacitor, J. Appl. Polym. Sci., 76, 12 (2000).
[75] B. Pillay and J. Newman, The Influence of Side Reactions on the Performance of Electrochemical Double-Layer Capacitors, J. Electrochem. Soc., 143, 1806 (1996).
[76] J. P. Zheng, J. Hung, and T. R. Jow, The Limitations of Energy Density for Electrochemical Capacitors, J. Electrochem. Soc., 144, 2026 (1997).
[77] D. H. Fritts, An Analysis of Electrochemical Capacitors, J. Electrochem. Soc., 144, 2233 (1997).
[78] J. P. Zheng and T. R. Jow, The Effect of Salt Concentration in Electrolytes on the Maximum Energy Storage for Double Layer Capacitors, J. Electrochem. Soc., 144, 2417 (1997).
[79] V. Srinivasan and J. W. Weidner, Mathematical Modeling of Electrochemical Capaciotrs, J. Electrochem. Soc., 146, 1650 (1999).
[80] C. Lin, J. A. Ritter, B. N. Popov, and R. E. White, A Mathematical Model of an Electrochemical Capacitor with Double-Layer and Faradaic Processes, J. Electrochem. Soc., 146, 1650 (1999).
[81] D. Dunn and J. Newman, Predictions of Specific Energies and Specific Powers of Double-Layer Capacitors Using a Simplified Model, J. Electrochem. Soc., 147, 820 (2000).
[82] L. Bonnefoi, P. Simon, J. F. Fauvarque, C. Sarrazin, J.F. Sarrau, and P. Lailler, Multi Electrode Prismatic Power Prototype Carbonrcarbon Supercapacitors, J. Power Sources, 83, 162 (1999).
[83] H. Nakagawa, A. Shudo, and Kouichi Miuraz, High-Capacity Electric Double-Layer Capacitor with High-Density-Activated Carbon Fiber Electrodes, J. Electrochem. Soc., 147, 38 (2000).
[84] T. Momma, X. Liu, T. Osaka, Y. Ushio, Y. Sawada, Electrochemical Modification of Active Carbon Fiber Electrode and its Application to DoubleLlayer Capacitor, J. Power Sources, 60, 249 (1996).
[85] D. Qu and H. Shi, Studies of Activated Carbons Used in Double-Layer Capacitors, J. Power Souces, 74, 249 (1998).
[86] T. Morimoto, K. Hiratsuka, Y. Sanada, and K. Kurihara, Electric Double-Layer Capacitor Using Organic Electrolyte, J. Power Sources, 60, 239 (1996).
[87] C. Lin, J. A. Ritter, and B. N. Popov, Correlation of Double-Layer Capacitance with the Pore Structure of Sol-Gel Derived Carbon Xerogels, J. Electrochem. Soc., 146, 3639 (1999).
[88] 黃孟娟,張榮錡,釕氧化物超高電容材料特性簡介,工業材料雜誌,182,120 (2002).
[89] Y. U. Jeong and A . Manthiram, Amorphous Ruthenium-Chromium Oxides for Electrochemical Capacitors,Electrochem. Solid-State Lett., 3, 205(2000).
[90] C. C. Hu and Y. H. Huang, Cyclic Voltammetric Deposition of Hydrous Ruthenium Oxide for Electrochemical Capacitors, J. Electrochem. Soc., 146, 2465(1999).
[91] J. P. Zheng, Ruthenium Oxide-Carbon Composite Electrodes for Electrochemical Capacitors, Electrochemical and Solid-State Letters, 2, 359(1999).
[92] Y. Sato, K. Yomogida, T. Nanaumi , K. Kobayakawa , Y. Ohsawa, and Mikio Kawai, Electrochemical Behavior of Activated-Carbon Capacitor Materials Loaded with Ruthenium Oxide, Electrochem. Solid-State Lett., 3, 113(2000).
[93] M. Ramani , Ba. S. Haran, R. E. White , B. N. Popov , and L. Arsov, Studies on Activated Carbon Capacitor Materials Loaded with different amount of Ruthenium Oxide , J. Power Sources, 93, 209(2001).
[94] J. Mozota and B. E. Conway, Surface and Bulk Process at Oxidized Iridium Electrode, Electrochim. Acta, 28, 1(1982).
[95] H. Y. Lee and J. B. Goodenough, Brief Communication Supercapacitor Behavior with KCl Electrolyte, J. Solid State Chem., 144, 220 (1999).
[96] H. Y. Lee and J. B. Goodenough, Ideal Supercapacitor Behavior of Amorphous V2O5 nH2O in Potassium Chloride (KCl) Aqueous Solution, J. Solid State Chem., 148, 81 (1999).
[97] T. C. Liu, G. Pell, and B. E. Conway, Behavior of Molybdenum Nitrides as Materials for Electrochemical Capacitor, J. Electroechem. Soc., 145, 1882(1998).
[98] L. Nanni, S. Polizzi, A. Benedetti, and A. D. Battisti, Morphology、Microstructure and Electrocatalytic Properties of RuO2-SnO2 Thin Films, J. Electrochem. Soc., 146, 220 (1999).
[99] A. Barbu and V. Plichon, Voltammerty of Thermally Prepared Rethenium Oxide Film and Flux Detection at Electrolyte Interface, Electrochim. Acta, 42, 489 (1997).
[100] S. H. Jordanov, H. A. Kozlowska, M, Vukovic, and B. E. Conway, Reversibility and Growth Behavior of Surface Oxide Films at Ruthenium Electrodes, J. Electrochem. Soc., 125, 1471 (1978).
[101] J. P. Zheng, P. J. Cygan, and T. R. Jow, Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors, J. Electrochem. Soc., 142, 2699 (1995).
[102] R. M. Cornell and U. Schwertmann, The Iron Oxides, VCH, Weinheim (1996).
[103] PDF number:19-0629, JCPDS-International Centre for Diffraction Data (1997) .
[104] 防偽印刷話油墨, 印藝, 217 (2002).
[105] Tsouris, DePaoli, and J. T. Shor, US patent 6, 179, 987 B1 (2001).
[106] T. Y. Ying, S. Yiacoumi, and C. Tsouris, An Electrochemical Method for the Formation of Magnetite Particles, J. Disp. Sci. Tech., 23, 4, 569 (2002).
[107] N. L. Wu, S. Y. Wang, C. Y. Han, D. S. Wu, and L. R. Shiue, Electrochemical Capacitor of Magnetite in Aqueous electrolytes, J. Power Sources, 113, 173 (2003).
[108] 藍怡平,氧化鐵薄膜超高電容器之製備與分析,國立台灣大學化學工程研究所碩士論文,台北(2002).
[109] E. Gileadi著,鮮祺振 譯,電極動力學,徐氏基金會出版,台北,pp36 ~ 38(1996).
[110] A. J. Bard and Larry R. Faulkner, Electrochemical Methods, John Wiley & Sons, Inc., New York (2001).
[111] F. W. Maarsen, M. C. Smit, and J. Matze, Rec. Trav. Chim. Pays-Bas., 76, 713 (1957).
[112] G. Z. Sauerbrey, Verwendung von Schwingquarzen zur Wägung dünner Schichten Und zur Mikrowägung, Z. Phys., 155, 206 (1959).
[113] J. L. Jones and J. P. Meiure, Piezoelectric Transducer for Determination of Metals at the Micromolar Level, Anal. Chem., 41, 484 (1969).
[114] T. Nomura, T. Nagamune, K. Izutsu, and T. S. West, 水晶発振子を用いる水溶液中での金属イオンの新電解分析法の検討と微量銅(Ⅱ)定量への応用, Bunseki Kagaku, 30, 494 (1981).
[115] P. L. Konash and G. J. Bastianns, Piezoelectric Crystals as Detectors in Liquid Chromatography, Anal. Chem., 52, 1929 (1980).
[116] S. Brukensteine and M. Shay, Indium(Ⅲ)-Hexacyanoferrate(Ⅲ, Ⅱ) as an Inorganic Material Analogous to Redox Polymers for Modification of Electrode Surfaces, Electrochim. Acta, 34, 1749 (1989).
[117] 曾貴聖,鐵氰化銦修飾電極感測半胱胺酸反應機制之研究,國立台灣大學化學工程研究所碩士論文,台北 (2002).
[118] Richard Zallen, The Physics of Amorphous Solids, John Wiley and Sons, Inc., New York (1983).
[119] D. Qu and H. Shi, Studies of activated carbons used in double-layer capacitors, J. Power Sources 74, 99 (1998).
[120] B. E. Conway, W. G. Pell, and T. C. Liu, Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries, J. Power Sources, 65, 53 (1997).
[121] T. C. Liu, W. G. Pell, and B. E. Conway, Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes, Electrochim. Acta, 42, 23-24, 3541 (1997).
[122] T. Ishikawa, H. Nakazaki, A. Yasukawa, K. Kandori, and M. Seto, Structure and Properties of Magnetite Formed in the Presence of Nickel (Ⅱ) Ions, Mater. Res. Bull., 33, 11, 1609 (1998).
[123] E. Barrado, J. I. Montequi, J. Medina, R. Pardo, and F. Prieto, Electrochemical Study of Iron Ferrite Sludge Obtained under the Conditions Proposed for the Purification of Waste Water at a Carbon Paste Electrode, J. Electroanal. Chem., 441, 227 (1998).
[124] M. Uotani, T. Taniyama, and Y. Yamazaki, Magnetic and Magneto-Transport Properties of γ-Fe2O3-grain-emdedded Fe3O4 thin films, J. Appl. Phys., 87, 9, 5585 (2000).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔