(3.236.222.124) 您好!臺灣時間:2021/05/19 10:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:歐昌霖
研究生(外文):Chang-Lin Ou
論文名稱:橢球粒子之熱泳與光泳運動
論文名稱(外文):Thermophoretic and photophoretic motions of aerosol spheroids
指導教授:葛煥彰
指導教授(外文):Huan Jang Keh
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:62
中文關鍵詞:熱泳光泳
外文關鍵詞:thermophoresisphotophoresis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文是以解析方法研究一自由懸浮之橢球形氣膠粒子在一相對於其對稱軸為任意方向的均勻溫度梯度或光射性之熱通量中的熱泳與光泳運動。假設Knudsen數很小以致於流體流動可看似一連續體狀態,且在粒子表面存在有熱滑移現象。在Peclet數和Reynolds數亦很小的情況下,使用雙焦座標系統,可獲得在擬穩定狀態下適當的能量與動量方程式之解。對於長橢球與扁橢球粒子之各種情況,皆可進一步得到熱泳與光泳的速度與作用力。
對於一包含完全相同且無交互作用的橢球粒子懸浮系統而言,本文亦得到隨意方向分佈粒子之平均熱泳與光泳的速度與作用力。結果顯示,橢球粒子之形狀、熱傳導度、以及其相對於施加之溫度梯度或入射光之方位關係,在熱泳與光泳的行為上有著重大的影響。
An analytical study is presented for the thermophoretic and photophoretic motions of a freely suspended aerosol spheroid in a uniform prescribed temperature gradient or radiative heat flux that is oriented arbitrarily with respect to its axis of revolution. The Knudsen number is assumed to be small so that the fluid flow is described by a continuum model with a thermal slip at the particle surface. In the limit of small Peclet and Reynolds numbers, the appropriate energy and momentum equations are solved in the quasisteady situation using the bifocal-coordinate transformations. Explicit expressions for the thermophoretic and photophoretic velocities and forces are obtained for various cases of prolate and oblate spheroidal particles.
The average thermophoretic and photophoretic velocities and forces for an ensemble of identical, non-interacting spheroids with random orientation distribution are also determined. The results indicate that the shape and relative thermal conductivity of a spheroidal particle and its orientation with the thermal gradient or the incident light can have significant effects on its thermophoretic or photophoretic behavior.
Chapter 1 Introduction 1

1.1 Thermophoresis background 1
1.1.1 Mechanism and applications of thermophoresis 1
1.1.2 Thermophoretic velocity of an aerosol sphere 2
1.2 Photophoresis background 5
1.2.2 Mechanism and applications of photophoresis 5
1.2.1 Photophoretic velocity of an aerosol sphere 6
1.3 Purpose of this thesis 7

Chapter 2 Thermophoresis of aerosol spheroids 10

2.1 Temperature distribution 10
2.2 Thermophpretic velocity 13
2.2.1 General analysis 13
2.2.2 Limiting cases 17
2.3 Results and discussion 19

Chapter 3 Photophoresis of aerosol spheroids 29

3.1 Temperature distribution 30
3.2 Photophpretic velocity 33
3.2.1 General analysis 33
3.2.2 Limiting cases 38
3.3 Results and discussion 40

Chapter 4 Concluding Remarks 50
Notation 53
References 56
Appendix A Derivation of equation (3.12) 60
Biographical Sketch 62
Arnold, S., and Lewittes, M. J. (1982). Size Dependence of the Photophoretic Force, J. Appl. Phys. 53: 5314-5319.
Batchelor, G. K., and Shen, C. (1985). Thermophoretic Deposition of Particles in Gas Flowing over Cold Surfaces, J. Colloid Interface Sci. 107: 21-37.
Borg, K. I., and Soderholm, L. H. (2001). Thermophoresis of Axially Symmetric Bodies, in Rarefied Gas Dynamics, T. J. Bartel and M. A. Gallis, eds. pp. 867-874, AIP, Melville, NY.
Brock, J. R. (1962). On the Theory of Thermal Forces Acting on Aerosol Particles, J. Colloid Sci. 17: 768-780.
Cercignani, C. (2000). Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations, Cambridge Univ. Press, Cambridge.
Chernyak, V., and Beresnev, S. (1993). Photophoresis of Aerosol Particles, J. Aerosol Sci. 24: 857-866.
Dahneke, B. E. (1973). Slip Correction Factors for Nonspherical Bodies - Introduction and Continuum Flow, Aerosol Sci. 4: 139-145.
Derjaguin, B. V., Rabinovich, Ya. I., Storozhilova, A. I., and Shcherbina, G. I. (1976). Measurement of the Coefficient of Thermal Slip of Gases and the Thermophoresis Velocity of Large-Size Aerosol Particles, J. Colloid Interface Sci. 57: 451-461.
Derjaguin, B. V., Storozhilova, A. I., and Rabinovich, Ya. I. (1966). Experimental Verification of the Theory of Thermophoresis of Aerosol Particles, J. Colloid Interface Sci. 21: 35-58.
Epstein, P. S. (1929). Zur Theorie des Radiometers, Z. Phys. 54: 537-563.
Fair, M. C., York.
Greene, W. M., Spjut, R. E., Bar-Ziv, Sarofim, E., A. F., and Longwell, J. P. (1985). Photophoresis of Irradiated Spheres: Absorption Centers, J. Opt. Soc. Am. B 2: 998-1004.
Happel, J., and Brenner, H. (1983). Low Reynolds Number Hydrodynamics, Martinus Nijhoff, Dordrecht.
Keh, H. J., and Tu, H. J. (2001). Thermophoresis and Photophoresis of Cylindrical Particles, Colloids Surfaces A 176: 213-223.
Kennard, E. H. (1938). Kinetic Theory of Gases, McGraw-Hill, New York.
Kerker, M., and Cooke, D. D. (1982). Photophoretic Force on Aerosol Particles in the Free-Molecule Regime, J. Opt. Soc. Am. 72 :1267-1272.
Laucks, M. L., Roll, G., Schweiger, G., and Davis, E. J. (2000). Physical and Chemical (Raman) Characterization of Bioaerosols - Pollen, J. Aerosol Sci. 31: 307-319.
Leong, K. H. (1984). Thermophoresis and Diffusiophoresis of Large Aerosol Particles of Different Shapes, J. Aerosol Sci. 15: 511-517.
Mackowski, D. W. (1989). Photophoresis of Aerosol Particles in the Free Molecular and Slip-Flow Regimes, Int. J. Heat Mass Transfer 32 :843-854.
Mackowski, D. W. (1990). Phoretic Behavior of Asymmetric Particles in Thermal Nonequilibrium with the Gas: Two-Sphere Aggregates, J. Colloid Interface Sci. 140: 138.
Maxwell, J. C. (1879). On Stresses in Rarified Gases Arising from Inequalities of Temperature, Phil. Trans. R. Soc. 170: 231-256.
Montassier, N., Boulaud, D., and Renoux, A. (1991). Experimental Study of Thermophoretic Particle Deposition in Laminar Tube Flow, J. Aerosol Sci. 22: 677-687.
Moon, P., and Spencer, D. E. (1961). Field Theory Handbook, Springer-Verlag, Berlin.
Morse, T. F., Wang, C. Y., and Cipolla, J. W. (1985). Laser-Induced Thermophoresis and Particle Deposition Efficiency, J. Heat Transfer 107: 155-160.
Orr, C., and Keng, E. Y. H. (1964). Photophoretic Effects in the Stratosphere, J. Atmos. Sci. 21: 475-478.
Preining, O. Photophoresis, in: C.N. Davies (Ed.), Aerosol Science, Academic Press, New York, 1966, pp. 111-135.
Reed, L. D. (1971). A Continuum Slip Flow Analysis of Steady and Transient Thermophoresis, M. S. Thesis, University of Illinois, Urbana-Champaign, USA.
Reed, L. D. (1977). Low Knudsen Number Photophoresis, J. Aerosol Sci. 8 :123-131.
Rohatschek, H., and Zulehner, W. (1985). The Photophoretic Force on Nonspherical Particles, J. Colloid Interface Sci. 108: 457.
Sasse, A. G. B. M., Nazaroff, W. W., and Gadgil, A. J. (1994). Particle Filter Based on Thermophoretic Deposition from Natural Convection Flow, Aerosol Sci. Technol. 20: 227-238.
Schadt, C. F., and Cadle, R. D. (1961). Thermal Forces on Aerosol Particles, J. Phys. Chem. 65: 1689-1694.
Simpkins, P. G., Greenberg-Kosinski, S., and MacChesney, J. B. (1979). Thermophoresis: The Mass Transfer Mechanism in Modified Chemical Vapor Deposition, J. Appl. Phys. 50: 5676-5681.
Sone, Y. (2002). Kinetic Theory and Fluid Dynamics, Birkhauser, Boston.
Talbot, L., Cheng, R. K., Schefer, R. W., and Willis, D. R. (1980). Thermophoresis of Particles in a Heated Boundary Layer, J. Fluid Mech. 101: 737-758.
Waldmann, L., and Schmitt, K. H. (1966). Thermophoresis and Diffusiophoresis of Aerosols, in Aerosol Science, C. N. Davies, ed. pp. 137-162, Academic Press, New York.
Weinberg, M. C. (1982). Thermophoretic Efficiency in Modified Chemical Vapor Deposition Process, J. Amer. Ceram. Soc. 65: 81-87.
Whitmore, P. J. (1981). Thermo- and Diffusiophoresis for Small Aerosol Particles, J. Aerosol Sci. 12: 1-9.
Williams, M. M. R. (1986). Thermophoretic Forces Acting on a Spheroid, J. Phys. D 19: 1631-1642.
Williams, M. M. R., and Loyalka, S. K. (1991). Aerosol Science: Theory and Practice, with Special Applications to the Nuclear Industry, Pergamon Press, Oxford.
Yalamov, Yu. I., Kutukov, V. B., and Shchukin, E. R. (1976). Theory of the Photophoretic Motion of the Large-Size Volatile Aerosol Particle, J. Colloid Interface Sci. 57: 564-571.
Ye, Y., Pui, D. Y. H., Liu, B. Y. H., Opiolka, S., Blumhorst, S., and Fissan, H. (1991). Thermophoretic Effect of Particle Deposition on a Free Standing Semiconductor Wafer in a Clean room, J. Aerosol Sci. 22: 63-72.
Zulehner, W., and Rohatschek, H. (1990). Photophoresis of Nonspherical Bodies in the Free Molecule Regime, J. Colloid Interface Sci. 138: 555.
Zulehner, W., and Rohatschek, H. (1995). Representation and Calculation of Photophoretic Forces and Torques, J. Aerosol Sci. 26 :201.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top