跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/18 06:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳奇穎
研究生(外文):Chi-Ying Wu
論文名稱:燃煤鍋爐中高反應性二氧化硫吸收劑之製備
論文名稱(外文):Preparation of high-reactivity absorbent for sulfur dioxide produced in a coal-fired boiler
指導教授:施信民施信民引用關係
指導教授(外文):Shin-Min Shih
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:112
中文關鍵詞:二氧化硫碳酸鈣氫氧化鈣反應動力學污染防治
外文關鍵詞:reaction kineticscalcium carbonatesulfur dioxidecalcium hydroxidepollution control
相關次數:
  • 被引用被引用:4
  • 點閱點閱:248
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
因石油之儲量已低,燃煤發電廠已在近年來有增加的趨勢。燃煤產生的二氧化硫會造成空氣污染,進而形成酸雨,危害生態環境。減低二氧化硫之排放量遂成為環境保護之重要研究課題。目前廣受重視的方法是將含鈣之吸收劑注入燃燒爐或煙道中,與二氧化硫作用形成硫酸鈣,以降低廢氣中二氧化硫之含量。此法簡便,但卻因吸收劑之利用率太低而遭到其它程序之挑戰。吸收劑的反應性與其粒徑、結構性質以及燒結現象有關。近年來製備高反應性吸收劑成為重要的研究課題。
本研究在氫氧化鈣水溶液通入二氧化碳以產生高比表面積的多孔性碳酸鈣。實驗探討多種操作變數對產物結構性質的影響,包括Ca(OH)2濃度、CO2流量、添加劑種類及用量等。碳酸鈣對SO2之反應性則以一微分固定床測量之。
碳酸鈣比表面積隨著Ca(OH)2濃度與CO2流量增加而增加,但是Ca(OH)2濃度超過2.72 wt%、CO2流量超過2.0L/min以上則無明顯的變化,比表面積達25.7m2/g。添加介面活性劑Dispex N40(4.0vol%)與Dispex A40(6.0vol%)可提升碳酸鈣的比表面積至70~80 m2/g,添加FeCl3些為降低比表面積。
在低溫反應條件(60oC、70%RH)下,含有介面活性劑碳酸鈣的反應性較低;在900 oC高溫下,其反應性很高,但在950 oC下則因其較易燒結而導致其反應性較低,但若縮短其燒結時間,則反應性較未添加者高。
The number of coal-fired power plants is increasing due to the decreasing reserve of oil. Sulfur dioxide generated by burning coal has resulted in the air pollution and acid rain problems. The reduction of SO2 emission is important to the environmental protection. One way to achieve the goal is by injection of Ca-containing sorbent into the furnace or the duct to react with SO2 to form CaSO4. This technique is simple and easy to use. However, it is challenged by other processes due to its low sorbent utilization. The sorbent reactivity is related to the particle size and the structural properties of the sorbent, as well as the sintering of CaO.
High surface area CaCO3 particles were produced by bubbling CO2 through Ca(OH)2 solution in this study. Effects of several operating variables, including Ca(OH)2 concentration, CO2 flow rate, type and amount of additive, were investigated. The reactivity of CaCO3 toward SO2 was tested in a differential fixed-bed reactor.
The specific surface area of CaCO3 increased with increasing Ca(OH)2 concentration and CO2 flow rate until 2.72wt% Ca(OH)2 and 2.0L/min of CO2,reaching 25.7m2/g. The surface area could be increased to 70~80 m2/g by adding Dispex N40(4.0vol%) and Dispex A40(6.0vol%),but it was slightly reduced by adding FeCl3.
CaCO3 samples prepared with surfactants added were less reactive toward SO2 than those without under the conditions of 60oC and 70%RH due to lower water adsorption capacity; however, they were more reactive at high temperatures( 900 oC) if the calcinations time was minimized to prevent the excessive sintering of CaO.
中文摘要............................................ Ⅰ
Abstract........................................... Ⅲ
符號說明........................................... Ⅴ
圖表索引........................................... Ⅶ
第一章 緒論........................................ 1
第二章 文獻回顧.................................... 4
2-1 石灰石性質…………………………………………..... 4
2-2 研磨法製備高比表面積石灰石及其反應性………….. 5
2-3 氫氧化鈣與CO2液相反應製備碳酸鈣……………………… 5
2-4 石灰石與二氧化硫在低溫潤濕條件下的反應………… 8
2-5 石灰石與二氧化硫在高溫下的反應……………………… 11
第三章 實驗與分析方法……………………………………. 13
3-1 試料來源及藥品………………………………………… 13
3-2 碳酸鈣的製備……………………………………………… 14
3-3 碳酸鈣與二氧化硫低溫反應實驗……………………… 16
3-4碳酸鈣與二氧化硫高溫反應實驗……………………… 23
3-5試樣物性與化性分析……..……………………………… 30
3-6碳酸鈣轉化率之測定……………………………………… 31
第四章 結果與討論…………………………………………… 38
4-1碳酸鈣製備條件對其比表面積的影響…………………… 38
4-2碳酸鈣與二氧化硫的低溫反應…………………………… 59
4-3碳酸鈣與二氧化硫的高溫反應…………………………… 63
4-4碳酸鈣其它物性與化性分析……………………………… 74
第五章 結論…………………………………………………… 94
參考文獻……………………………………………………… 96
Agnihotri, R; Mahuli, S. K.; Chauk, S. S.; and Fan, L. S. ”Influence of Surface Modifiers on the Structure of Precipitated Calcium Carbonate”, Ind. Eng. Chem. Res., 38, 2283(1999)

Bardacki, T., “Diffusional Study of the Reaction of Sulfur Dioxide with Reactive Porous Matrices”, Thermochimica Acta, 76, 287(1984)

Beittel, R.; Gooch, J. P.; Dismukes, E. B.; Muzio, L. J. “Studies of Sorbent Calcination and SO2-Sorbent Reactions in a Pilot-Scale Furnace”, Proceedings: First Joint Symposium on Dry SO2 and Simultaneous SO2/NOx Control Technologies, EPA-600/9-85/020a(NTIS PB85-232353), 1985

Bjerle, I.; Ye, Z. ”Particle Structure Change of CaO during High Temperature Sulphatization”, Chem. Eng. Technol., 14, 357(1991)

Bhatia, S. K.; Perlmutter, D. D., “The Effect of Pore Structure on Fluid-Solid Reaction: Application to the SO2-Lime Reaction”,AIChEJ, 27, 226(1981)

Borgwardt, R. H. “Kinetics of the Reaction of SO2 with Calcined Limestone”, Environ. Sci. Technol., 4, 59(1970)

Borgwardt, R. H.; Harvey, R. D. “Properties Carbonate Rocks
Realated to SO2 Reactivity”, Environ. Sci. Technol ., 6, 350(1972)

Bortz, S. J.; Flament, P. “Recent IFRF Fundamental and Piolt Scale Studies on the Direct Sorbent Injection Process”, Proceedings: First Joint Symposium on Dry SO2 and Simultaneous SO2/NOx Control Technologies, EPA-600/9-85/020a(NTIS PB85-232353), 1985

Carello, C. F.; Antonio, C. F. “Evaluation of the Reactivity of South Brazilian Limestone in Relation Pure SO2 Through Thermoanalysis and Scanning Electron-Microscopy”, Ind. Eng. Chem., 32, 3135(1993)

Chang, C. S.; Dempsey, J. H.; Borgwardt, R. H.; Toprac, A. J.; Rochelle, G. T. “Effect of Limestone Type and Grinding on the SO2 Scrubbing Performance .“Environ. Prog.,1,59 (1982).

Chemical Abstracts Service(CAS), http://www.cas.org/ (2004)

Christman, P. G.; Edgar, T. F. “Distributed Pore-size Model for Sulfation of Limestone”, AIChE J, 29, 388(1983)

Pontoni, D. ” Crystallization of Calcium Carbonate Observed In-situ by Combined Small- and Wide-angle X-ray Scattering”, Ind. Eng. Chem. Res., 107, 5123(2003)

Georgakis, C.; Chang, C. W.; Szekely, J. “A Changing Grain Size Model for Gas-Solid Reaction”, AIChE J., 22, 490(1976)

Ghosh-Dastidar, A.; Mahuli, S. K.; Agnihotri, R.; Fan, L. S. ”Investigation of High-Reactivity Calcium Carbonate Sorbent for Enhanced SO2 Capture”, Ind. Eng. Chem. Res., 35, 598(1996)

Hartman, M.; Coughlin, R. W. “Reaction of Sulphur Dioxide with Limestone and the Grain Model”,AIChE J., 22, 490(1976)

Hung, G. T., Master Thesis, ”The Kinetics of Reaction of Calcium Oxide Powders with Sulfur Dioxide”, National Taiwan University(1985)

Katz. J. L.; Herzog, R. E.; Shi, Q.; Patial, J. H. “Magnetic Water Treatment: The Effect of Iron on Calcium Carbonate Nucleation and Growth”, Langmuir, 5, 861(1989).

Katz, J. L.; Takasaki, S.; Parsiegla, K. I. “Calcite Growth and the Inhibiting Effect of Iron(Ⅲ)”, J. Cryst. Growth, 143, 261(1994).

Kirchgessner, D. A.; Jozewicz, W. “Enhancement of Reactivity in Surfactant-Modified Sorbents for Sulfur Dioxide Control”, Ind. Eng. Chem. Res. 1989, 28(4), 413.

Klingspor, J.; Karlsson, H. T.; Bjerle, I. ”A Kinetics Study of the Dry SO2 Limestone Reaction at Low Temperature.” Chem. Eng. Commun.,22,81 (1983).

Klingspor, J.; Stromberg, A.; Karlsson, H. T.; Bjerle, I., “ Similarities between Lime and Limestone in Wet-Dry Scrubbing.” Chem. Eng. Proc.,18, 239 (1984).

Mahuli, S. K.; Agnihotri, R.; Jadhav, R.; Chauk, S.; Fan, L. S. “Combined Calcination, Sintering and Sulfation Model for CaCO3-SO2 Reaction”, AIChE J., 45, 367(1999)

Marsh, D. W. and Ulrichson, D. L. “Rate and Diffusional Study of the Reaction of Calcium Oxide with Sulfur Dioxide”, Chem. Eng. Sci., 40, 423(1985)

Miller, M. J., ”Retrofit SO2 and NOx Control Technologies for Coal-Fired Power Plants.” Environ. Prog., 5, 171 (1986).

Overmoe, B. J.; Chen, S. L.; Ho, L.; Seeker, W. R.; Heap, M. P.; Pershing, D. W. “Boiler Simulator Studies on Sorbent Utilization for SO2 Control”,Proceedings: First Joint Symposium on Dry SO2 and Simultaneous SO2/NOx Control Technologies, EPA-600/9-85/020a(NTIS PB85-232353), 1985

Ramachandran, P. A.; Smith, J. M. “Effect of Sintering and Porosity Changes on the Rate of Gas-Solid Reaction”, Chem. Eng. J., 14, 137(1977)

Satriana, M., ”New Developments in Flue Gas Desulfurization Technology”, Noyes Data Corporation: Park Ridge, New Jersey, U.S.A., 204(1981).

Shih, S. M.; Hung, J. T.; Wang, T. Y. ”Kinetics of the Reaction of Sulfur Dioxide with Calcium Oxide Powder”, J. Chin. Inst. Chem. Engrs., accepted(2004).

Snow, M. J.; Longwell, J. P.; Sarofilm, A. F. “Direct Sulfation of Calcium Carbonate”, Ind. Eng. Chem. Res., 27, 268(1988).

Stack, A. V.; Falkenberry, H. L.; Haeeington R. E., “ Sulfur Dioxide Removal from Waste Gases:Lime-Limestone Scrubbing Technology“, JAPCA., 22, 159 (1972).

Wen, C. Y.; Ishida, M. “Reaction Rate of Sulphur Dioxide with Particles Containing Calcium Oxide”, Environ. Sci. Technol., 7, 703(1973)

Wei, S.-H.; Mahuli, S. K.; Agnihtori, R.; Fan, L. S. ”High Surface Area Calcium Carbonate: Pore Structural Properties and Sulfation Characteristics”, Ind. Eng. Chem. Res., 36, 2141(1997)

Ye, Z. “High Temperature SO2 Reduction by Inject ion of Fine Ca-Based Sorbents” Ph.D. Dissertation, Chem. Eng., Lund University, Lund, Sweden(1994)

台灣省礦物局,”台灣主要礦物與岩石”(1996)

黃尊裕,”噴霧乾燥煙道氣除硫方法之研究:石灰石泥漿之除硫效果”,碩士論文,台灣大學,台北,台灣(1997)

楊文德,”石灰石與二氧化硫低溫反應之動力學研究”, 碩士論文,台灣大學,台北,台灣(2000)

楊憲昌,”煙道氣體成分對石灰石與二氧化硫低溫反應之影響”,碩士論文,台灣大學,台北,台灣(2001)

張耿豪,”添加劑對石灰石與二氧化硫低溫反應之影響”,碩士論文,國立台灣大學,台北,台灣(2002)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊