(18.206.187.91) 您好!臺灣時間:2021/05/19 02:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林宏明
研究生(外文):Hung-Ming Lin
論文名稱:以光纖反應器進行二氧化碳光催化還原
論文名稱(外文):Photo Reduction of CO2 by Optical-fiber Reactor
指導教授:吳紀聖
指導教授(外文):Chi-Sheng Wu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:109
中文關鍵詞:光纖反應器二氧化鈦甲醇光觸媒
外文關鍵詞:methanoloptical -fiber reactorTiO2photocatal
相關次數:
  • 被引用被引用:3
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究於流動式穩定狀態氣相系統中以100W高壓汞燈、波長365nm、光反應器溫度348K下進行CO2光催化還原反應。利用改良式熱水解法製備Cu/TiO2覆膜液,藉由浸漬覆膜法於光纖表面生成觸媒層。由SEM觀測得知,光纖表面的觸媒層具有釵h奈米級孔隙,觸媒顆粒略呈圓形,粒徑為17nm;經XRD繞射圖譜分析觸媒皆為anatase晶相,且紫外-可見光吸收波長在367nm處。另外XPS分析結果顯示Cu/TiO2觸媒表面之主要價態為Cu+,文獻指出Cu+對於甲醇的光催化還原反應扮演一重要角色。實驗發現,光強度增強時,觸媒活性也隨之增加。以氯化銅為銅前驅物,銅負載量為1.20%觸媒,於光強度16W/cm2、壓力1.3bar以及平均滯留時間5000秒的條件下,具有最佳的觸媒活性,甲醇產率為0.45μmole/g-cat.hr。此外,因二氧化碳與水汽之間的競爭吸附效應,使得兩者進料濃度有一最適的比
例關係存在。



致謝
中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
圖目錄 Ⅵ
表目錄 Ⅸ
第一章 緒論 1
第二章 文獻回顧 2
2-1 二氧化鈦簡介 2
2-1-1 二氧化鈦結構 2
2-1-2 二氧化鈦光催化原理 7
2-1-3 二氧化鈦之親水性質 9
2-2 二氧化碳的固定 11
2-3 二氧化碳還原反應 14
2-4 光纖構造 19
2-5 光纖反應器(OFR)之發展與應用 22
2-6 金屬添加改質TiO2 28
2-7 增黏劑之影響 30
第三章 實驗方法 32
3-1實驗藥品與器材 32
3-1-1 藥品 32
3-1-2 器材 33
3-1-3 熱水解法 34
3-1-4 基材清洗 35
3-1-5 覆膜方法 38
3-2 觸媒特性分析原理與方法 40
3-2-1 儀器型號與規格 40
3-2-2 紫外光-可見光光譜儀 40
3-2-3 X光光電子能譜儀 42
3-2-4 場發射掃描式電子顯微鏡 43
3-2-5 能量散佈分析儀 44
3-2-6 X-ray繞射法 45
3-3 光催化活性檢測 49
3-3-1 反應器設計 49
3-3-2 光催化還原 50
第四章 實驗結果 58
4-1 TiO2覆膜液 58
4-2 觸媒之特性分析 59
4-2-1 XRD 59
4-2-2 UV-VIS 63
4-2-3 EDX 65
4-2-4 SEM 66
4-2-5 XPS 70
4-3 觸媒活性檢測 79
4-3-1 空白實驗 79
4-3-2 CO2光催化還原反應 80
4-4 光催化活性探討 86
4-4-1 觸媒特性 86
4-4-2 紫外光強度效應 87
4-4-3 水分子效應 88
4-4-4 氯離子效應 89
4-4-5 活性比較 89
4-5反應動力式 96
第五章 結論 98
第六章 參考文獻 100
附錄 108
個人小傳 109










1.C. He, Y. Yu, X. Hu, A. Larbot, Influence of silver doping on the photocatalytic activity of titania films. Applied Surface Science, 200 (2002) 239-247.
2.K. Kato, A.Tsuzuki, Y. Torll, H. Taoda, T. Kato, Y. Butsugan, Morphology of thin anatase coatings prepared from alkoxide solutions containing organic polymer affecting the photocatalytic decomposition of aqueous acetic acid. Journal of Materials Science, 30 (1995) 837-841.
3.M. Kang, S. Y. Lee, C. H. Chung, S. M. Cho, G. Y. Han, B. W. Kim, K. J. Yoon, Characterization of a TiO2 photocatalyst synthesized by the solvothermal method and its catalytic performance for CHCl3 decomposition. Journal of Photochemistry and Photobiology A: Chemistry, 144 (2001) 185-191.
4.Y. Ohko, A. Fujishima, Kinetic Analysis of the photocatalytic degradation of gas-phase 2-propanol under mass transport-limited conditions with a TiO2 film photocatalyst. Journal of Physical Chemistry B, 102 (1998) 1724-1729.
5.Y. Ku, C. M. Ma, Y. S. Shen, Decomposition of gaseous trichloroethylene in a photoreactor with TiO2-coated nonwoven fiber textile. Applied Catalysis B: Environmental, 34 (2001) 181-190.
6.E. Piera, J. A. Ayllon, X. Domenech, J. Peral, TiO2 deactivation during gas-phase photocatalytic oxidation of ethanol. Catalysis Today, 76 (2002) 259-270.
7.V. Keller, P. Bernhardt, F. Garin, Photocatalytic oxidation of butyl acetate in vapor phase on TiO2, Pt/TiO2 and WO3/TiO2 catalysts. Journal of Catalysis, 215 (2003) 129-138.
8.A. J. Maira, K. L. Yeung, J. Soria, J. M. Coronado, C. Belver, C. Y. Lee, V. Augugliaro, Gas-phase photo-oxidation of toluene using nanometer-size TiO2 catalysts. Applied Catalysis B: Environmental, 29 (2001) 327-336.
9.S. B. Kim, H. T. Hwang, S. C. Hong, Photocatalytic degradation of volatile organic compounds at the gas-solid interface of a TiO2 photocatalyst. Chemosphere, 48 (2002) 437-444.
10.K. Y. Jung, S. B. Park, S. K. Ihm, Linear relationship between the crystallite size and the photoactivity of non-porous titania ranging from nanometer to micrometer size. Applied Catalysis A: General, 224 (2002) 229-237.
11.W. Choi, M. R. Hoffmann, Kinetics and mechanism of CCl4 photoreductive degradation on TiO2: The role of trichloromethyl radical and dichlorocarbene. Journal of Physical Chemistry, 100 (1996) 2161-2169.
12.S. B. Kim, S. C. Hong, Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyhst. Applied Catalysis B: Environmental, 35 (2002) 305-315.
13.V. Brezova, A. Blazkova, L. Karpinky, J. Groskova, B. Havlinoca, V. Jorik, M. Ceppan, Phenol decomposition using Mn+/TiO2 photocatalysts supported by the sol-gel technique on glass fibers. Journal of Photochemistry and Photobiology A: Chemistry, 109 (1997) 177-183.
14.M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chemical Reviews, 95 (1995) 69-96.
15.W. Wang, Y. Ku, Photocatalytic degradation of gaseous benzene in air streams by using an optical fiber photoreactor. Journal of Photochemistry and Photobiology A: Chemistry, 159 (2003) 47-59.
16.R. D. Sun, A. Nakajima, I. Watanabe, T. Watanabe, K. Hashimoto, TiO2-coated optical fiber bundles used as a photocatalytic filter for decomposition of gaseous organic compounds. Journal of Photochemistry and Photobiology A: Chemistry, 136 (2000) 111-116.
17.W. Choi, J. Y. Ko, H. Park, J. S. Chung, Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone. Applied Catalysis B: Environmental, 31 (2001) 209-220.
18.N. J. Peill, M. R. Hoffmann, Development and optimization of a TiO2-coated fiber-optic cable reactor: photocatalytic degradation of 4-chlorophenol. Environmental Science and Technology, 29 (1995) 2974-2981.
19.R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, F. Levy, Electronic structure of anatase TiO2 oxide. Journal of Applied Physics, 75, 6 (1994) 2945-2951.
20.A. Fujishima, T. N. Rao, D. A. Tryk, Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1 (2000) 1-21.
21.H. Yamashita, H. Nishiguchi, N. Kamada, M. Anpo, Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts, Research on Chemical Intermediates, 20, 8 (1994) 815-823.
22.J. T. Mayer, U. Diebold, T. E. Madey, E. Garfunkel, Titanium and reduced overlayers on titanium dioxide (110), Journal of Electron Spectroscopy and Related Phenomena, 73, 1 (1995).
23.E. M. Levin, C. R. Robbins, H. F. McMurdie, M. K. Reser, Phase diagrams for ceramists. p.4150-4999, The American Ceramic Society, inc. 76 (1975).
24.S. A. Bilmes, P. Mandelbaum, Surface and electronic structure of titanium dioxide photocatalysts. Journal of Physical Chemistry B, 104 (2000) 9851-9858.
25.R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Light-induced amphiphilic surfaces. Nature, 388 (1997) 431-432.
26.T. Watanabe, A. Nakajima, R. Wang, M. Minabe, S. Koizumi, A. Fujishima, K. Hashimoto, Photocatalystic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films, 351 (1999) 260-263.
27.G. Sengupta, R. N. Chatterjee, G. C. Maity, B. J. Ansari, C. V. V. Satyanarayna, Role of oxygen vacancies in water vapor chemisorption and CO oxidation on titania. Journal of Colloid and Interface Science, 170 (1995) 215-219.
28.B. Akermark, U. Eklund-westlin, P. Baeckstrom, R. Lof, Photochemical metal-promoted reduction of carbon dioxide and formaldehyde in aqueous solution. Acta Chemical Scandinavica B: Organic Chemistry and Biochemistry, 34 (1980) 27-34.
29.B. R. Eggins, P. K. J. Robertson, E. P. Murphy, E. Woods, J. T. S. Irvine, Factors affecting the photoelectrochemical fixation of carbon dioxide with semiconductor colloids. Journal of Photochemistry and Photobiology A: Chemistry, 118 (1998) 31-40.
30.P. G. Russel, N. Kovac, S. Sirinivasan, M. Steinberg, The electrochemical reduction of carbon dioxide, formic acid, and formaldehyde. Journal of the Electrochemical Society, 124 (1977) 1329-1340.
31.R. Hinogami, Y. Nakamura, S. Yae, Y. Nakato, An approach to ideal semiconductor electrodes for efficient photoelectrochemical reduction of carbon dioxide by modification with small metal particles. Journal of Physical Chemistry, 102 (1998) 974-980.
32.T. Sakata, T. Kawai, Photosynthesis and photocatalysis with semiconductor powders, edited by M. Gratzel, Energy Resources through Photochemistry and Catalysis, 1st ed., Academic press, New York, 331 (1983).
33.V. Balzani, F. Scandola, Light-Induced and Thermal Electron- Transfer Reactions, edited by M. Gratzel, Energy Resources through Photochemistry and Catalysis, 1st ed., Academic press, New York, 2 (1983).
34.M. Halmann, “Photochemical Fixation of Carbon Dioxide”, edited by M. Gratzel, Energy Resources through Photochemistry and Catalysis”, 1st ed., Academic press, New York, 507 (1983).
35.T. Sumita, T. Yamaki, S. Yamamoto, A. Miyashita, Photo-induced surface charge separation of highly oriented TiO2 anatase and rutile thin films. Applied Surface Science, 200 (2002) 21-26.
36.H. Yoneyama, Photoreduction of carbon dioxide on quantized semiconductor nanoparticles in solution. Catalysis Today, 39 (1997) 169-175.
37.A. L. Linsebigler, G. Lu, J. T. Yates, Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chemical Reviews, 95 (1995) 735 – 758.
38.T. Inoue, A. Fujishima, S. Konishi, K. Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 277 (1979) 637-638.
39.H. Y. Chen, S. P. Lau, L. Chen, J. Lin, C. H. A. Huan, K. L. Tan, J. S. Pan, Synergism between Cu and Zn sites in Cu/Zn catalysts for methanol synthesis. Applied Surface Science, 152 (1999) 193-199.
40.T. Kakaumoto, A theoretical study for the CO2 hydrogenation mechanism on Cu/ZnO catalyst. Energy Conversion and Management, 36, 6-9, (1995) 661-664.
41.K. Ikeue, S. Nozaki, M. Ogawa, M. Anpo, Characterization of self-standing Ti-containing porous silica thin films and their reactivity for the photocatalytic reduction of CO2 with H2O. Catalysis Today, 74 (2002) 241-248.
42.G. Guan, T. Kida, A. Yoshida, Reduction fo carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst. Applied Catalysis B: Environmental, 41 (2003) 387-396.
43.T. Inui, Highly effective conversion of carbon dioxide to valuable compounds on composite catalysts. Catalysis Today, 29 (1996) 329-337.
44.T. Inui, T. Yamamoto, M. Inoue, H. Hara, T. Takeguchi, J. B. Kim, Highly effective synthesis of ethanol by CO2-hydrogenation on well balanced multi-functional FT-type composite catalysts. Applied Catalysis A: General, 186 (1999) 395-406.
45.Yasunori Yanagisawa, Oxygen exchange between CO2 and metal (Zn and Ti) oxide powders. Energy Conversion and Management, 36 (1995) 443-446.
46.T. F. Xie, D. J. Wang, L. J. Zhu, T. J. Li, Y. J. Xu, Application of surface photovoltage technique in photocatalysis studies on modified TiO2 photo-catalysts for photo-reduction of CO2. Materials Chemistry and Physics, 70 (2001) 103-106.
47.Y. Kohno, H. Hayashi, S. Takenaka, T. Tanaka, T. Funabiki, S. Yoshida, Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 126 (1999) 117-123.
48.T. Mizuno, K. Adachi, K. Ohta, A. Saji, Effect of CO2 pressure on photocatalytic reduction of CO2 using TiO2 in aqueous solutions. Journal of Photochemistry and Photobiology A: Chemistry, 98 (1996) 87-90.
49.I. A. Fisher, A. T. Bell, In-situ infrared study of methanol synthesis from H2/CO2 over Cu/SiO2 and Cu/ZrO2/SiO2. Journal of Catalysis, 172 (1997) 222-237.
50.I. H. Tseng, W. C. Chang, J. C. S. Wu, Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts. Applied Catalysis B: Environmental, 37 (2002) 37-48.
51.R. L. Cook, R. C. Macduff, A. F. Sammells, Photoelectrochemical carbon dioxide reduction to hydrocarbons at ambient temperature and pressure. Journal of the Electrochemical Society, 135 (1988) 3069-3070.
52.K. Adachi, K.Ohta, T. Mizuno, Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide. Solar Energy, 53, 2 (1994) 187-190.
53.G. C. Chinchen, K. C. Waugh, D. A. Whan, The activity and state of the copper surface in methanol synthesis catalysts. Applied catalysis, 25 (1986) 101-107.
54.Q. Sun, C. W. Liu, W. Pan, Q. M. Zhu, J. F. Deng, In situ IR studies on the mechanism of methanol synthesis over an ultrafine Cu/ZnO/Al2O3 catalyst. Applied Catalysis A: General, 171 (1998) 301-308.
55.K. Hirano, K. Inoue, T. Yatsu, Photocatalysed reduction of CO2 in aqueous TiO2 suspension mixed with copper powder. Journal of Photochemistry and Photobiology A: Chemistry, 64 (1992) 255-258.
56.S. Sugawa, K. Sayama, K. Okabe, H. Arakawa, Methanol synthesis from CO2 and H2 over silver catalyst. Energy Conversion and Management,36 (1995) 665-673.
57.S. Ichikawa, Chemical conversion of carbon dioxide by catalytic hydrogenation and room temperature photoelectrocatalysis. Energy Conversion and Management, 36 (1995) 613-621.
58.吳曜東 編著, 光纖原理與應用, 全華科技圖書股份有限公司, (2001), p.1-1~ 4-25.
59.W. Wang, Y. Ku, The light transmission and distribution in an optical fiber coated with TiO2 particles. Chemosphere, 50 (2003) 999-1006.
60.K. Hofstadler, R. Bauer, New reactor design for photocatalytic wastewater treatment with TiO2 immobilized on Fused-Silica glass fibers: photomineralization of 4-Chlorophenol. Environmental Science and Technology, 28 (1994) 670-674.
61.N. J. Peill, M. R. Hoffmann, Chemical and physical characterization of a TiO2-coated fiber optical cable reactor. Environmental Science and Technology, 30 (1996) 2806-2812.
62.N. J. Peill, M. R. Hoffmann, Solar-powered photocatalytic fiber-optic cable reactor for waste stream remediatio. Journal of Solar Energy Engineering, 199 (1997) 229-236.
63.Z. Zhang, C. C. Wang, R. Zakaria, J. Y. Ying, Role of particle size in nanocrystalline TiO2-based photocatalysts. Journal of Physical Chemistry B, 102 (1998) 10871-10884.
64.曾怡享,奈米金屬氧化鈦觸媒光催化還原二氧化碳,國立台灣大學博士論文,2003,p.217-219.
65.G. R. Bamwenda, H. Arakawa, The visible light induced photocatalytic activity of tungsten trioxide powders. Applied Catalysis A: General, 210 (2001) 181-191.
66.W. Choi, A. Termin, M. R. Hoffmann, The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. Journal of Physical Chemistry, 98 (1994) 13669-13679.
67.A. D. Paola, E. García-López, S. Ikeda, G. Marcì, B. Ohtani, L. Palmisano, Photocatalytic degration of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2. Catalysis Today 75 (2002) 87-93.
68.U. Selvaraj, A. V. Prasadarao, S. Komarneni, R. Roy, Sol-gel fabrication of epitaxial and oriented TiO2 thin-films. Journal of the American Ceramic Society, 75 (1992) 1167-1170.
69.K. Wilke, H. D. Breuer, The influence of transition metal doping on the physical and photocatalytic properties of titania. Journal of Photochemistry and Photobiology A: Chemistry, 121 (1999) 49-53.
70.K. Haas-Santno, M. Fichtner, K. Schubert, Preparation of microstructure compatible porous supports by sol-gel synthesis for catalyst coatings. Applied Catalysis A: General 220 (2001) 79-92.
71.X. Liu, J. Yang, L. Wang, X. Yang, L. Lu, X. Wang, An improvement on sol-gel method for preparing ultrafine and crystallized Titania powder. Materials Science and Engineering, 289 (2000) 241-245.
72.K. Kato, K. I. Niihra, Roles of polyethylene glycol in evolution of nanostructure in TiO2 coatings. Thin Solid Films, 298 (1997) 76-82.
73.J. Yu, X. Zhao, Q. Zhao, Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method. Thin Solid Films, 379 (2000) 7-14.
74.C. J. Barbe, F.Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Gratzel, Nanocrystalline titanium oxide electrodes for photovoltaic applications. Journal of the American Ceramic Society, 80, 12 (1997) 3157-3171.
75.H. Haapala, The use of SEM/EDX for studying the distribution of air pollutants in the surroundings of the emission source. Environmental Pollution, 99 (1998) 361-363.
76.D. Bao, X. Yao, N. Wakiya, K. Shinozaki, N. Mizutani, Band gap energies of sol-gel-derived SrTiO3 thin films. Applied Physics Letters, 79, 23 (2001) 3767-3769.
77.葉君棣 陳志堅合譯, X射線光電子分光儀應用手冊, 黎明書店 (1992), p.2-33.
78.W. D. Callister, Jr., Materials Science and Engineering, 6th Edition, John Wiley & Sons, Inc. 1994, p.w-1.
79.N. J. Peill, L. Bourne, M. R. Hoffmann, Iron-doped Q-sized TiO2 coatings in a fiber-optic cable photochemical reactor. Journal of Photochemistry and Photobiology A: Chemistry, 108 (1997) 221-228.
80.Q. Xu, M. A. Anderson, Synthesis of porosity controlled ceramic membranes. Journal of Material Research, 6, 5 (1991) 1073-1081.
81.J. E. Huheey, E. A. Keiter, R. L. Keiter, Inorganic Chemistry –principle of structure and reactivity, Harper Collins, 1993, p. 115.
82.C. He, Y. Yu, X. Hu, A. Larbot, Influence of silver doping on the photocatalytic activity of titania films. Applied Surface Science, 200 (2002) 239-247.
83.G. R. Sheffer, T. S. King, Differences in the promotional effect of the group IA elements on unsupported copper catalysts for carbon monoxide hydrogenation. Journal of Catalysis, 116 (1989) 488-497.
84.W. L. Dai, Q. Sun, J. F. Deng, D. Wu, Y. H. Sun, XPS studies of Cu/ZnO/Al2O3 ultra-fine catalysts derived by a novel gel oxalate co-precipitation for methanol synthesis by CO2+H2. Applied Surface Science, 177 (2001) 172-179.
85.M. Anpo, H. Yamashita, Y. Ichihashi, S. Ehara, Photocatalystic reduction of CO2 with H2O on various titanium oxide catalysts. Journal of Electroanalytical Chemistry, 396 (1995) 21-26.
86.H. Yamashita, H. Nishiguchi, N. Kamada, M. Anpo, Photocatalytic reduction of CO2with H2O on TiO2 and Cu/TiO2 catalysts. Research on Chemical Intermediates, 208 (1994) 815-823.
87.G. R. Sheffer, T. S. King, Potassium’s promotional effect of unsupported copper catalysts for methanol synthesis. Journal of Catalysis, 115 (1989) 376-387.
88.K. W. Frese, Electrochemical reduction of CO2 at intentionally oxidized copper electrodes. Journal of Electrochemical Society, 138, 11 (1991).
89.L. F. Liao, C. F. Lien, D. L. Shieh, M. T.Chen, J. L. Lin, FTIR study of adsorption and photoassisted oxygen isotopic exchange of carbon monoxide, carbon dioxide, carbonate, and formate on TiO2. Journal of Physical Chemistry B, 106 (2002) 11240-11245.
90.M. Lewandowski, Z. Sarbak, Acid-base properties and the hydrogining activity of NiMo catalysts incorporated on alumina modified with F- and Cl-. Applied Catalysis A: General, 156 (1997) 181-192.
91.N. Serpone, D. Lawless, R. Khairutdinov, Subnanosecond relaxation dynamics in TiO2 colloidal sols (particle sizes Rp=1.0-13.4nm). Relevance to heterogeneous photocatalysis. Journal of Physical Chemistry, 99 (1995) 16655-16661.
92.M. Ojeda, M. L. Granados, S. Rojas, P. Terreros, J. L. G. Fierro, Influence of residual chloride ions in the CO hydrogenation over Rh/SiO2 catalysts. Journal of Molecular CatalysisA: Chemical, 202 (2003) 179-186.
93.羅健峰, 奈米TiO2 鍍膜與光纖反應器設計,國立台灣大學碩士論文, 2003,p.146-148.
94.T. S. Askagaard, J. K. Norskov, C. V. Ovesen, P. Stoltze, A kinetic model of methanol synthesis. Journal of Catalysis, 156 (1995) 229-242.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊