(3.230.154.160) 您好!臺灣時間:2021/05/07 18:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:游文岳
研究生(外文):Wen-Yueh Yu
論文名稱:以金/二氧化鈦觸媒催化富氫氣體中一氧化碳的選擇性氧化
論文名稱(外文):Selective Oxidation of CO in H2-rich Stream over Au/TiO2 Catalyst
指導教授:萬本儒
指導教授(外文):Ben-Zu Wan
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:111
中文關鍵詞:低溫金顆粒粒徑大小沈澱沈積法二氧化鈦氫氧化鈉水溶液加入攪拌時間與添加量富氫氣體中選擇性氧化一氧化碳金觸媒氯殘留穩定性
外文關鍵詞:stabilitygold catalyststirring time and amount of NaOH(aq) additiongold particle sizechloride residualPROXTiO2deposition-precipitationambient temperature
相關次數:
  • 被引用被引用:5
  • 點閱點閱:440
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究富氫氣體中一氧化碳的選擇性氧化(preferential oxidation of CO in H2-rich stream或PROX)觸媒─研究目的在於製備低溫(低於100 oC)下具有高一氧化碳氧化活性、選擇率,以及良好穩定性的PROX觸媒。文獻回顧的結果指出,具有上述催化表現的觸媒之中,Au/TiO2是最好的選擇之一。
本研究以沈澱沈積法(deposition-precipitation)製備Au/TiO2觸媒,探討的製備變因是在pH值調整時,NaOH(aq)的加入攪拌時間與添加量。觸媒以AA、TEM、EDS、XPS以及 UV-vis作為鑑定工具。反應測試包括了CO氧化與PROX。
反應測試的結果指出,當金溶液濃度為1.72 × 10 -3 M (230 mL)時,0.1 M NaOH(aq)的加入攪拌時間在6 ~ 24 h、添加量在19 ~ 22.5 g間所製備出的Au/TiO2觸媒具有最佳的PROX催化表現。這是因為觸媒上金顆粒粒徑小(TEM的鑑定結果)與幾乎沒有氯的殘留(EDS與XPS的鑑定結果)所造成。
NaOH(aq)加入攪拌時間為24 h的Au/TiO2觸媒,在25 oC下進行理想重組氣體PROX測試中,具有高CO氧化活性(XCO = 100 %)、選擇率(S = 0.75)及良好的穩定性(t = 23 h)。
水氣和/或二氧化碳的存在則被發現會降低上述觸媒的CO氧化活性、但會提高選擇率,而且不會影響穩定性。反應中也發現該影響在水氣和/或二氧化碳移除後便會消失,可見得其影響機制是可逆的。
此外,研究也指出,上述CO氧化活性的抑制可藉由增加觸媒的用量與提升反應溫度進行改善。
This thesis is related to the study of the catalysts for the preferential oxida- tion of CO in H2-rich stream (PROX). The purpose of this research is to pre- pare PROX catalysts with high CO oxidation activity, selectivity and good sta- bility at ambient temperature (below 100 oC). The results of literature review indicated that Au/TiO2 catalyst is one of the best choices for above-mentioned catalytic performance.
In this research, Au/TiO2 was prepared by deposition-precipitation. The preparation conditions to be investigated were the stirring time and amount of NaOH(aq) addition during pH adjustment. Catalysts were characterized with AA, TEM, EDS, XPS and UV-vis. The reaction tests included CO oxidation and PROX.
The results of reaction tests pointed out that when the gold concentration of gold solution was 1.72 × 10 -3 M (230 mL), the Au/TiO2 catalysts prepared with the proper stirring time (between 6 to 24 h) and amount (between 19 to 22.5 g) of 0.1 M NaOH(aq) addition during pH adjustment possessed best cat- alytic performance for PROX. This was attributed to the small gold particle sizes (characterized with TEM) and very few chloride residual (characterized with EDS and XPS) over catalysts.
Au/TiO2 catalyst prepared with 24 h as stirring time of NaOH(aq) addition possessed high CO oxidation activity (XCO = 100 %), selectivity (S = 0.75) and good stability (t = 23 h) in idealized reformate for PROX test at 25 oC.
The presence of H2O and/or CO2 were found to decrease the CO oxidation activity, but increase the selectivity and not influence the stability of catalysts mentioned above. The effects were also found to be vanished after the remo- val of H2O and/or CO2 in reaction. It was clear that the mechanism of effect was reversible.
Besides, research also revealed that the foregoing reduction of CO oxida- tion activity can be improved by increasing the catalysts amount and reaction temperature.
摘要.................................................... I
Abstract............................................... II
目錄................................................... IV
圖索引................................................. VI
表索引................................................. IX
常用縮寫與符號.......................................... X
本書架構.............................................. XII

第一章 緒論......................................... - 1 -
1.1 研究緣起...................................... - 1 -
1.2 研究背景...................................... - 5 -
1.2.1 鉑族PROX觸媒.............................. - 6 -
1.2.2 金PROX觸媒............................... - 13 -
1.2.3 銅與其它PROX觸媒......................... - 18 -
1.2.4 總結..................................... - 22 -
1.3 研究目標..................................... - 24 -

第二章 金觸媒的特性與製備.......................... - 25 -
2.1 金觸媒的發展歷史............................. - 25 -
2.2 影響金觸媒催化活性的變因..................... - 27 -
2.3 擔體的選擇................................... - 28 -
2.4 金觸媒的製備方式............................. - 30 -
2.4.1 含浸法................................... - 30 -
2.4.2 共沈澱法................................. - 31 -
2.4.3 沈澱沈積法............................... - 32 -
2.4.4 其它方法................................. - 35 -
2.5 總結......................................... - 36 -

第三章 實驗方法.................................... - 37 -
3.1 觸媒製備..................................... - 37 -
3.1.1 製備方式............................... - 37 -
3.1.2 化學藥品............................... - 40 -
3.1.3 實驗儀器............................... - 40 -
3.2 觸媒鑑定..................................... - 41 -
3.2.1 原子吸收光譜 (AA)...................... - 41 -
3.2.2 穿透式電子顯微鏡 (TEM)................. - 41 -
3.2.3 能量分散光譜儀 (EDS)................... - 41 -
3.2.4 X射線光電子光譜 (XPS).................. - 42 -
3.2.5 紫外光可見光光譜儀 (UV-vis)............ - 44 -
3.3 反應測試..................................... - 45 -
3.3.1 反應裝置............................... - 45 -
3.3.2 氣體................................... - 48 -
3.3.3 定義................................... - 49 -

第四章 結果與討論.................................. - 52 -
4.1 鑑定結果與討論............................... - 52 -
4.1.1 AA鑑定結果與討論......................... - 53 -
4.1.2 TEM鑑定結果與討論........................ - 55 -
4.1.3 EDS鑑定結果與討論........................ - 60 -
4.1.4 XPS鑑定結果與討論........................ - 63 -
4.1.5 UV-vis鑑定結果與討論..................... - 66 -
4.2 反應測試結果與討論........................... - 71 -
4.2.1 CO氧化反應測試結果與討論................. - 72 -
4.2.2 PROX反應測試結果與討論................... - 74 -
4.2.2-1 理想重組氣體PROX反應測試............. - 75 -
4.2.2-2 實際重組氣體PROX反應測試............. - 80 -
4.3 總結......................................... - 84 -
4.3.1 金顆粒粒徑大小........................... - 84 -
4.3.2 氯殘留................................... - 85 -
4.3.3 金的價態................................. - 90 -
4.3.4 其它討論................................. - 93 -

第五章 結論........................................ - 96 -

第六章 未來展望與建議.............................. - 98 -

參考文獻........................................... - 100 -
[1] C. Song. “Fuel processing for low-temperature and high-temperature fuel cells challenges, and opportunities for sustainable development in the 21st century.” Catal. Today 77 (2002) 17–49.

[2] A.F. Ghenciu. “Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems.” Curr. Opin. Solid State Mater. Sci. 6 (2002) 389-399.

[3] T.V. Choudhary and D.W. Goodman. “CO-free fuel processing for fuel cell applications.” Catal. Today 77 (2002) 65–78.

[4] D.L. Trimm and Z.I. Önsan. “Onboard fuel Conversion for hydrogen-fuel-cell-driven vehicles.” Catal. Rev.-Sci. Eng. 43 (2001) 31-84.

[5] M. Brown, A. Green, J.G. Cohn and H. Anderson. “Purifying hydrogen by selective oxidation of carbon monoxide.” Ind. Eng. Chem. 52 (1960) 841-844.

[6] J.G. Cohn. “Process for selectively removing carbon monoxide from hydrogen- containing gases.” U.S. patent 3,216,783. (1965)

[7] O. Korotkikh and R. Farrauto. “Selective catalytic oxidation of CO in H2: fuel cell applications.” Catal. Today 62 (2000) 249-254.

[8] X. Liu, O. Korotkikh and R. Farrauto. “Selective catalytic oxidation of CO in H2: structural study of Fe oxide-promoted Pt/alumina catalyst.” Appl. Catal. A 226 (2002) 293-303.

[9] S.H. Oh and R.M. Sinkevitch. “Carbon monoxide removal from hydrogen-rich fuel cell feedstreams by selective catalytic oxidation.” J. Catal. 142 (1993) 254-262.

[10] I.H. Son and A.M. Lane. “Promotion of Pt/��-Al2O3 by Ce for preferential oxidation of CO in H2.” Catal. Lett. 76 (2001) 151-154.

[11] I.H. Son, M. Shamsuzzoha and A.M. Lane. “Promotion of Pt/γ-Al2O3 by new pretreatment for low-temperature preferential oxidation of CO in H2 for PEM fuel cells.” J. Catal. 210 (2002) 460-465.

[12] W.S. Epling, P.K. Cheekatamarla and A.M. Lane. “Reaction and surface characterization studies of titania-supported Co, Pt and Co/Pt catalysts for the selective oxidation of CO in H2-containing streams.” Chem. Eng. J. 93 (2003) 61–68.

[13] I.H. Son, A.M. Lane and D.T. Johnson. “The study of the deactivation of water- pretreated Pt/γ-Al2O3 for low-temperature selective CO oxidation in hydrogen.” J. Power Sources 124 (2003) 415–419.

[14] A. Manasilp and E. Gulari. “Selective CO oxidation over Pt/alumina catalysts for fuel cell applications.” Appl. Catal. B 37 (2002) 17-25.

[15] F. Gracia, W. Li, and E.E. Wolf. “The preferential oxidation of CO: selective combinatorial activity and infrared studies.” Catal. Lett. 91 (2003) 235-242.

[16] C. He, H.R. Kunz and J.M. Fenton. “Selective oxidation of CO in hydrogen under fuel cell operating conditions.” J. Electrochem. Soc. 148 (2001) A1116-A1124.

[17] M.J. Kahlich, H.A. Gasteiger and R.J. Behm. “Kinetics of the selective CO oxidation in H2-Rich gas on Pt/Al2O3.” J. Catal. 171 (1997) 93-105.

[18] M.M. Schubert, H.A. Gasteiger and R.J. Behm. “Surface formates as side products in the selective CO oxidation on Pt/γ-Al2O3.” J. Catal. 172 (1997) 256-258.

[19] M.M. Schubert, M.J. Kahlich, H.A. Gasteiger and R.J. Behm. “Correlation between CO surface coverage and selectivity/kinetics for the preferential CO oxidation over Pt/γ-Al2O3 and Au/α-Fe2O3: an in-situ DRIFTS study.” J. Power Sources 84 (1999) 175-182.

[20] B. Rohland and V. Plzak. “The PEMFC-integrated CO oxidation — a novel method of simplifying the fuel cell plant.” J. Power Sources 84 (1999) 183-186.

[21] M.J. Kahlich, H.A. Gasteiger and R.J. Behm. “Kinetics of the selective low- temperature oxidation of CO in H2-rich gas over Au/α-Fe2O3.” J. Catal. 182 (1999) 430-440.

[22] M.M. Schubert, S. Hackenberg, A.C. van Veen, M. Muhler, V. Plzak and R.J Behm. “CO oxidation over supported gold catalysts—“inert” and “active” support materials and their role for the oxygen supply during reaction.” J. Catal. 197 (2001) 113–122.

[23] M.M. Schubert, M.J. Kahlich, G. Feldmeyer, M. Huttner, S. Hackenberg, H.A. Gasteiger and R.J. Behm. “Bimetallic PtSn catalyst for selective CO oxidation in H2-rich gases at low temperatures.” Phys. Chem. Chem. Phys. 3 (2001) 1123-1131.

[24] Y.-F. Han, M.J. Kahlich, M. Kinne and R.J. Behm. “Kinetic study of selective CO oxidation in H2-rich gas on a Ru/γ-Al2O3 catalyst. Phys. Chem. Chem. Phys. 4 (2002) 389-397.

[25] R. Andorf, W. Maunz, C. Plog and T. Stengel. “Preparation and use of Pt/zeolite catalysts materials for removing carbon monoxide.” U.S. patent 5,955,395. (1999)

[26] M. Watanabe, H. Uchida, H. Igarashi and M. Suzuki. “Pt catalyst supported on zeolite for selective oxidation of CO in reformed gases.” Chem. Lett. (1995) 21-22.

[27] H. Igarashi, H. Uchida, M. Suzuki, Y. Sasaki and M.
Watanabe. “Removal of carbon monoxide from hydrogen-rich fuels by selective oxidation over platinum catalyst supported on zeolite.” Appl. Catal. A 159 (1997) 159-169.

[28] H. Igarashi, H. Uchida and M. Watanabe. “Mordenite-supported noble metal catalysts for selective oxidation of carbon monoxide in a reformed gas.” Chem. Lett. (2000) 1262-1263.

[29] M. Watanabe, H. Uchida, K. Ohkubo and H. Igarashi. “Hydrogen purification for fuel cells: selective oxidation of carbon monoxide on Pt–Fe/zeolite catalysts.” Appl. Catal. B 46 (2003) 595-600.

[30] S. Ito T. Fujimori, K. Nagashima, K. Yuzaki and K. Kunimori. “Strong rhodium– niobia interaction in Rh/Nb2O5, Nb2O5–Rh/SiO2 and RhNbO4/SiO2 catalysts application to selective CO oxidation and CO hydrogenation.” Catal. Today 57 (2000) 247-254.

[31] H. Tanaka, S. Ito, S. Kameoka, K. Tomishige and K. Kunimori. “Promoting eect of potassium in selective oxidation of CO in hydrogen-rich stream on Rh catalysts.” Catal. Commun. 4 (2003) 1-4.

[32] M. Echigo and T. Tabata. “A study of CO removal on an activated Ru catalyst for polymer electrolyte fuel cell applications.” Appl. Catal. A 251 (2003) 157–166.

[33] M. Echigo, N. Shinke, S. Takami, S. Higashiguchi, K. Hirai and T. Tabata. “Development of residential PEFC cogeneration systems: Ru catalyst for CO preferential oxidation in reformed gas.” Catal. Today 84 (2003) 209–215.

[34] T. Utaka, T. Takeguchi, R. Kikuchi and K. Eguchi. “CO removal from reformed fuels over Cu and precious metal catalysts.” Appl. Catal. A 246 (2003) 117-124.

[35] E. Yasumoto, K. Hatoh and T. Gamou. “Fuel cell device equipped with catalyst material for removing carbon monoxide and method for removing carbon monoxide.” U.S. patent 5,702,838. (1997)

[36] D.H. Kim and M.S. Lim. “Kinetics of selective CO oxidation in hydrogen-rich mixtures on Pt/alumina catalysts.” Appl. Catal. A 224 (2002) 27–38.

[37] C. Özdemir, A.N Akın and R. Yıldırı. “Low temperature CO oxidation in hydrogen rich streams on Pt-SnO2/Al2O3 catalyst using Taguchi method.” Appl. Catal. A 258 (2004) 145–152.

[38] P.V. Snytnikov, V.A. Sobyanin, V.D. Belyaev, P.G. Tsyrulnikov, N.B. Shitova and D.A. Shlyapin. “Selective oxidation of carbon monoxide in excess hydrogen over Pt-, Ru- and Pd-supported catalysts.” Appl. Catal. A 239 (2003) 149-156.

[39] G. Avgouropoulos, T. Ioannides, C. Papadopoulou, J. Batista, S. Hocevar and H.K. Matralis. “A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO-CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen.” Catal. Today 75 (2002) 157-167.

[40] C.-H. Lee, C.-H. Huang, L.-P. Chu and P.-C. Yao. “Preliminary study of the PEMFC-relevant research in UCL.” Catalysis for sustainable development. The 11th ROC-Japan joint symposium on catalysis, March 12-14 (2002) 117-126.

[41] 李秋煌、黃瓊輝與朱麗萍。『選擇性氧化去除富氫中的CO研究』第二十屆台灣區觸媒及反應工程研討會論文集 (2002) 80-84.

[42] 李秋煌、黃瓊輝、林慶堂與劉彥君。『去除一氧化碳反應之探討』第二十二屆台灣區觸媒及反應工程研討會論文集 (2004) 107-112.

[43] G.K. Bethke and H.H. Kung. “Selective CO oxidation in a hydrogen-rich stream over Au/γ-Al2O3 catalysts.” Appl. Catal. A 194-195 (2000) 43-53.

[44] H.-S. Oh, J. H. Yang, C. K. Costello, Y. M. Wang, S. R. Bare, H. H. Kung and M. C. Kung. “Selective Catalytic Oxidation of CO: Effect of chloride on supported Au catalysts.” J. Catal. 210 (2002) 375-386.

[45] C.K. Costello, M.C. Kung, H.-S. Oh, Y. Wang and H.H. Kung. “Nature of the active site for CO oxidation on highly active Au/γ-Al2O3.” Appl. Catal. A 232 (2002) 159-168. (Erratum: Appl. Catal. A 259 (2004) 131.)

[46] H.H. Kung, M.C. Kung and C.K. Costello. “Supported Au catalysts for low temperature CO oxidation.” J. Catal. 216 (2003) 425–432.

[47] C.K. Costello, J.H. Yang, H.Y. Law, Y. Wang, J.-N. Lin, L.D. Marks, M.C. Kung and H.H. Kung. “On the potential role of hydroxyl groups in CO oxidation over Au/ Al2O3” Appl. Catal. A 243 (2003) 15-24.

[48] T.V. Choudhary, C. Sivadinarayana, C.C. Chusuei, A. K. Datye, J.P. Fackler Jr., and D.W. Goodman. “CO oxidation on supported nano-Au catalysts synthesized from a [Au6(PPh3)6](BF4)2 complex.” J. Catal. 207 (2002) 247–255.

[49] M.M. Schubert, V. Plzak, J. Garche and R.J. Behm. “Activity, selectivity, and long-term stability of different metal oxide supported gold catalysts for the preferential CO oxidation in H2-rich gas.” Catal. Lett. 76 (2001) 143-150.

[50] B. Schumacher, V. Plzak, M. Kinne and R.J. Behm. “Highly active Au/TiO2 cat- alysts for low-temperature CO oxidation: preparation, conditioning and stability.” Catal. Lett. 89 (2003) 109-114.

[51] M.M. Schubert, A. Venugopal, M.J. Kahlich, V. Plzak and R.J. Behm. “Influence of H2O and CO2 on the selective CO oxidation in H2-rich gases over Au/α-Fe2O3.” J. Catal. 222 (2004) 32-40.

[52] B. Schumacher, Y. Denkwitz, V. Plzak, M. Kinne and R.J. Behm. “Kinetics, mechanism, and the influence of H2 on the CO oxidation reaction on a Au/TiO2 catalyst.” J. Catal. 224 (2004) 449-462.

[53] Japanese Patent 02,153,801 A2 13. (1990)

[54] Japanese Patent 08,295,502 A2 12. (1996)

[55] M. Haruta, A. Ueda, S. Tsubota and R.M.T. Sanchez. “Low-temperature catalytic combustion methanol its decomposed derivates over supported gold catalysts.” Catal. Today 29 (1996) 443-447.

[56] R.M.T. Sanchez, A. Ueda, K. Tanaka and M. Haruta. “Selective oxidation of CO in hydrogen over gold supported on manganese oxides.” J. Catal. 168 (1997) 125-127.

[57] “The abilities and potential of gold as a catalyst.” Report of the Osaka National Research Institute (ONRI) No. 393 (1999).

[58] R.J.H. Grisel and B.E. Nieuwenhuys. “Selective oxidation of CO, over supported Au catalysts.” J. Catal. 199 (2001) 48-59.

[59] R.J.H. Grisel, C.J. Weststrate, A. Goossens, M.W.J. Crajé, A.M. van der Kraan and B.E. Nieuwenhuys. “Oxidation of CO over Au/MOx/Al2O3 multi-component catalysts in a hydrogen-rich environment.” Catal. Today 72 (2002) 123–132.

[60] R.J.H. Grisel, K.-J. Weststrate, A. Gluhoi and B.E. Nieuwenhuys. “Catalysis by gold nanoparticles.” Gold Bull. 35 (2002) 39-45.

[61] European Patent EP-A1-001,209,121; Japanese Patent 2002,220,205 (2002).

[62] J.C. Zhang, Y.H. Wang, B.H. Chen, C.Y. Li, D.Y. Wu and
X.S. Wang. “Selective oxidation of CO in hydrogen rich gas over platinum-gold catalyst supported on zinc oxide for potential application in fuel cell.” Energy Convers. Manage. 44 (2003) 1805-1815.

[63] B. Qiao and Y. Deng. “Highly effective ferric hydroxide supported gold catalyst for selective oxidation of CO in the presence of H2.” Chem. Commun. (2003) 2192-2193.

[64] 余明璋與黃大仁。『以金觸媒在富氫的燃料下行一氧化碳選擇氧化反應。』第二十屆台灣區觸媒及反應工程研討會論文集 (2002) 351-357.

[65] 陳翰全、廖炳傑與陳吟足。『CuO/Ce1-xZrxO2觸媒於富氫CO的選擇性氧化反應研究。』第二十二屆台灣區觸媒及反應工程研討會論文集 (2004) 92-96.

[66] C.-P. Yang. “Economics evaluation of electricity generation from rice residues and study of gold catalysts for selective oxidation of CO in H2-rich stream.” Master thesis. Nation Taiwan University. (2003)

[67] K. Sekizawa, S. Yano, K. Eguchi, and H. Arai. “Selective removal of CO in methanol reformed gas over Cu-supported mixed metal oxides.” Appl. Catal. A 169 (1998) 291-297.

[68] T. Utaka, K. Sekizawa and K. Eguchi. “CO removal by oxygen-assisted water gas shift reaction over supported Cu catalysts.” Appl. Catal. A 194-195 (2000) 21-26.

[69] Y. Tanaka, T. Utaka, R. Kikuchi, Kazunari Sasaki and K. Eguchi. “CO removal from reformed fuel over Cu/ZnO/Al2O3 catalysts prepared by impregnation and coprecipitation methods.” Appl. Catal. A 238 (2003) 11-18.

[70] Y. Teng, H. Sakurai, A Ueda and T. Kobayashi. “Oxidative removal of CO contained in hydrogen by using metal oxide catalysts.” Int. J. Hydrogen Energy 24 (1999) 355-358.

[71] D.H. Kim and J.E. Cha. “A CuO–CeO2 mixed-oxide catalyst for CO clean-up by selective oxidation in hydrogen-rich mixtures.” Catal. Lett. 86 (2001) 107-112.

[72] P. Ratnasamy, D. Srinivas, C.V.V. Satyanarayana, P. Manikandan, R.S. Senthil Kumaran, M. Sachin, and Vasudev N. Shetti. “Influence of the support on the preferential oxidation of CO in hydrogen-rich steam reformates over the CuO–CeO2–ZrO2 system.” J. Catal. 221 (2004) 455–465.

[73] C. Guldur and F. Balikci. “Selective carbon monoxide oxidation over Ag-based composite oxides.” Int. J. Hydrogen Energy 27 (2002) 219-224.

[74] G. Avgouropoulos, T. Ioannides, H. Matralis, J. Batista, S. Hocevar. “CuO–CeO2 mixed oxide catalysts for the selective oxidation of carbon monoxide in excess hydrogen.” Catal. Lett. 73 (2001) 33-40.

[75] G. Avgouropoulos and T. Ioannides. “Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea–nitrate combustion method.” Appl. Catal. A 244 (2003) 155–167.

[76] G. Sedmak, St. Hocevar and J. Levec. “Kinetics of selective CO oxidation in excess of H2 over the nanostructured Cu0.1Ce0.9O2−y catalyst.” J. Catal. 213 (2003) 135-150.

[77] W.H. Cheng. “Selective CO oxidation in presence of H2 over Cu/Cr/Ba catalysts.” React. Kinet. Catal. Lett. 58 (1996) 329-334.

[78] J.B. Wang, S.C. Lin and T.J. Huang. “Selective CO oxidation in rich hydrogen over CuO/samaria-doped ceria.” Appl. Catal. A 232 (2002) 107-120.

[79] D. Cameron, R. Holliday and D. Thompson. “Gold’s future role in fuel cell systems.” J. Power Sources 118 (2003) 298-303.

[80] M. Haruta and H. Sano. “Preparation of highly active composite oxides of silver for hydrogen and carbon monoxide oxidation.” Stud. Surf. Sci. Catal. 16 (1983) 225-236.

[81] M. Haruta. “When gold is not noble: catalysis by nanoparticles.” Chem. Record 3 (2003) 75-87.

[82] M. Haruta, T. Kobayashi, H. Sano and N. Yamada. “Novel gold catalysts for the oxidation of carbon monoxide at temperature far below 0 oC.” Chem. Lett. (1987) 405-408.

[83] G.C. Bond and D.T. Thompson. “Catalysis by gold.” Catal. Rev. Sci. Eng. 41 (1999) 319-388.

[84] M. Valden, X. Lai and D.W. Goodman. “Onset of catalytic activity of gold clusters on titania with appearance of nonmetallic properties.” Science 281 (1998) 1647-1650.

[85] G. Srinivas, J. Wright, C.-S. Bai and R. Cook. “Au/metal oxides for low temperature CO oxidation.” Stud.
Surf. Sci. Catal. 101 (1996) 427.

[86] M. Haruta. “Size- and support-dependency in the catalysis of gold.” Catal. Today 36 (1997) 153-166.

[87] S. Lin, M. Bollinger and M.A. Vannice. “Low temperature CO oxidation over Au /TiO2 and Au/SiO2 catalysts.” Catal. Lett. 17 (1993) 245-262.

[88] M. Bollinger and M.A. Vannice. “A kinetic and DRIFTS study of low-temperature carbon monoxide oxidation over Au-TiO2.” Appl. Catal. B 8 (1996) 417-443.

[89] Q. Xu, K.C.C. Kharas and A.K. Datye. ”The preparation of highly dispersed Au/ Al2O3 by aqueous impregnation.” Catal. Lett. 85 (2003) 229-235.

[90] A.I. Kozlov, A.P. Kozlova, H. Liu and Y. Iwasawa. ”A new approach to active supported Au catalysts.” Appl. Catal. A 182 (1999) 9-28.

[91] Y. Yuan, K. Asakura, H. Wan, K. Tsai and Y. Iwasawa. “Supported gold catalysts derived from gold complexes and as-precipitated metal hydroxides, highly active for low-temperature CO oxidation.” Chem. Lett. (1996) 755-756.

[92] Y. Yuan, K. Asakura, H. Wan, K. Tsai and Y. Iwasawa. “Preparation of supported gold catalysts from gold complexes and their catalysts activities for CO oxidation.” Catal. Lett. 42 (1996) 15-20.

[93] Y. Yuan, A.P. Kozlova, K. Asakura, H. Wan, K. Tsai and Y. Iwasawa. “Supported Au catalysts prepared from Au phosphine complexes and as-precipitated metal hydroxides: characterization and low-temperature CO oxidation” J. Catal. 170 (1997) 191-199.

[94] Y. Yuan, K. Asakura, A.P. Kozlova, H. Wan, K. Tsai and Y. Iwasawa. “Supported gold catalysis derived from the interaction of a Au-phosphine complex with as-precipitated titanium hydroxide and titanium oxide.” Catal. Today 44 (1998) 333-342.

[95] A.P. Kozlova, A.I. Kozlov, S. Sugiyama, Y. Matsui, K. Asakura and Y. Iwasawa. ”Study of gold species in iron-oxide-supported gold catalysts derived from gold-phosphine complex Au(PPh3)(NO3) and as-precipitated wet Fe(OH)3*.” J. Catal. 181 (1999) 37-48.

[96] H. Liu, A.I. Kozlov, A.P. Kozlova, T. Shido, K. Asakura and Y. Iwasawa. ”Active oxygen species and mechanism for low-temperature CO oxidation reaction on a TiO2- supported Au catalyst prepared from Au(PPh3)(NO3) and as-precipitated titanium hydroxide.” J. Catal. 185 (1999) 252-264.

[97] H. Liu, A.I. Kozlov, A.P. Kozlova, T. Shido and Y. Iwasawa. ”Active oxygen species and reaction mechanism for low-temperature CO oxidation on an Fe2O3- supported Au catalyst prepared from Au(PPh3)(NO3) and as-precipitated iron hydroxide.” Phys. Chem. Chem. Phys. 1 (1999) 2581-2860.

[98] A.I. Kozlov, A.P. Kozlova, K. Asakura, Y. Matsui, T. Kogure, T. Shido and Y. Iwasawa. “Supported gold catalysts prepared from a gold phosphine precursor and as- precipitated metal-hydroxide precursors: effect of preparation.” J. Catal. 196 (2000) 56-65.

[99] M. Haruta. “Catalysis of gold nanoparticles deposited on metal oxides.” CATTECH 6 (2002) 102-115.

[100] S. Tsubota, M. Haruta, T. Kobayashi, A. Ueda and Y. Nakahara. “Preparation of highly dispersed gold on titanium and magnesium oxide.” Stud. Surf. Sci. Catal. 63 (1991) 695-704.

[101] J.W. Geus. “Production and Thermal Pretreatment of Supported Catalyst.” Stud. Surf. Sci. Catal. 16 (1983) 1-33.

[102] J.W. Geus and J.A.R. van Veen. “Preparation of Supported Catalyst.” Stud. Surf. Sci. Catal. 79 (1993) Chap.9.

[103] R. Zanella, S. Giorgio, C.R. Henry and C. Louis. “Alternative methods for the preparation of gold nanoparticles supported on TiO2.” J. Phys. Chem. B 106 (2002) 7634-7642.

[104] R. Zanella, S. Giorgio, C.-H. Shin, C.R. Henry and C. Louis. “Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea.” J. Catal. 222 (2004) 357–367.

[105] Y.M. Kang and B.-Z. Wan. “Preparation of gold in Y-type zeolite for carbon monoxide oxidation.” Appl. Catal. A 128 (1995) 53-60.

[106] Y.M. Kang and B.-Z. Wan. “Pretreatment effect of gold/iron/zeolite-Y on carbon monoxide oxidation.” Catal. Today 26 (1995) 59-69.

[107] Y.M. Kang and B.-Z. Wan. “Gold and iron supported on Y-type zeolite for carbon monoxide oxidation.” Catal. Today 35 (1997) 379-392.

[108] J.-N. Lin, J.H. Chen, C.Y. Hsiao, Y.M. Kang and B.-Z. Wan. “Gold supported on surface acidity modified Y-type and iron/Y-type zeolite for CO oxidation.” Appl. Catal. B 36 (2002) 19-29.

[109] J.-N. Lin and B.-Z. Wan. “Effects of preparation conditions on gold/Y-type zeolite for CO oxidation.” Appl. Catal. B 41 (2003) 83-95.

[110] M. Okumura, K. Tanaka, A. Ueda and M. Haruta. “The reactivities of dimethy- lgold(III)beta-diketone on the surface of TiO2 - A novel preparation method for Au catalysts.” Solid State Ionics 95 (1997) 143-149.

[111] M. Okumura, S. Nakamura, S. Tsubota, T. Nakamura, M. Azuma and M. Haruta. “Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for the oxidation of CO and of H2.” Catal. Lett. 51 (1998) 53-58.

[112] M. Okumura, S. Tsubota, M. Iwamoto and M. Haruta. “Chemical vapor deposition of gold nanoparticles on MCM-41 and their catalytic activities for the low-temp- erature oxidation of CO and of H2.” Chem. Lett. (1998) 315-316.

[113] M. Okumura, S. Tsubota and M. Haruta. “Preparation of supported gold catalysts by gas-phase grafting of gold acethylacetonate for low-temperature oxidation of CO and of H2.” J. Mol. Catal. A 199 (2003) 73-84.

[114] 廖純菁與林昇佃。『CVD法製備Au/TiO2觸媒之條件探討。』第二十屆台灣區觸媒及反應工程研討會論文集 (2002) 491-497.

[115] G.R. Bamwenda, S. Tsubota, T. Nakamura and M. Haruta. “The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation.” Catal. Lett. 44 (1997) 83-87.

[116] J.-D. Grunwaldt, C. Kiener, C. Woegerbauer and A. Baiker. “Preparation of supported gold catalysts for low-temperature CO oxidation via “size-controlled” gold colloids.” J. Catal. 181 (1999) 223-232.

[117] J.-D. Grunwaldt, M. Maciejewski, O.S. Becker, P. Fabrizioli and A. Baiker. “Comparative study of Au/TiO2 and Au/ZrO2 catalysts for low-temperature CO oxidation.” J. Catal. 186 (1999) 458-469.

[118] M. Maciejewski, P. Fabrizioli, J.-D. Grunwaldt, O.S. Becker and A. Baiker. “Supported gold catalysts for CO oxidation : Effect of calcination on structure, adsorption and catalytic behavior.” Phys. Chem. Chem. Phys. 3 (2001) 3846-3855.

[119] M. Okumura and M. Haruta. “Preparation of supported gold catalysts by liquid- phase grafting of gold acethylacetonate for low-temperature oxidation of CO and of H2.” Chem. Lett. (2000) 396-397.

[120] G.H. Takaoka, T. Hamano, K. Fukushima K, J. Matsuo and I. Yamada. “Preparation and catalytic activity of nano-scale Au islands supported on TiO2.” Nucl. Instrum. Meth. B 121 (1997) 503-506.

[121] T. Uematsu, L. Fan, T. Maruyama, N. Ichikuni and S. Shimazu. “New application of spray reaction technique to the preparation of supported gold catalysts for en- vironmental catalysis.” J. Mol. Catal. A 182-183 (2003) 209-214.

[122] L. Fan, N. Ichikuni, S. Shimazu and T. Uematsu. “Preparation of Au/TiO2 catalysts by suspension spray reaction method and their catalytic property for CO oxidation.” Appl. Catal. A 246 (2003) 87–95.

[123] K. Mallick, M.J. Witcomb and M.S. Scurrell. “Supported gold catalysts prepared by in situ reduction technique: preparation, characterization and catalytic activity measurements.” Appl. Catal. A 259 (2004) 163–168.

[124] Y.-S. Su, M.-Y. Lee and S.D. Lin. “XPS and DRS of Au/TiO2 catalysts: effect of pretreatment.” Catal. Lett. 57 (1999) 49-53.

[125] C.D. Wagner, W.M. Riggs, L.E. Davis, J.M. Moulder, G.E. Muilenberg. Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer, Eden Prairie (1979).

[126] J.-N. Lin. “Development of supported gold nano-particles and their applications in combustion catalysis.” PhD dissertation. Nation Taiwan University. (2002)

[127] I.-H. Tseng. “Nano metal-loaded titania catalysts for CO2 photocatalytic reducetion.” PhD dissertation. Nation Taiwan University. (2003)

[128] X.Z. Li and F.B. Li. “Study of Au/Au3+-TiO2 Photocatalysts toward visible photooxidation for water and wastewater treatment.” Environ. Sci. Technol. 35 (2001) 2381-2387.

[129] F.B. Li and X.Z. Li. “Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment.” Appl. Catal. A 228 (2002) 15–27.

[130] S. Link, Z.L. Wang and M.A. El-Sayed. “Alloy formation of gold-silver nano- particles and the dependence of the plasmon absorption on their Composition.” J. Phys. Chem. B 103 (1999) 3529-3533.

[131] K. Torigoe and K. Esumi. “Preparation of colloidal gold by photoreduction of AuCl4- cationic surfactant complexes.” Langmuir 8 (1992) 59-63.

[132] M.-C. Daniel and D. Astruc. “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology.” Chem. Rev. 104 (2004) 293-346.

[133] K.M. Glassford and J.R. Chelikowsky. “Optical properties of titanium dioxide in the rutile structure.” Phys. Review B 45 (1992) 3874-3877.

[134] T.M. Salama, T. Shido, R. Ohnishi and M. Ichikawa. “EXAFS/XANES, XRD, and UV-Vis characterization of intrazeolitic gold(I) prepared by monolayer dispersion of AuCl3 inside Na-Y zeolite.” J. Phys. Chem. 100 (1996) 3688-3694.

[135] P. Konova, A. Naydenov, Cv. Venkov, D. Mehandjiev, D. Andreeva and T. Tabakova. “Activity and deactivation of Au/TiO2 catalyst in CO oxidation.” J. Mol. Catal. A 213 (2004) 235–240.

[136] M. Daté and M. Haruta “Moisture effect on CO oxidation over Au/TiO2 catalyst.” J. Catal. 201 (2001) 221–224.

[137] M. Haruta, N. Yamada, T. Kobayahsi and S. Iijima. “Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and carbon oxide.” J. Catal. 115 (1989) 301-309.

[138] E.D. Park and J.S. Lee. “Effects of pretreatment conditions on co oxidation over supported au catalysts.” J. Catal. 186 (1999) 1–11.

[139] A.M. Visco, A. Donato, C. Milone and S. Galvagno. “Catalytic oxidation of carbon monoxide over Au/α-Fe2O3 preparations.” React. Kinet. Catal. Lett. 61 (1997) 219-226.

[140] S. Minico, S. Scire, C. Crisafulli, A.M. Visco and S. Galvagno. “FT-IR study of Au/Fe2O3 catalysts for CO oxidation at low temperature.” Catal. Lett. 47 (1997) 273-276.

[141] A.M. Visco, F. Neri, G. Neri, A. Donato, C. Milone, and S. Galvagno. “X-ray photoelectron spectroscopy of catalysts Au/Fe2O3.” Phys. Chem. Chem. Phys. 1 (1999) 2869-2873.

[142] Q. Fu, H. Saltsburg and M. Flytzani-Stephanopoulos. “Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts.” Science 301 (2003) 935-938.

[143] J. Radnik, C. Mohr and P. Claus. “On the origin of binding energy shifts of core levels of supported gold nanoparticles and dependence of pretreatment and material synthesis.” Phys. Chem. Chem. Phys. 5 (2003) 172–177.

[144] S. Arrii, F. Morfin, A.J. Renouprez and J.L. Rousset. “Oxidation of CO on gold supported catalysts prepared by laser vaporization: direct evidence of support contribution.” J. Am. Chem. Soc. 126 (2004) 1199-1205.

[145] P. Konova, A. Naydenov, Cv. Venkov, D. Mehandjiev, D. Andreeva and T. Tabakova. “Activity and deactivation of Au/TiO2 catalyst in CO oxidation.” J. Mol. Catal. A 213 (2004) 235–240.

[146] W.S. Epling, G.B. Hoflund, J.F. Weaver, S. Tsubota and M. Haruta. “Surface characterization study of Au/γ-Fe2O3 and Au/Co3O4 low-temperature CO oxidation cat- alysts.” J. Phys. Chem. 100 (1996) 9929-9934.

[147] M. Daté, Y. Ichihashi, T. Yamashita, A. Chiorino, F. Boccuzzi and M. Haruta. “Performance of Au/TiO2 catalyst under ambient conditions.” Catal. Today 72 (2002) 89-94.
[148] C. Costello, J.H. Yang, Y.M. Wang, H.H. Kung and M.C. Kung. Unpublished data.

[149] G.C. Bond and D.T. Thompson. “Gold-catalysed oxidation of carbon monoxide.” Gold. Bull. 33 (2000) 41-51.

[150] F. Boccuzzi, A. Chiorino, M. Manzoli, D. Andreeva, T. Tabakova, L. Ilieva and V. Iadakiev. “Gold, silver and copper catalysts supported on TiO2 for pure hydrogen production.” Catal. Today 75 (2002) 169-175.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔