跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/24 17:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:董才士
研究生(外文):TSAI-SHIH TUNG
論文名稱:以PEDOT導電高分子及其衍生物與普魯士藍搭配之電致色變元件性質最適化與長期穩定性研究
論文名稱(外文):On the Optimization and Long-term Stability of the Electrochromic Devices Assembling with Conducting Polymers PEDOT or Its Derivative and Prussian Blue
指導教授:何國川
指導教授(外文):Kuo-Chuan Ho
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:242
中文關鍵詞:著色效率電致色變元件穩定性普魯士藍poly(34-alkylenedioxythiophenes) (PXDOT:包含PEDOT和PProDOT-Me2)
外文關鍵詞:Prussian blue (PB)stabilitycoloration efficiencyelectrochromic devicepoly(34-alkylenedioxythiophenes) (PXDOT: PEDOT and PProDOT-Me2)
相關次數:
  • 被引用被引用:5
  • 點閱點閱:383
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文探討電致色變技術(Electrochromic technologies)的基礎性質與其應用性。電致色變現象泛指當材料被施加不同直流電壓或電流時,該材料會可逆地改變對可見光的吸收度進而呈現不同的顏色變化。本研究首次提出以導電高分子ploy(3,4-ethylenedioxythiophene) (PEDOT)或其衍生物poly(3,3-dimethyl-3,4-dihydro-2H-thieno [3,4-b][1,4]dioxepine)(PProDOT-Me2)與無機材料普魯士藍(Prussian blue,PB)搭配,組成有機-無機互補式電致色變系統。
實驗中分別以定電位(1.2V vs. Ag/Ag+)電聚合導電高分子PEDOT (或PProDOT-Me2)與定電流(-20 μA/cm2)還原析鍍PB於導電玻璃ITO上,接著以循環伏安法、紫外光-可見光光譜儀與電化學微量石英震盪天秤對電致色變薄膜進行分析;在1.0 M LiClO4/PC 溶液中,PB在-0.9V(vs. Ag/Ag+)還原為無色,0.4V(vs. Ag/Ag+)氧化為藍色,能可逆地進行氧化還原反應;PEDOT則經由陰離子(ClO4-)的去參雜呈現深藍色(-1.2V vs. Ag/Ag+),而隨施加電位往正方向增加,薄膜轉變為淡藍色(0.3V vs. Ag/Ag+),在590 nm下的穿透度變化(ΔT)為56.4%;PProDOT-Me2則可以提供深藍紫色的還原態(-0.8V vs. Ag/Ag+)與透明無色的氧化態(0.4V vs. Ag/Ag+),ΔT高達68.4%。
接著以PEDOT-PB元件分析元件性能最適化參數,元件在著、去色態分別呈現深藍色與淡藍色;實驗中獲得元件安全著、去色操作電壓分別為-1.5V(PEDOT vs. PB)與0.6V(PEDOT vs. PB),在此電壓下,元件在連續152,140圈的階梯循環測試(Cycling stability test)後,ΔT仍維持在39%;在兩極電量密度搭配上,以元件安全著、去色電壓操作,元件ΔT在兩極電量密度比(R)接近1時具有最大值;此外,元件(0.50<R<1.52)在長期靜態操作穩定性測試上(Long-term at-rest stability test),當R值範圍控制在0.79<R<1.15時,經過100天的測試後,元件ΔT仍維持在50%以上;電解質鹽類濃度則對元件性能影響不大,經過140天的靜態操作穩定性測試,元件ΔT衰退皆不到10%;以上顯示PEDOT-PB元件在參數最適化後,元件循環操作與靜態操作穩定性皆比文獻中以PEDOT為主的電致色變元件來得佳。
將上述最適化參數應用於PProDOT-Me2-PB元件,獲得更佳的元件性能表現:包括60.1% (11.0%~71.1% at 578 nm)的ΔT與450 cm2/C以上的著色效率值;PProDOT-Me2-PB元件以-1.2V(PProDOT-Me2 vs. PB)著色、0.6V(PProDOT-Me2 vs. PB)去色,在連續操作342,250圈後,元件ΔT維持在54.7% (ΔTmax = 57.6%),而另一元件在靜態操作上,140天之後的元件ΔT也維持在57.2% (ΔTmax = 59.9%),顯示PProDOT-Me2-PB元件能表現出更良好的穩定性。
本研究實驗結果提供了實驗室階段電致色變元件製程、元件光學性能最適化及元件長期穩定性測試的操作技術平台,並成功證實了PEDOT-PB元件及PProDOT-Me2-PB元件與商業化元件競爭的潛力。

In this thesis, the fundamental properties and the applications of the electrochromic technologies are investigated. Electrochromism is a reversible phenomenon that some materials change their optical absorbance and exhibit visible color change in response to a dc voltage or current source. In this study, a new complementary electrochromic system, which comprises conducting polymers, ploy(3,4-ethylenedioxythiophene) (PEDOT) or its derivative (poly(3,3-dimethyl-3,4-dihydro-2H-thieno [3,4-b][1,4]dioxepine) (PProDOT-Me2), and an inorganic material, Prussian blue (PB), is developed for the first time.
In experiments, the conducting polymer, PEDOT (or PProDOT-Me2), was electropolymerized onto the conducting glass (indium tin oxide, ITO) by a potentiostatic method with an applied potential of 1.2V (vs. Ag/Ag+); PB was cathodically deposited onto ITO by applying a constant current density of -20 μA/cm2. Subsequently, the electrochromic thin films were characterized by the cyclic voltammetry, UV-visible spectrophotometry, and electrochemical quartz crystal microbalance. In a 1.0 M LiClO4/PC solution, PB was reduced to colorless at -0.9V (vs. Ag/Ag+) and oxidized to blue at 0.4V (vs. Ag/Ag+) based on reversible redox reactions. On the other hand, PEDOT displayed deep blue at -1.2V (vs. Ag/Ag+) by the dedoping of the anions (ClO4-). With the increase of the applied potential in the positive direction, PEDOT changed to light blue (0.3V vs. Ag/Ag+). The transmittance difference (ΔT) of the PEDOT at 590 nm is 56.4%. Furthermore, PProDOT-Me2 can provide a deep violet-blue reduced state at -0.8V (vs. Ag/Ag+) and a transparent oxidized state at 0.4V (vs. Ag/Ag+), resulting in a ΔT of 68.4% at 578 nm.
Subsequently, PEDOT-PB devices were assembled to explore the optimal parameters on the performance of the devices. The devices exhibited deep blue and light blue at the colored state and bleached state, respectively. The safe operational coloring and bleaching voltages of the devices, obtained from the experiments, were -1.5V (PEDOT vs. PB) and 0.6V (PEDOT vs. PB), respectively. Under these voltages, one device was subjected to the cycling stability tests by a double potential step. After continuous 152,140 cycles, the ΔT still retained at 39%. On the matching of the charge density of the two electrodes, when the charge capacity ratio (R) was controlled close to 1, the device had a maximum transmittance difference. Additionally, after 100 days in the long-term at-rest stability tests, the ΔT of these devices (0.50<R<1.52) still retained above 50% when the R values were controlled between 0.79 and 1.15. The salt concentration, however, had no significant influence on the performance of the devices. After 140 days of the at-rest stability tests, the decays on the ΔT of the devices were less than 10%. The above results show that after choosing the optimal parameters, the cycling stabilities and the long-term at-rest stabilities of the PEDOT-PB devices are better than those of PEDOT-based electrochromic devices reported in literature.
When the above optimal parameters were applied to the PProDOT-Me2-PB devices, those devices achieved a better cell performance compared to the PEDOT-PB devices, including a ΔT of 60.1% (11.0%-71.1%) at 578 nm and a coloration efficiency larger than 450 cm2/C. Besides, a PProDOT-Me2-PB device, with a coloring voltage of -1.2V (PProDOT-Me2 vs. PB) and a bleaching voltage of 0.6V (PProDOT-Me2 vs. PB), retained a ΔT value of 54.7% (ΔTmax = 57.6%) after continuous 342,250 operational cycles. Moreover, another device retained a ΔT value of 57.2% (ΔTmax = 59.9%) after 140 days in the at-rest operation. The above results show that the PProDOT-Me2-PB devices perform better in terms of stabilities.
The experimental results in this research provide an operational, technological platform, on a laboratory level, for the development of the electrochromic devices, the optimization on the optical performances of the devices, and the improvement of the long-term stability of the devices. Furthermore, the PEDOT-PB devices and PProDOT-Me2-PB devices were successfully proved to have the potentials to compete with the commercial devices.

目 錄
中文摘要 I
英文摘要 III
誌謝 VI
目錄 VII
表目錄 X
圖目錄 XI
符號說明 XXI

第一章 緒論 1
1-1前言 1
1-2電致色變技術簡介 2
1-2-1電致色變技術之發展 3
1-2-2電致色變材料與元件類型 7
1-2-2-1電致色變材料 7
1-2-2-2電致色變元件之類型與結構 9
1-2-3電致色變元件之性能要求 15

第二章 文獻回顧與研究目的 16
2-1 PEDOT之簡介 16
2-1-1 PEDOT之光電行為 18
2-1-2 PEDOT及其類似物在電致色變元件之發展 26
2-2普魯士藍之簡介 39
2-2-1普魯士藍在水溶液中之光電行為 39
2-2-2普魯士藍在非水溶液中之光電行為 43
2-2-3普魯士藍在電致色變元件上的應用 45
2-3研究動機與目的 48
2-4研究架構 50
2-5研究系統結構 52

第三章 實驗部分 55
3-1儀器設備 55
3-2實驗藥品 56
3-3實驗方法 58
3-3-1導電玻璃之前處理 58
3-3-2藥品之前處理 58
3-3-3定電流析鍍普魯士藍薄膜 59
3-3-4定電位析鍍PEDOT 59
3-3-5 ProDOT-Me2單體合成與薄膜析鍍 60
3-3-6 元件PMMA膠態電解質之製備與性質量測 63
3-3-7元件之組裝 63
3-4電化學特性分析 66
3-5 In-situ UV-VIS光譜分析 66
3-6離子進出電致色變薄膜分析 70
3-7元件性能最適化與長期穩定性測試 71

第四章 電致色變薄膜特性分析 74
4-1薄膜循環伏安分析 74
4-1-1 PB在PC中之氧化還原反應 74
4-1-2 PXDOT在PC中之氧化還原反應 78
4-2光譜特性與階梯電位響應分析 89
4-2-1 PB光譜、階梯電位響應與著色效率分析 89
4-2-2 PXDOT光譜、階梯電位響應與著色效率分析 95
4-3離子進出薄膜質量特性分析 111
4-3-1以EQCM分析離子進出PB薄膜 111
4-3-2以EQCM分析離子進出PXDOT薄膜 116

第五章 PEDOT-PB電致色變元件最適化設計與長期穩定性測試 122
5-1 PEDOT-PB電致色變元件 122
5-1-1 PEDOT-PB元件電化學與光學特性分析 122
5-1-2 PEDOT-PB元件安全操作電壓的決定 131
5-2操作電壓對元件性質與長期穩定性之影響 132
5-2-1元件著色電壓 132
5-2-2元件去色電壓 143
5-3兩極電量比對元件性質與長期穩定性之影響 151
5-3-1元件性質 151
5-3-2元件長期穩定性 160
5-4電解質鹽類濃度對元件性質與長期穩定性之影響 167
5-4-1元件性質 167
5-4-2元件長期穩定性 171

第六章 PProDOT-Me2-PB電致色變元件特性分析與穩定性測試 176
6-1 PProDOT-Me2-PB元件特性分析 176
6-2 PProDOT-Me2-PB元件長期穩定性測試 182

第七章 結論與建議 189
7-1 結論 189
7-2 建議 195

第八章 參考文獻 197

附錄A 參考電極Ag/Ag+之製備與校正 211

附錄B ProDOT-Me2 NMR data 214

附錄C Publications 217


[1]楊明長, “電致色變系統簡介,” 化工, 第40卷, 第2期, 64 (1993); 何國川, “電化學與無窗簾時代,” 化工, 第37卷, 第3期, 32 (1990).
[2]邱顯堂, “變色性材料,” 化工, 第38卷, 第2期, 74 (1991).
[3]C. M. Lampert, “Smart Switchable Glazing for Solar Energy and Daylight Control,” Sol. Energy Mater. Sol. Cells, 52, 207 (1998).
[4]R. D. Rauh, “Electrochromic Windows: an Overview,” Electrochim. Acta, 44, 3165 (1999).
[5]C. G. Granqvist, E. Avendano, and A. Azens, “Electrochromic Coatings and Devices: Survey of Some Recent Advances,” Thin Solid Films, 442, 201 (2003).
[6]J. R. Platt, “Electrochromism, a Possible Change of Color Producible in Dyes by an Electric Field,” J. Chem. Phys., 34, 862 (1961).
[7]S. K. Deb, Appl. Opt. Suppl., 3, 193 (1969).
[8]S. K. Deb, U. S. Pat., 3,521,941 (1970).
[9]F. T. Bauer and J. H. Bechtel, “Automatic Rearview Mirror for Automotive Vehicles,” U. S. Pat., 4,443,057 (1984).
[10]H. J. Byker, “Single-compartment, Self-erasing, Solution-phase Electrochromic Devices, Solutions for Use Therein, and Uses Thereof,” U.S. Pat., 4,902,108 (1990).
[11]J. H. Brechtel and H. J. Byker, “Automatic Rearview Mirror System for Automotive Vehicles,” U. S. Pat., 4,917,477 (1990).
[12]E. S. Lee and D. L. DiBartolomeo, “Application Issues for Large-area Electrochromic Windows in Commercial Buildings,” Sol. Energy Mater. Sol. Cells, 71, 465 (2002).
[13]T. Kubo, J. Tanimoto, M. Minami, T. Toya, Y. Nishikitani, and H. Watanabe, “Performance and Durability of Electrochromic Windows with Carbon-based Counter Electrode and Their Application in the Architectural and Automotive Fields,” Solid State Ionics, 165, 97 (2003).
[14]T. Kubo, T. Shinada, Y. Kobayashi, H. Imafuku, T. Toya, S. Akita, Y. Nishikitani, and H. Watanabe, “Current State of the Art for NOC-AGC Electrochromic Windows for Architectural and Automotive Applications,” Solid State Ionics, 165, 209 (2003).
[15]M. Grätzel, “Ultrafast Colour Displays,” Nature, 409, 575 (2001).
[16]U. Bach, D. Corr, D. Lupo, F. Pichot, and M. Ryan, “Nanomaterials-Based Electrochromics for Paper-quility Displays,” Adv. Mater., 14, 845 (2002).
[17]D. Corr, U. Bach, D. Fay, M. Kinsella, C. McAtamney, F. O’Reilly, S.N. Rao, and N. Stobie, “Coloured Electrochromic “Paper-quality” Displays Based on Modified Mesoporous Electrodes,” Solid State Ionics, 165, 315 (2003).
[18]B. W. Faughnan, R. S. Crandall, and P. M. Heyman, “Electrochromism in WO3 Amorphous Films,” RCA Rev., 36, 177 (1975).
[19]W. C. Dautremont-Smith, Displays, 3, 67 (1982).
[20]S. F. Cogan, N. M. Nguyen, S. J. Perrotti, and R. D. Rauh, “Optical Properties of Electrochromic Vanadium Pentoxide,” J. Appl. Phys., 66, 1333 (1989).
[21]M. Kikao and S. Yamada, Proceedinds of the International Seminar on Solid State Ionic Devices, p. 359, (1988).
[22]C. K. Dyer and J. S. Leach, “Reversible Optical Changes within Anodic Oxide Films on Titanium and Niobium,” J. Electrochem. Soc., 125, 23 (1978).
[23]黃玉仙, “含普魯士藍與六氰鐵化銦電致色變元件之性能與最適化研究,” 國立台灣大學化學工程研究所碩士論文, 台北, 台灣 (2002).
[24]L. M. Siperko and T. Kuwana, “Electrochemical and Spectroscopic Studies of Metal Hexacyanometalate Films,” J. Electrochem. Soc., 130, 396 (1983).
[25]J. Joseph, H. Gomathi, and G. P. Rao, “Electrodes Modified with Cobalt Hexacyanoferrate,” J. Electroanal. Chem., 304, 263 (1991).
[26]林巧芬, “以紫精搭配普魯士藍電致色變元件之研究, ” 國立台灣大學化學工程研究所碩士論文, 台北, 台灣 (2003).
[27]柯惠琪, “含聚苯胺之電致色變元件性質研究, ” 國立台灣大學化學工程研究所碩士論文, 台北, 台灣 (2000).
[28]M. Mastragostino, C. Arbizzani, P. Ferloni, and A. Marinangeli, “Polymer-based Electrochromic Devices,” Solid State Ionics, 53, 471 (1992).
[29]C. L. Gaupp, D. M. Welsh, R. D. Rauh, and J. R. Reynolds, “Composite Coloration Efficiency Measurements of Electrochromic Polymers Based on 3, 4-Alkylenedioxythiophenes,” Chem. Mater., 14, 3964 (2002).
[30]Y. Nishikitani, M. Kobayashi, S. Uchida, and T. Kubo, “Electrochemical Properties of Non-Conjugated Electrochromic Polymers Derived from Aromatic Amine Derivatives,” Electrochim. Acta, 46, 2035 (2001).
[31]H. Shirakawa, E. J. Lewis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, “Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH)x,” J. Chem. Soc., Chem. Commun., 578 (1977).
[32]T. A. Skotheim, R. L. Elsenbaumer, and J. R. Reynolds, Handbook of Conducing Polymers, 2nd ed., Marcel Dekker, New York (1998).
[33]H. S. Nalwa, Handbook of Organic Conductive Molecules and Polymers, vol. 1-4, Wiley, Chichester, England (1997).
[34]F. Jonas, G. Heywang, W. Schmidtberg, and J. Heinze, Eur. Pat., 339,340 (1988).
[35]F. Jonas and W. Krafft, Eur. Pat., 440,957 (1990).
[36]F. Jonas, G. Heywang, W. Schmidtberg, J. Heinze, and M. Dietrich, “Method of imparting antistatic properties to a substrate by coating the substrate with a novel polythiophene,” U. S. Pat., 5,035,926 (1991).
[37]L. B. Groenedaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, “Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future,” Adv. Mater., 12, 481 (2000).
[38]L. B. Groenedaal, G. Zotti, P. H. Aubert, S. M. Waybright, and J. R. Reynolds, “Electrochemistry of Poly(3,4-alkylenedioxythiophene) Derivatives,” Adv. Mater., 15, 855 (2003).
[39]J. C. Gustafsson, B. Liedberg, and O. Inganäs, “In Situ Spectroscopic Investigations of Electrochromism and Ion Transport in a Poly(3,4-ethylenedioxythiophene) Electrode in a Solid State Electrochemical Cell,” Solid State Ionics, 69, 145 (1994).
[40]S. A. Sapp, G. A. Sotzing, J. L. Reddinger, and J. R. Reynolds, “Rapid Switching Solid State Electrochromic Devices Based on Complementary Conducting Polymer Films,” Adv. Mater., 8, 808 (1996).
[41]S. A. Sapp, G. A. Sotzing, and J. R. Reynolds, “High Contrast Ratio and Fast-Switching Dual Polymer Electrochromic Devices,” Chem. Mater., 10, 2101 (1998).
[42]M. A. De Paoli, G. Casalbore-Miceli, E. M. Girotto, and W. A. Gazotti, “All Polymeric Solid State Electrochromic Devices,” Electrochim. Acta, 44, 2983 (1999).
[43]M. A. De Paoli, A. F. Nogueira, D. A. Machado, and C. Longo, “All-polymeric Electrochromic and Photoelectrochemical Devices: New Advances,” Electrochim. Acta, 46, 4243 (2001).
[44]D. DeLongchamp and P. T. Hammond, “Layer-by-Layer Assembly of PEDOT/Polyaniline Electrochromic Devices,” Adv. Mater., 13, 1455 (2001).
[45]F. Jonas and L. Schrader, “Conductive Modifications of Polymers with Polypyrroles and Polythiophenes,” Synth. Met., 41-43, 831 (1991).
[46]M. Vazquez, P. Danielsson, J. Bobacka, A. Lewenstam, and A. Ivaska, “Solution-cast Films of Poly(3,4-ethylenedioxythiophene) as Ion-to-electron Transducers in All-solid-state Ion-selective Electrodes,” Sens. Actuators B, 97, 182 (2004).
[47]H. Yamato, M. Ohwa, and W. Wernet, “Stability of Polypyrrole and Poly(3,4-ethylenedioxythiophene) for Biosensor Application,” J. Electroanal. Chem., 397, 163 (1995).
[48]S. Fabiano, C. Tran-Minh, B. Piro, L. A. Dang, M. C. Pham, and O. Vittori, “Poly 3,4-ethylenedioxythiophene as an Entrapment Support for Amperometric Enzyme Sensor,” Mat. Sci. Eng. C-Bio. S., 21, 61 (2002).
[49]G. Heywang and F. Jonas, “Poly(alkylenedioxythiophene)s-New, Very Stable Conducting Polymers,” Adv. Mater., 4, 116 (1992).
[50]J. C. Carlberg and O. Inganäs, “Poly(3,4-ethylenedioxythiophene) as Electrode Material in Electrochemical Capacitors,” J Electrochem. Soc., 144, L61 (1997).
[51]M. Granström, M. Berggren, and O. Inganäs, “Micrometer- and Nanometer-sized Polymeric Light-Emitting Diodes,” Science, 267, 1479 (1995).
[52]A. Elschner, F. Bruder, H. W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, S. Thurm, and R. Wehrmann, “PEDT/PSS for Efficient Hole-injection in Hybrid Organic Light-emitting Diodes,” Syn. Met., 111, 139 (2000).
[53]Y. Saito, T. Kitamura, Y. Wada, and S. Yanagida, “Poly(3,4-ethylenedioxythiophene) as a Hole Conductor in Solid State Dye Sensitized Solr Cells,” Syn. Met., 131, 185 (2002).
[54]Y. Saito, N. Fukuri, R. Senadeera, T. Kitamura, Y. Wada, and S. Yanagida, “Solid State Dye Sensitized Solar Cells Using in situ Polymerized PEDOTs as Hole Conductor,” Electrom. Commun., 6, 71 (2004).
[55]G. Liang and T. Cui, “Fabrication and Characterization of Poly(3,4-ethylenedioxythiophene) Field-effect Transistors,” Solid-State Electron, 48, 87 (2004).
[56]M. Dietrich, J. Heinze, G. Heywang, and F. Jonas, “Electrochemical and Spectroscopic Characterization of Polyalkylenedioxythiophenes,” J. Electroanal. Chem., 369, 87 (1994).
[57]Q. Pei, G. Zuccarello, M. Ahlskog, and O. Inganäs, “Electrochromic and Highly Stable Poly(3,4-ethylenedioxythiophene) Switches between Opaque Blue-black and Transparent Sky Blue,” Polymer, 35, 1347 (1994).
[58]X. Chen and O. Inganäs, “Three-Step Redox in Polythiophenes: Evidence from Electrochemistry at an Ultramicroelectrode,” J. Phys. Chem., 100, 15202 (1996).
[59]G. Zotti, S. Zecchin, and G. Schiavon, “Conductive and Magnetic Properties of 3,4-Dimethoxy- and 3,4-Ethylenedioxy-Capped Polypyrrole and Polythiophene,” Chem. Mater., 12, 2996 (2000).
[60]H. W. Heuer, R. Wehrmann, and S. Kirchmeyer, “Electrochromic Window based on Conducting Poly(3,4-ethylenedioxythiophene)-Poly(styrene sulfonate),” Adv. Func. Mater., 12, 89 (2002).
[61]H. W. Heuer and R. Wehrmann, “Electrochromic Assembly based on Poly(3,4-ethylenedioxythiophene) Derivatives and a UV-Stabilized Gel Electrolyte,” U. S. Pat., 6,157,479 (2000).
[62]H. W. Heuer, R. Wehrmann, F. Jonas, and Osenberg, “Electrochromic Device based on Poly(3,4-dioxy-thiopene) Derivatives,” U. S. Pat., 6,175,441 (2001).
[63]H. W. Heuer and R. Wehrmann, “Electrochromic Assembly based on Poly(3,4-ethylene-dioxythiophene) Derivatives with a Counterelectrode Containing Metal Oxides from Transition Group VI or VIII,” U. S. Pat., 6,323,988 (2001).
[64]H. W. Heuer and R. Wehrmann, “Electrochromic Assembly based on Poly(3,4-ethylenedioxythiophene) Derivatives in Combination with a Lithium Niobate Counterelectrode,” U. S. Pat., 6,327,070 (2001).
[65]H. W. Heuer and R. Wehrmann, “UV-Stabilized Electrochromic Assembly based on Poly(3,4-ethylenedioxythiophene) Derivatives,” U. S. Pat., 6,403,741 (2002).
[66]H. W. Heuer and R. Wehrmann, “Electro Chromic Assembly based on Poly(3,4-ethylenedioxythiophene) Derivatives in the Electrochromic Layer and the Ion-Storage Layer,” U. S. Pat., 6,452,711 (2002).
[67]H. W. Heuer and R. Wehrmann, “Arrangement based on Poly(3,4-dioxythiophene) Derivatives which are Electrochromically Switched with Protons,” U. S. Pat., 6,507,428 (2003).
[68]G. A. Sotzing and J. R. Reynolds, “Poly[trans-bis(3,4-ethylenedioxythiophene)vinylene]: A Low Band-gap Polymer with Rapid Redox Switching Capabilities between Conducting Transmissive and Insulating Absorptive States,” J. Chem. Soc., Chem. Commun., 703 (1995).
[69]G. A. Sotzing and J. R. Reynolds, “Electrochromic Conducting Polymers via Electrochemical Polymerization of Bis(2-(3,4-ethylenedioxy)thienyl) Monomers,” Chem. Mater., 8, 882 (1996).
[70]J. L. Reddinger, G. A. Sotzing, and J. R. Reynolds, “Multicolored Electrochromic Polymers Derived from Easily Oxidized bis[2-(3,4-ethylenedioxy) thienyl]carbazoles,” Chem. Commun., 1777 (1996).
[71]G. A. Sotzing, J. L. Reddinger, A. R. Katritzky, J. Soloducho, R. Musgrave, and J. R. Reynolds, “Multiply Colored Electrochromic Carbazole-Based Polymers,” Chem. Mater., 9, 1578 (1997).
[72]B. Sankaran and J. R. Reynolds, “High-contrast Electrochromic Polymers from Alkyl-derivatized Poly(3,4-ethylenedioxythiophenes),” Macromolecules, 30, 2582 (1997).
[73]A. Kumar, D. M. Welsh, M. C. Morvant, F. Piroux, K. A. Abboud, and J. R. Reynolds, “Conducting Poly(3,4-alkylenedioxythiophene) Derivatives as Fast Electrochromics with High-contrast Ratios,” Chem. Mater., 10, 896 (1998).
[74]D. M. Welsh, A. Kumar, E. W. Meijer, and J. R. Reynolds, “Enhanced Contrast Ratios and Rapid Switching in Electrochromics based on Poly(3,4-propylenedioxythiophene) Derivatives,” Adv. Mater., 11, 1379 (1999).
[75]D. M. Welsh, L. J. Kloeppner. L. Madrigal, M. R. Pinto, B. C. Thompson, K. S. Schanze, K. A. Abboud, D. Powell, and J. R. Reynolds, “Regiosymmetric Dibutyl-Substituted Poly(3,4-propylenedioxythiophene)s as Highly Electron-Rich Electroactive and Luminescent Polymers,” Macromolecules, 35, 6517 (2002).
[76]K. Krishnamoorthy, A. V. Ambade, M. Kanungo, A. Q. Contractor, and A. Kumar, “Rational Design of An Electrochromic Polymer with High Contrast in the Visible Region: Dibenzyl Substituted Poly(3,4-proplyenedioxythiophene),” J. Mater. Chem., 11, 2909 (2001).
[77]B. D. Reeves, B. C. Thompson, K. A. Abboud, B. E. Smart, and J. R. Reynolds, “Dual Cathodically and Anodically Coloring Electrochromic Polymer based on a Spiro Bipropylenedioxythiophene [(Poly(spiroBiProDOT)],” Adv. Mater., 14, 717 (2002).
[78]G. Sonmez, H. Meng, and F. Wudl, “Very Stable Low Band Gap Polymer for Charge Storage Purposes and Near-infrared Applications,” Chem. Mater., 15, 4923 (2003).
[79]G. Sonmez, H. Meng, and F. Wudl, “Organic Polymeric Electrochromic Devices: Polychromism with Very High Coloration Efficiency,” Chem. Mater., 16, 574 (2004).
[80]G. Sonmez, H. Meng, Q. Zhang, and F. Wudl, “A Highly Stable, New Electrochromic Polymer: Poly(1,4-bis(2-(3’,4’-ethylenedioxy)thienyl)-2- methoxy-5-2”-ethylhexyloxybenzene),” Adv. Func. Mater., 13, 726 (2003).
[81]C. L. Gaupp and J. R. Reynolds, “Multichromic Copolymers based on 3, 6-Bis(2 -(3, 4-ethylenedioxythiophene))-N-alkylcarbazole Derivatives,” Macromolecules, 36, 6305 (2003).
[82]I. Schwendeman, C. L. Gaupp, J. M. Hancock, L. B. Groenendaal, and J. R. Reynolds, “Perfluoroalkanoate-substituted PEDOT for Electrochromic Device Applications,” Adv. Func. Mater., 13, 541 (2003).
[83]A. Cirpan, A. A. Argun, C. R. G. Grenier, B. D. Reeves, and J. R. Reynolds, “Electrochromic Devices based on Soluble and Processable Dioxythiophene Polymers,” J. Mater. Chem., 13, 2422 (2003).
[84]I. Schwendeman, R. Hickman, G. Sonmez, P. Schottland, K. Zong, D. M. Welsh, and J. R. Reynolds, “Enhanced Contrast Dual Polymer Electrochromic Devices,” Chem. Mater., 14, 3118 (2002).
[85]A. A. Argun, A. Cirpan, and J. R. Reynolds, “The First Truly All-polymer Electrochromic Devices,” Adv. Mater., 15, 1338 (2003).
[86]R. D. Rauh, F. Wang, J. R. Reynolds, and D. L. Meeker, “High Coloration Efficiency Electrochromics and Their Application to Multi-color Devices,” Electrochim. Acta, 46, 2023 (2001).
[87]P. M. S. Monk, R. J. Mortimer, and D. R. Rosseinsky, Electrochromism: Fundamentals and Applications, VCH, Weinheim, Germany (1995).
[88]V. D. Neff, “Electrochemical Oxidation and Reduction of Thin Films of Prussian Blue,” J. Electrochem. Soc., 125, 886 (1978).
[89]D. Ellis, M. Eckhoff, and V. D. Neff, “Electrochromism in the Mixed-Valence Hexacyanides. 1. Voltammetric and Spectral Studies of the Oxidation and Reduction of Thin Films of Prussian Blue,” J. Phys. Chem. 85, 1225 (1981).
[90]K. Itaya, T. Ataka, and S. Toshima, “Spectroelectrochemistry and Electrochemical Preparation Method of Prussian Blue Modified Electrodes,” J. Am. Chem. Soc., 104, 4767 (1982).
[91]R. J. Mortimer and D. R. Rosseinsky, “Iron Hexacyanoferrate Films: Spectroelectrochemical Distinction and Electrodeposition Sequence of ‘Soluble’ (K+-Containing) and ‘Insoluble’ (K+-Free) Prussian Blue, and Composition Changes in Polyelectrochromic Switching,” J. Chem. Soc. Dalton. Trans., 2059 (1984).
[92]A. L. Crumbliss, P. S. Lugg, and N. Morosoff, “Alkali Metal Cation Effects in a Prussian Blue Surface-Modified Electrode,” Inorg. Chem., 23, 4701 (1984).
[93]A. L. Crumbliss, P. S. Lugg, J. W. Childers, and R. A. Palmer, “Fourier Transform Infrared Photothermal Spectroscopic Characterization of Prussian Blue Surface Modified Electrodes. Countercation Effects,” J. Phys. Chem., 89, 482 (1985).
[94]N. Leventis and Y. C. Chung, “Thin-Layer Type Electrochemistry and Stability Studies of Prussian Blue Films in Non-Aqueous Electrolytes,” J. Electrochem. Soc., 138, L21 (1991).
[95]M. Jayalakshmi, H. Gomathi, and G. P. Rao, “Investigations on the Electrochemical Behaviour of Prussian Blue Films in Acetonitrile,” Sol. Energy Mater. Sol. Cells, 45, 201 (1997).
[96]D. E. Stilwell, K. H. Park, and M. H. Miles, “Electrochemical Studies of the Factors Influencing the Cycle Stability of Prussian Blue Films,” J. Appl. Electrochem., 22, 325 (1992).
[97]V. D. Neff, “Some Performance Characteristics of a Prussian Blue Battery,” J. Electrochem. Soc. 132, 1382 (1985).
[98]K. Honda, J. Ochiai, and H. Hayashi, “Polymerization of Transition Metal Complexes in Solid Polymer Electrolytes,” J. Chem. Soc., Chem. Commun., 168 (1986).
[99]L.-C. Chen, Y.-H. Huang, K.-S. Tseng, and K.-C. Ho, “Novel Electrochromic Batteries: I. A PB-WO3 Cell with a Nominal Voltage of 1.35V,” J. New Mater. Electrochem. Sys., 5, 203 (2002).
[100]K. Ogura, N. Endo, M. Nakayama, and H. Ootsuka, “Mediated Activation and Electroreduction of CO2 on Modified Electrodes with Conducting Polymer and Inorganic Conductor Films,” J. Electrochem. Soc., 142, 4026 (1995).
[101]S. Dong and Q. Chi, “Amperometric Biosensors Based on the Immobilization of Oxidases in a Prussian Blue Film by Electrochemical Codeposition,” Anal. Chim. Acta, 310, 429 (1995).
[102]T. Miyamoto, M. Ura, S. Kazama, T. Kase, and Y. Maeda, “Electrochromic Device,” U. S. Pat., 4,645,307 (1987).
[103]H. Inaba, K. Nakase, Y. Yanagida, and H. Nishii, “Electrochromic Display Device Having Auxiliary Electrode,” U. S. Pat., 4,773,741 (1988).
[104]K.-C. Ho, “Solid-State Electrochromic Device with Proton-Conducting Polymer Electrochromic and Prussian Blue Counterelectrode,” U. S. Pat., 5,215,821 (1993).
[105]K. Itaya, K. Shibayama, H. Akahoshi, and S. Toshima, “Prussian-blue-modified Electrodes: An Application for a Stable Electrochromic Display Device,” J. Appl. Phys., 53, 804 (1982).
[106]K. C. Ho and C. L. Lin, “A Novel Potassium Ion Sensing based on Prussian Blue Thin Films,” Sens. and Actuators B, 76, 512 (2001).
[107]J. F. Keggin and F. D. Miles, “Structures and Formula of the Prussian Blues and Related Compounds,” Nature (London), 137, 577 (1936).
[108]H. J. Buser, D. Schwarzenbach, W. Petter, and A. Ludi, “The Crystal Structure of Prussian Blue: Fe4[Fe(CN)6]3.xH2O,” Inorg. Chem., 16, 2704 (1977).
[109]L. F. F. T. T. G. Rodrigues and C. A. C. Sequeira, “Multifunctional Prussian Blue Films,” pp.515-528, in Chemistry, Energy and the Environment, C. A. C. Sequeira and J. B. Moffat (Eds.), the Royal Society of Chemistry, Cambridge, UK (1998).
[110]R. A. Robinson and R. H. Stokes, Electrolyte solutions, Butterworths, London (1958).
[111]J. Burgess, Metal ions in solution, Halstead Press, New York (1978).
[112]H. Tada, H. Nagayama, and H. Kawahara, “Electrochromic Device,” U. S. Pat., 4,726,664 (1988).
[113]H. Tada, Y. Bito, K. Fujino, and H. Kawahara, “Electrochromic Windows Using a Solid Polymer Electrolyte,” Solar Energy Mater., 16, 509 (1987).
[114]N. Oyama, T. Ohsaka, M. Menda, and H. Ohno, “Electrochemical and Electrochromic Properties of All Solid-State WO3-Prussian Blue Based Electrochromic Devices,” Denki Kagaku, 57, 1172 (1989).
[115]M. A. Habib, S. P. Maheswari, and M. K. Carpenter, “A Tungsten-Trioxide/Prussian Blue Complementary Electrochromic Cell with a Polymer Electrode,” J. Appl. Electrochem., 21, 203 (1991).
[116]M. A. Habib and S. P. Maheswari, “Effect of Temperature on a Complementary WO3-Prussian Blue Electrochromic System,” J. Electrochem. Soc., 139, 2155 (1992).
[117]K.-C. Ho, T. G. Rukavina, and C. B. Greenberg, “Tungsten Oxide-Prussian Blue Electrochromic System based on a Proton-Conducting Polymer Electrolyte,” J. Electrochem. Soc., 141, 2061 (1994).
[118]K.-C. Ho, “Cycling and At-rest Stabilities of a Complementary Electrochromic Device based on Tungsten Oxide and Prussian Blue Thin Films,” Electrochim. Acta, 44, 3227 (1999).
[119]L.-C. Chen and K.-C. Ho, “Design Equations for Complementary Electrochromic Devices: Application to the Tungsten Oxide–Prussian Blue System,” Electrochim. Acta, 46, 2151 (2001).
[120]H. Inaba, M. Iwaku, K. Nakase, H. Yasukawa, I. Seo, and N. Oyama, “Electrochromic Display Device of Tungsten Trioxide and Prussian Blue Films Using Polymer Gel Electrolyte of Methacrylate,” Electrochim. Acta, 40, 227 (1995).
[121]L. C. Chen, “On the Electrochemistry of Insertion Compounds and Their Applications in Electrochromism,” PhD Dissertation, National Taiwan University, Taipei, Taiwan (2001).
[122]F. Goldoni, B. M. W. Langeveld-Voss, and E. W. Meijer, “Convenient Synthesis of 3,4-Bis(alkylthio)thiophenes,” Synth. Commun., 28, 2237 (1998).
[123]D. L. Pavia, G. M. Lampman, and G. S. Kriz, Introduction to organic laboratory techniques : a contemporary approach, 3rd ed., Saunders College Pub. (1988).
[124]D. L. Pavia, G. M. Lampman, and G. S. Kriz, Introduction to organic laboratory techniques : a microscale approach, 1sted., Saunders College Pub. (1990).
[125]O. Bohnke, C. Rousselot, P. A. Gillet, and C. Truche, “Gel Electrolyte for Solid State Electrochromic Cell,” J. Electrochem. Soc., 139, 1862 (1992).
[126]S. A. Agnihotry, P. Pradeep, and S. S. Sekhon, “PMMA based Gel Electrolyte for EC Smart Windows,” Electrochim. Acta, 44, 3121 (1999).
[127]J. Roncali, “Conjugated Poly(thiophenes): Synthesis, Functionalization, and Applications,” Chem. Rev., 92, 711 (1992).
[128]G. Sauerbrey, “Verwendung von Schwingquarzen zur Wagung dunner Schichten and zur Mikrowagung,“ Z. Phys., 155, 206 (1959).
[129]P. G. Bruce, “Ion Association in Polymer Electrolytes: Transport and Materials Optimization,” Syn. Met., 45, 267 (1991).
[130]C. S. Kim and S. M. Oh, “Importance of Donor Number in Determining Solvating Ability of Polymers and Transport Properties in Gel-Type Polymer Electrolytes,” Electrochim. Acta, 45, 2101 (2000).
[131]Y. C. Wu, W. F. Koch, W. J. Hamer, and R. L. Kay, “Review of Electrolytic Conductance Standards,” J. Solution Chem., 16, 985 (1987).
[132]J. N. Butler, Reference Electrodes in Aprotic Organic Solvents, in Advanced in Electrochemical Science and Engineering, Volume 7, P. Delahay and C. W. Tobias eds., John Wiley & Sons, New York, NY (1970).
[133]A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications (2nd ed.), chap. 2, John Wiley & Sons, New York, NY (2001).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top