(3.236.118.225) 您好!臺灣時間:2021/05/16 09:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:潘建呈
研究生(外文):Chien-Cheng Pan
論文名稱:摻雜鉻之TiO2-XNX奈米可見光光觸媒
論文名稱(外文):Visible-Light Cr-doped TiO2-XNX Nano Photocatalysts
指導教授:吳紀聖
指導教授(外文):Chi-Sheng Wu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:112
中文關鍵詞:光觸媒可見光二氧化鈦溶膠凝膠方法
外文關鍵詞:photocatalyticvisible-ligntchromiumnitrogensol-gel-methodtitania
相關次數:
  • 被引用被引用:4
  • 點閱點閱:250
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了能夠更有效率的利用太陽光或是室內光源,本研究致力於研發具有可見光應答催化活性之二氧化鈦光觸媒。利用改良式溶膠凝膠法合成二氧化鈦,並且在製程中摻雜鉻、氮元素。相較未經改質之本質二氧化鈦以及商用觸媒P25,摻質後的二氧化鈦成功的具備吸收波長小於550nm之可見光的能力,並且能夠有效的催化亞甲基藍染料水溶液的還原脫色反應、以及異丙醇水溶液的氧化分解反應。在亞甲基藍及異丙醇的催化反應中,改質觸媒在可見光下之反應速率常數分別為9、0.8(μmole/liter-hr-g);比起純二氧化鈦1.1、0(μmole/liter-hr-g)皆高出許多。
在二氧化鈦中摻入鉻元素的改質製程,使價態與傳導帶間形成其他的獨立能階,進而降低電子電洞對分離所需激發光子之能量,始能達到改質可見光應答目的。而過量摻雜之鉻元素則會進入結構中的鑲嵌位置,扭曲本質結構的結果會造成二氧化鈦原本具有之良好光量子效益降低。
對二氧化鈦進行氨氣熱處理則能將氮原子取代結構中氧原子並生成微量氮化鈦成分,氮原子進入結構中取代位置能夠縮小能隙使得二氧化鈦具有可見光應答催化能力。氮元素摻入量超過最適值後亦會降低光量子效益,推論過量的氮元素摻雜位置、或是還原性氣氛下在結構中引入的氧缺陷會成為光觸媒中降低催化能力的電子電洞再結合中心。
To use solar or interior light efficiently, we sought a photocatalyst titania with high reactivity under visible light. Titania powders were prepared and doped into chromium or nitrogen atoms via modified sol-gel method. Doped titania have revealed an improvement over pure titania or Degussa P25 photocatalys under visible light(wavelength<550nm) in UV-Vis absorption and photocatalytic activity such as photodegradations of methylene blue and isopropyl alcohol. The rate constants of MB and IPA catalytic reaction with doped titania are 9 and 0.8(μmole/liter-hr-g), which are much higher than those with pure titania, 1.1 and 0(μmole/liter-hr-g), respectively.
Chromium doped into the lattice of titania is responsible for the visible-light response photocatalytic activity because of the isolated narrow bands formed between the valence band and conduction band and lowering the photon energy required to excite the electrons. However excess doped chromium located the interstitial cites in the lattice distorted the original structure and consequently deteriorated the intrinsic photocatalytic activity of titania.
A few amount of nitrogen atoms substituted the lattice oxygen atom and titanium nitride was formed under ammonia-annealing process. Nitrogen doped into substitutional sites of titania has proven to be indispensable for band-gap narrowing and photocatalytic activity. Increasing the nitrogen-doped concentration more than optimum level lowered the quantum yields, indicating the doping sites and oxygen vacancy introduced under the reductive atmosphere could also serve as electron-hole recombination sites.
誌謝
中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
表目錄 Ⅴ
圖目錄 Ⅵ
第一章 緒論 1
第二章 文獻回顧 2
2-1二氧化鈦簡介 2
2-2光催化反應原理 5
2-3 二氧化鈦可見應答之提升 8
第三章 實驗方法
3-1 TiO2觸媒之合成 20
3-1-1 藥品與儀器 21
3-1-2 Cr/TiO2之製備 21
3-1-3 TiO2-XNX之製備 22
3-1-4 Cr/TiO2-XNX之製備 22
3-2物性分析 26
3-2-1 儀器型號與規格 26
3-2-2 X光繞射法(XRD) 26
3-2-3 紫外-可見光吸收光譜(UV-Visible spectrophotometer)28
3-2-4 X射線光電子譜儀(X-ray photoelectron,XPS) 29
3-2-5氮氣吸附-脫附測定孔徑分佈與比表面積 32
3-2-6 X光吸收光譜術(X-ray absorption spectroscopy,XAS) 33
3-3 光催化活性檢測 36
3-3-1反應物及反應系統相關裝置 36
3-3-2 亞甲基藍(MB)脫色之光催化活性試驗 37
3-3-3 異丙醇(IPA)氧化之光催化活性試驗 41
第四章 實驗結果 43
4-1二氧化鈦之物性分析 43
4-1-1 XRD分析 43
4-1-2 UV-VIS吸收光譜分析 51
4-1-3比表面積與孔徑分析 57
4-1-4結構元素氧化價態分析 60
4-1-4-1 Cr/TiO2系列試樣之光電子能譜分析 61
4-1-4-2 TiO2-XNX系列試樣之光電子能譜分析 66
4-1-5 X光吸收光譜分析 70
4-1-5-1 Cr/TiO2系列試樣之XAS分析 71
4-1-5-2 TiO2-XNX系列試樣之XAS分析 75
4-2二氧化鈦光催化活性檢測 78
4-2-1 Methylene blue(MB)脫色反應 79
4-2-1-1以可見光反應器進行MB脫色反應 81
4-2-1-2以紫外光反應器進行MB脫色反應 87
4-2-2 Isopropyl alcohol(IPA)氧化分解反應 90
4-2-2-1以可見光反應器進行IPA氧化分解反應 93
4-2-2-2以紫外光反應器進行IPA氧化分解反應 95
第五章 結論與建 議 98
5-1 經Cr、N元素摻雜之二氧化鈦結構性質探討 98
5-2 光催化活性分析研究 100
5-3 結論與未來展望 104
參考文獻 106
個人小傳 113
1.E.M. Levin, C.R. Robbins and H.F. McMurdie, Phase Diagrams for Ceramists, vol.76, The American Ceramic Society, inc., 1975, p. 4150.
2.H. Yamashita, H. Nishiguchi, N. Kamada, and M. Anpo, Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts, Research on Chemical Intermediates, 20 (1994) 815-823.
3.M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Environmental applications of semiconductor photocatalysts, Chemical Reviews, 95(1995) 69-96.
4.M. Anpo, Y. Ichihashi, M. Takeuchi and H. Yamashita, Design of unique titamium oxide photocatalysts by an advanced metal ion-implantation method and photocatalytic reactions under visible light irradiation, Research on Chemical Intermediates, 24 (1998) 143-149.
5.M. Anpo, S. Kishiguchi, M. Takeuchi, H. Yamashita, K. Ikeue, B. Morin, A. Davidson and M.Che, The design and development of second-generation titanium oxide photocatalysts able to operate under visible light irradiation b applying a metal ion-implantation method, Research on Chemical Intermediates, 27 (2001) 459-467.
6.M. Takeuchi, H. Yamashita, M. Matsuoka, M. Anpo, T. Hirao, N. Itoh, and N. Iwamoto, Photocatalytic decomposition of NO unfer visible light irradiation on the Cr-ion-implantation TiO2 thin film photocatalyst, Catalysis Letters, 67 (2000) 135-137.
7.T. Umebayashi, T. Yamaki, H. Itoh, and K. Asai, Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations, Journal of Physics and Chemistry of Solids, 63(2002) 1909-1920.
8.E. Borgarello, J. Kiwi, M. Gratzel, E. Pelizzetti and M. Visca, Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles, Journal of the American Chemical Society, 104 (1982) 2996-3002
9.L, Palmisano, V. Augugliaro, A. Sclafani, and M. Schiavello, Activity of chromium-ion-doped titania for the dinitrogen photoreduction to ammonia and for the phenol photodegradation, Journal of Physical Chemistry, 92 (1998) 6710-6713.
10.W.Choi, A.Termin and M.Hoffmann, The role of metal ion dopants in quantum-size TiO2:correlation between photoactivity and charge carrier recombination dynamics, Journal of Physical Chemistry, 98 (1994) 13669-13679.
11.S. Klosek and D. Raftery, Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol, the Journal of Physical Chemistry B, 105 (2001) 2815-2819.
12.G. Zhao, H. Kozuka, H.Lin and T. Yoko, Sol-gel preparation of TiX-1VXO2 solid solution film electrodes with conspicuous photoresponse in the visible region, Thin Solid Films, 339 (1999) 123-128.
13.R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293 (2001) 269-271.
14.S.U.M.Khan, M. Al-shahry and W.B.Ingler Jr., Efficient photochemical water splitting by a chemically modified n-TiO2, Science, 297 (2002) 2243-2245.
15.T. Umebayashi, T. Yamaki, H. Itoh and K. Asai, Band gap narrowing of titanium dioxide by sulfur doping, Applied Physics Letters, 81 (2002) 454-456.
16.K. Nukumizu, J. Nunoshige, T. Takata, J. N. Kondo, M, Hara, H. Kobayashi and K. Domen, TiNXOYFZ as a stable photocatalyst for water oxidation in visible light(<570nm), Chemistry Letters, 32 (2003) 96-197.
17.I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara and K. Takeuchi, Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal, Journal of Molecular Catalyst A: Chemical, 161(2000) 205-212.
18.T. Ihara, M. Miyoshi, M, Ando, S. Sugihara and Y. Iriyama, Preparation of a visible-light-active TiO2 photocatalyst by RF plasma treatment, Journal of Materials Science, 36 (2001) 4201-4207.
19.T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto and S. Sugihara, Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping, Applied Catalysis B: Environmental, 42 (2003) 403-409.
20.B.D.Cullity and S.R.Stock, Elements of X-ray diffraction, 3th edition, Prentice Hall, New Jersey, 2001,p. 92.
21.W.W. Wendlandt and H.G. Hecht, Reflectance Spectroscopy, Wiley, New York, 1966, p. 62.
22.J.R. Anderson, and K.C. Pratt, Introduction to Characterization and Testing of Catalysts, Academic Press, Florida, 1985, p. 416-420.
23.Stefan Hufner, Photoelectron Spectroscopy: Principles and Applications, 2th edition, Springer , New York, 1996, p. 71-72.
24.John F. Moulder, William F. Stickle, Peter E. Sobol, Kenneth and D.Bomben, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, USA, 1992.
25.C.N. Satterfield, Heterogeneous catalysis in practice, McGraw-Hill, New York, 1980, p. 102-105.
26.J.-F. Lee, X光吸收光譜術在觸媒特性分析上的應用, Chemistry(the Chinese Chem. Soc.), 53 (1995) 280-293.
27.同步輻射研究中心輻射及操作安全組, 安全訓練手冊, 同步輻射中心, 新竹, 2001, p. 21.
28.I. -A. Salem and M. –S. El-Maazawi, Kinetics and mechanism of color removal of methylene blue with hydrogen peroxide catalyzed by some supported alumina surfaces, Chemosphere, 41(2000) 1173-1180.
29.陳志賢, 奈米可見光V/TiO2觸媒之合成與物性分析, 國立台灣大學碩士學位論文, 台北, 2003, p. 86.
30.黃奕孝等, 清淨室製程空氣品質量測, 工研院工業安全衛生技術發展中心, 新竹, 1996, p. 23-124.
31.R.-D. Sun, A. Nakajima, I. Watanabe, T. Watanabe and K, Hashimoto, TiO2-coated optical fiber bundles used as a photocatalytic fiber for decomposition of gaseous organic compounds, Journal of Photochemistry and Photobiology A: Chemistry, 136 (2000) 111-116.
32.Y. Ohko, A. Fujishima and K, Hashimoto, Kinetic analysis of the photcatalytic degradation of gas-phase 2-propanol unfer mass transport-limited conditions with a TiO2 film photocatalyst, the Journal of Physical Chemistry B, 102 (1998) 1724-1729.
33.H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, K. Ikeue and M. Anpo, Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts, Journal of Photochemistry and Photobiology A: Chemistry, 148 (2002) 257-261.
34.H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, B. Neppolian and M. Anpo, Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2, Catalysis Today, 84 (2003) 191-196.
35.C. He, Y. Yu, X. Hu and A. Larbot, Influence of silver doping on the photocatalytic activity of titania films, Applied Surface Science ,200 (2002) 239-247.
36.W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics, 2th edition, Wiley, New York, 1976, p.457.
37.Q. Zhang, L. Gao and J. Guo, Effects of calcinations on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis, Applied Catalysis B: Environment, 26 (2000) 207-215.
38.L.E. Depero, P. Bonzi, M. Musci and C. Casale, Microstructural study of vanadium—titanium oxide powders obtained by laser-induced synthesis, Journal of Solid State Chemistry, 111(1994)247-252.
39.P, Courtine and E. Bordes, Mode of arrangement of components in mixed vanadia and its bearing for oxidation catalysis, Applied Catalysis A: General, 157 (1997) 45-65.
40.C.-H. Shin, G. Bugli and G.D. Mariadassou, Preparation and characterization of titanium oxynitride with high specific surface area, Journal of Solid State Chemistry, 95 (1991)145-155.
41.H. Irie, Y. Watanabe and K. Hashimoto, Nitrogen-concentraion dependence on photocatalytic activity of TiO2-XNX powders, the Journal of Physical Chemistry B, 107 (2003) 5483-5486.
42.A.K.Bhattacharya, D.R.Pyke, R.Reynolds, G.C.Walker and C.R.Werrett, The use of O1s charge referenceing for the X-ray photoelectron spectroscopy of Al/Si, Al/Ti, Al/Zr mixed oxide, Journal of Materials Science Letters, 16 (1997) 1-3.
43.J.C. Vickerman, Surface Analysis - The Principle Techniques, 1st edition, Wiley, New York1997, p. 64.
44.J. Pouilleau, D. Devillies and H. Groult, Surface study of a titanium-based ceramic electrode material by X-ray photoelectron spectroscopy, Journal of Materials Science, 32 (1997) 5645-5651.
45.H. Kato, and A. Kudo, Visible-light-resoponse and photocatalytic activities of TiO2 and SrTiO3 photocatalysts Codoped with antimony and chromium, the Journal of Physical Chemistry B, 106 (2002) 5029-5034.
46.S. Badrinarayanan, S. Sinha ad A.B. Mandale, XPS study of nitrogen ion implanted zirconium and titaniumn, Journal of Electron Spectroscopy and Related Phenomena, 49 (1989) 303-309.
47.D.A.Skoog, F.J.Holler and T.A.Nieman, Principles of instrumental analysis, 5th edition, Saunders College Pub., Philadelphia, 1998, p. 139-140.
48.H. Yoneyama, Y. Toyoguchi and H. Tamura, Reduction of methylene blue on illuminated titanium dioxide in methanolic and aqueous solution, Journal of Physical Chemistry, 76 (1972) 3460-3464.
49.W.D. Callister, Jr., Materials Science and Engineering: An Introduction, 5th edition, Wiley, New York, 1999, p. 400-401.
50.W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics, 2th edition, Wiley, New York, 1976, p.134.
51.J.E. Huheey, E.A. Keiter and R.L. Keiter, Inorganic Chemistry: Principles of Structure and Reactivity, 4th edition, Harper Collins, New York, p. 114-118.
52.H. Irie, Y. Watanabe, and K. Hashimoto, Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-XNX Powders, the Journal of Physical Chemistry B, 107(2003) 5483-5486.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊