(18.206.238.77) 您好!臺灣時間:2021/05/18 05:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王嘉慶
研究生(外文):Chia-Ching Wang
論文名稱:TiO2光觸媒對大腸桿菌殺菌作用之探討
論文名稱(外文):Bactericidal effect of TiO2 photocatalyst on E. coli
指導教授:謝學真
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:127
中文關鍵詞:二氧化鈦氧化鋅殺菌作用大腸桿菌光觸媒
外文關鍵詞:TiO2E. coliphotocatalysbactericidal effectZnO
相關次數:
  • 被引用被引用:11
  • 點閱點閱:455
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光觸媒在光源照射下利用特定波長光源的能量來產生電子與電洞,催化周圍之氧氣及水分子激發成極具活性的OH.及O2- 自由基,這些氧化力極強的自由基幾乎可分解所有對人體或環境有害的有機物質及部分無機物質,因此也具有殺菌的作用。

� 本論文以商品化的P25二氧化鈦光觸媒為主,探討不同操作條件之下對大腸桿菌的殺菌影響,例如改變紫外光照射強度、改變光觸媒使用量、添加雙氧水等,並且比較其他商品化的光觸媒粉體如ST01光觸媒及ZnO光觸媒的效果。此外,實驗中也以分解甲基藍作為光觸媒效率的指標。光觸媒分解甲基藍和殺菌皆為一次反應動力式,藉由比較速率常數大小,以瞭解光觸媒殺菌和分解甲基藍是否有相同的趨勢,並比較反應速率快慢。最後,以自行合成的光觸媒進行分解甲基藍測試及大腸桿菌殺菌實驗,並且與商品化粉體效果相比較,從粉體的晶型、粒徑大小等方面去探討造成差異的最主要原因,作為日後改進自行合成粉體性質的基礎。

� 由實驗發現,ZnO擁有最好的光觸媒效能,主要原因在於其有較好的光吸收率,而且顆粒較小,比表面積較其他光觸媒大,由於光觸媒都是在顆粒表面進行光催化作用,因此粒徑大小影響光催化效果甚大。最佳的實驗條件為使用5 mg/ml的光觸媒,在三支波長365 nm的紫外光燈管照射下,並添加1 mM的雙氧水,有最快的殺菌速度,可在2小時內殺死97%的大腸桿菌。

� 在自行合成光觸媒中,則以燒結溫度500oC的粉體有最好的效果,而且未經燒結的粉體和經500oC燒結的粉體在分解甲基藍方面比商品化的ST01有更好的效果。然而,在殺菌方面,自行合成粉體則不如其他商品化粉體。未來,將朝向光觸媒粉體改質努力,以期待能做出比商品化粉體效果更好的光觸媒,並且應用在實驗上所得到得最佳殺菌操作條件,使光觸媒產生最佳的殺菌效果。
Photocatalysts, once exposed to light source of specific wavelength, can produce electrons and holes, which can react with water and oxygen to generate reactive hydroxyl free radicals and superoxide ions, respectively. Almost all types of organic and inorganic substances can be degraded by using photocatalysis, thus generating bactericidal effect.

� This study investigated the bactericidal effect of commercial P25 TiO2 under different operating conditions, such as various UV light intensities, photocatalyst loadings, hydrogen peroxide concentrations, etc. The photocatalysis effect of commercial ST01 powder and ZnO powder were compared. Moreover, the degradation of methylene blue was taken as an index of the efficiency of photocatalysis. Bactericidal effect and degradation of methylene blue are first order reactions.The photokilling effect on E. coli of lab-made TiO2 powders was compared with commercial powders .

The results indicated that ZnO powders had the highest photocatalysis ability due to efficient photon absorption and small particle size. The best photocatalysis condition occurred at 5 mg/ml photocatalyst loading with illumination of three UV lights and addition of 1 mM hydrogen peroxide.

Among all lab-prepared powders, TiO2 powder which was sintered at 500oC had the highest photocatalysis activity. The powders which was sintered at 500oC and the powder without sintering were more efficient than commercial powder in the degradation of methylene blue. However, all lab-prepared powders were less efficient in killing E. coli. In the future, further modification on TiO2 will be carried out to produce powders which are more efficient than commercial ones.
誌謝 I
中文摘要 III
英文摘要 V
目錄 VII
圖目錄 XI
表目錄 XV

1 研究背景 1
1.1 緒論 1
1.2 TiO2光觸媒簡介 3
1.2.1 光觸媒作用原理 3
1.2.2 光觸媒的種類 4
1.2.3 二氧化鈦光觸媒 7
1.2.4 影響光觸媒活性的因素 10
1.2.5 光觸媒的應用 12
1.2.5.1 抗菌、殺病毒 12
1.2.5.2 自潔作用 14
1.2.5.3 脫臭與空氣淨化 14
1.2.5.4 污水處理及淨化 15
1.2.5.5 超親水性與玻璃防霧 15
1.2.6 可見光光觸媒 18
1.3 製備TiO2光觸媒粉體的方法 20
1.3.1 水解法 20
1.3.2 水熱法 23
1.4 大腸桿菌 25
1.4.1 大腸桿菌介紹 25
1.4.2 大腸桿菌致病性及滅菌方法 27
1.5 光觸媒殺菌機制探討 28
1.6 其他殺菌方法介紹 37
1.6.1 臭氧殺菌 37
1.6.2 雙氧水殺菌 37
1.6.3 酒精殺菌 37
1.6.4 紫外燈殺菌 38
1.6.5 高溫高壓殺菌 38
1.6.6 金屬離子殺菌 38
1.7 研究構想 41

2 實驗儀器藥品、原理及方法 45
2.1 實驗藥品及儀器設備 45
2.1.1 實驗藥品 45
2.1.2 實驗設備 46
2.1.3 實驗耗材 46
2.2 實驗裝置圖 47
2.3 實驗步驟 49
2.3.1 培養皿製作 49
2.3.2 培養大腸桿菌 49
2.3.3 製作PBS緩衝溶液 50
2.3.4 混合大腸桿菌與光觸媒 50
2.3.5 照光位置分佈圖 51
2.3.6 取樣 53
2.3.7 序列稀釋 53

2.3.8 塗菌及換算成菌數濃度 56
2.4 光觸媒分解甲基藍測試 58
2.4.1 光觸媒分解甲基藍的介紹及原理 58
2.4.2 光觸媒分解甲基藍的實驗步驟 59
2.5 雙氧水對光觸媒的作用 59
2.5.1 雙氧水對光觸媒作用的介紹及原理 59
2.5.2 光觸媒/雙氧水分解甲基藍的實驗步驟 60
2.5.3 雙氧水對大腸桿菌的影響 60

3 實驗結果與討論 61
3.1 商品化光觸媒效果比較及實驗變數的影響 61
3.1.1 商品化粉體分解甲基藍測試及實驗變數的影響 61
3.1.2 紫外光強度對光觸媒的作用 76
3.1.3 加入雙氧水對光觸媒殺菌的影響 86
3.1.4 改變光觸媒使用量對殺菌的影響 93
3.2 自行合成光觸媒之殺菌效果 96
3.2.1 合成方法、條件及特性分析 96
3.2.2 分解甲基藍測試 101
3.2.3 自行合成光觸媒殺菌效果測試 106
3.3 金屬離子之殺菌作用 111

4 結論與未來研究方向 121
4.1 結論 121
4.1.1 各種不同光觸媒的比較 121
4.1.2 最佳殺菌條件 122
4.2 未來研究方向 122

參考文獻 124
1.Fujishima A, Honda K, Decomposition of water at the surface of an irradiated semiconductor. Nature 238: 37-38 (1972).
2.Mills A, Hunte S, An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A, 108:1-35 (1997).
3.Turchi CS And Ollis DF, Photocatalytic Degradation Of Organic Contaminants; Mechanisms Involving Hydroxyl Radical Attack. J. Catalysis 122; 178-192 (1990).
4.Mills A, Davis RH And Worsley D, Water Purication By Semiconductor Photocatalysis. Chem Soc Revs 22:417-425 (1993).
5.Rajeshwar K, Photoelectrochemistry and the environment. Revs of Appl Electrochem. 44:1067-1082 (1995).
6.呂宗昕,圖解奈米科技與光觸媒,商周出版,P181(2003)。
7.Rabani J, Yamashita K, Ushida K, Stark J, Kira A, Fundamental reactions in illuminated titanium dioxide nanocrystallite layers studied by pulsed laser. J Phys Chem B 102 (10): 1689-1695 (1998).
8.Sharon M, Pal B, Reactivity of nano-size particles vis-a-vis large particles and their applications. Electrochem 12 (3-4): 219-233 (1996).
9.Ollis DF, Pellizzetti E And Seropone N, Destruction of water contaminant. Environ Sci Technol 25:1523-1528 (1991).
10.Okamoto K, Yamamoto Y, Tanaka H And Itaya A, Kinetics of heterogeneous photocatalytic decomposition of phenol over anatase TiO2 powder. Bull Chem Soc Jpn 58:2023-2028 (1985).
11.Noguchi T, Fujishima A, Sawanyama P And Hashimoto K, Photocatalytic degradation of gaseous formaldehyde using TiO2 film. Environ Sci Technol, 32:3831-3833 (1998).
12.Fox MA And Dulay MT, Heterogeneous photoctalysis. Chem Rev 93:341-357 (1993).
13.Subramanian V, Pangarkar VG And Beenackers Aacmm, Photocatalytic degradation of PHBA: relationship between substrate adsorption and photocatalytic degradation. Clean Products And Process 2:149-156(2000).
14.Haarstrick A, Kut OM And Heinzle E, TiO2-assisted degradation of environmentally relevant organic compounds in wastewater using a novel fludized bed reactor. Environ Sci Technol 30:817-824 (1996).
15.Wei TY, Wang YY And Wan CC, Photocatalytic oxidation of phenol in the presence of hydrogen peroxide and titanium dioxide powder. J Photochem Photobiol A Chem 53:115-126 (1990).
16.Sclafani A, Palmisano L And Davi E, Photocatalytic degradation of phenol in aqueous polycrystalline TiO2 dispersion, J Photochem Photobiol 56:113-123 (1991).
17.Zeltner WA, Hill CG Jr And Anderson MA, Supported titania for photodegradation. Chemtech 23:21-28 (1993).
18.T. Matsunaga, R. Tomoda, T. Nakajima, H. Wake, Photo-electrochemical sterilization of microbial cells by semiconductor powders, FEMS Microbiol. Lett. 29: 211 (1985).
19.佧田博史 著,張晶、楊健 譯,光觸媒圖解,商周出版,(2003)。
20.Liu W, Chen AP, Lin JP, et al., Preparation of controllable crystalline nano-TiO2 by homogeneous hydrolysis, Chem Lett 33 (4): 390-391 (2004).
21.Kim KD, Kim HT, Synthesis of TiO2 nanoparticles by hydrolysis of TEOT and decrease of particle size using a two-stage mixed method, Powder Technol 119 (2-3): 164-172 (2001).
22.Xia B, Li WB, Zhang B, et al., Low temperature vapor-phase preparation of TiO2 nanopowders, J Mater Sci 34 (14): 3505-3511 (1999).
23.Jeon S, Braun PV, Hydrothermal synthesis of Er-doped luminescent TiO2 nanoparticles, Chem Mater 15 (6): 1256-1263 (2003).
24.Hayashi H, Torii K, Hydrothermal synthesis of titania photocatalyst under subcritical and supercritical water conditions, J Mater Chem 12 (12): 3671-3676 (2002).
25.Chae SY, Park MK, Lee SK, et al., Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films, Chem Mater 15 (17): 3326-3331 (2003).
26.Yang J, Mei S, Ferreira JMF, Hydrothermal synthesis of TiO2 nanopowders from tetraalkylammonium hydroxide peptized sols, Mat Sci Eng C-Bio S 15 (1-2): 183-185 (2001).
27.Bergey, D.H., David Hendricks, Krieg, Moeir., Holt, John G., Bergey’s Manual Of Systematic Bacteriology, P.408-422 (1984~1989).
28.Anpo M, Utilization of TiO2 photocatalysts in green chemistry, Pure Appl Chem 72 (7): 1265-1270 (2000).
29.Kowalski WJ, Bahnfleth WP, Whittam TS, Bactericidal effects of high airborne ozone concentrations on Escherichia coli and Staphylococcus aureus, Ozone-Sci Eng 20 (3): 205-221 (1998).
30.Kowalski WJ, Bahnfleth WP, Striebig BA, Whittam TS, Demonstration of a hermetic airborne ozone disinfection system: Studies on E-coli, Aiha J 64 (2): 222-227 (2003).
31.Koutchma T, Ramaswamy HS, Combined effects of microwave heating and hydrogen peroxide on the destruction of Escherichia coli, Food Sci Technol-Leb 33 (1): 30-36 (2000).
32.Lee S, Nakamura M, Ohgaki S, Inactivation of phage Q beta by 254nm UV light and titanium dioxide photocatalyst, J Environ Sci Heal A 33 (8): 1643-1655 (1998).
33.Kim TN, Feng QL, Kim JO, Wu J, Wang H, Chen GC, Cui FZ, Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite, J Mater Sci-Mater M 9 (3): 129-134 (1998).
34.Saito T, Iwase T, Horis J, Morioka T, Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on mutans streptococci, J. Photochem. Photobiol. B: Biol 14:369 (1992).
35.Lee S, Nishida K, Otaki M, et al., Photocatalytic inactivation of phage Q beta by immobilized titanium dioxide mediated photocatalyst, Wat. Sci. Technol 35: 101 (1997).
36.Sjogren Jc, Sierka Ra, Inactivation of phage MS2 by iron-aided titanium-dioxide photocatalysis, Appl. Environ. Microbiol 60: 344 (1994).
37.Zheng Huang et. al, Bactericidal mode of titanium dioxide photocatalysis, J. Photochem. Photobiol. A: Chemistry 130: 163-171 (2000).
38.Sunada K, Kikuchi Y, Hashimoto K, et al., Bactericidal and detoxification effects of TiO2 thin film photocatalysts, Environ. Sci. Technol 32:726 (1998).
39.Sunada K, Kikuchi Y, Hashimoto K, Studies on photokilling of bacteria on TiO2 thin film J. Photochem. Photobiol. A: Chemistry 156: 227-233 (2002).
40.Sunada K, Watanabe T, Hashimoto K, Bactericidal activity of copper-deposited TiO2 thin film under weak UV light illumination, Environ Sci Technol 37 (20): 4785-4789 (2003).
41.Lu ZX, Zhou L, Zhang ZL, et al., Cell damage induced by photocatalysis of TiO2 thin films, Langmuir 19 (21): 8765-8768 (2003).
42.Yin S, Wu JH, Ito D, Ohba T, Sato T, Synthesis and photochemical properties of htawo6/(Pt, TiO2) nanocomposite under visible light irradiation, Compos Interface 11 (2): 195-204 (2004).
43.Ohno T, Preparation of visible light active S-doped TiO2 photocatalysts and their photocatalytic activities, Water Sci Technol 49 (4): 159-163 (2004).
44.Xie YB, Yuan CW, Characterization and photocatalysis of Eu3+-TiO2 sol in the hydrosol reaction system, Mater Res Bull 39 (4-5): 533-543 (2004).
45.Zhao W, Ma WH, Chen CC, et al., Efficient degradation of toxic organic pollutants with Ni2O3/TiO2 -xbx under visible irradiation, J Am Chem Soc 126 (15): 4782-4783 (2004).
46.Sung-Suh HM, Choi JR, Hah HJ, et al., Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation, J Photoch Photobio A 163 (1-2): 37-44 (2004).
47.Nagaveni K, Hegde MS, Ravishankar N, et al., Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity, Langmuir 20 (7): 2900-2907 (2004).
48.Sun YF, Huang XJ, Ye G, et al., Photocatalytic decomposition of 2,4-dichlorophenoxyacetic acid over amorphous titania modified Pt(IV) under visible light, Chinese J Chem Phys 17 (1): 65-69 FEB 2004.
49.Miao L, Tanemura S, Watanabe H, et al., The improvement of optical reactivity for TiO2 thin films by N-2-H-2 plasma surface-treatment, J Cryst Growth 260 (1-2): 118-124 (2004).
50.Morikawa T, Asahi R, Ohwaki T, et al., Band-gap narrowing of titanium dioxide by nitrogen doping, Jpn J Appl Phys 240 (6A): L561-L563 (2001).
51.Pichat, P., J. Disdier, C. Hoang-Van, D. Mas, G. Goutailler, C. Gaysse, “Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatalysis”, Catalysis Today 63, p.362-369 (2000)
52.Muruganandham M, Swaminathan M, Solar photocatalytic degradation of a reactive azo dye in TiO2-suspension, Sol Energ Mat Sol C 81 (4): 439-457 (2004).
53.Kim B, Kim D, Cho D, et al., Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria, Chemosphere 52 (1): 277-281 JUL 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top