(3.238.96.184) 您好!臺灣時間:2021/05/10 09:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳宏杰
研究生(外文):Hung-Chieh Chen
論文名稱:自組裝薄膜分離與電流式分子感測之研究
論文名稱(外文):A Study of Self-Assembling Membrane Separation and Amperometric Molecular Sensing
指導教授:何國川
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:162
中文關鍵詞:電化學感測嗎啡半胱胺酸SAM薄膜分離修飾電極
外文關鍵詞:morphinemodified electrodeSAM membrane separationcysteineelectrochemical detection
相關次數:
  • 被引用被引用:3
  • 點閱點閱:119
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有鑑於一般的生化感測方法往往具有昂貴、體積大、保存不易及較長的分析感測時間等不利因素,本研究使用修飾薄膜及修飾電極分別利用薄膜分離與電化學感測方法,試圖發展出體積小、價格低且感測時間短的生化感測器。本研究主要成果將分別說明如下。

在薄膜分離實驗中,以流體透過法、SEM及AFM分析PCTE (polycarbonate track-etched)多孔性薄膜之性質,其孔洞有效半徑為21±1 nm,孔洞密度為7.5x108 pores/cm2。利用無電鍍法鍍金,使PCTE薄膜具有導電性,平均鍍金速率約為8~9 nm/hr,當施加電位於鍍金之PCTE薄膜,可以調控帶電離子之透過流率。此外,將鍍金薄膜浸泡於半胱胺 (cysteine, Cys)溶液中,可製備自組裝單層 (self-assembling monolayer, SAM)修飾薄膜,藉由溶液中pH值的調整,可改變SAM修飾薄膜之表面電荷分佈,藉此影響標的物在薄膜透過的流率,達到選擇性分離。本研究分別以甲基藍、甲基橙及嗎啡來驗證此SAM薄膜,由結果顯示分別在高pH值、低pH值及中性pH值溶液中有最大的透過流率。

利用電化學方法感測嗎啡的實驗中,由循環伏安 (cyclic voltammety, 簡稱CV)法得知於高濃度的碘離子溶液中才能明顯測出碘可促進嗎啡之氧化而提高電流響應。定電位感測嗎啡時,在0.1 M碘離子溶液中,選擇感測電位為0.65 V (vs. Ag/AgCl Sat’d KCl),取樣時間為150秒下,得到感測之線性範圍為100μM~600μM,感測靈敏度為3.69μA/cm2-μM。嗎啡反應後之產物為白色粉末沈澱,將其沖洗、乾燥後經1H NMR及MS分析,證實此白色粉末為擬嗎啡(pseudomorphine),此與文獻中利用電化學氧化嗎啡的產物是相同的。

此外,本研究亦利用鐵氰化鎳 (nickel hexacyanoferrate, 簡稱NiHCF)修飾電極氧化感測Cys,以CV法將NiHCF析鍍於FTO導電玻璃基材上,並於水溶液中添加Ni2+離子,可以有效抑製氧化態NiHCF之溶解反應,提升FTO/NiHCF工作電極之穩定性。以定電位方式感測Cys時,溶液中添加15 mM Ni2+離子及0.1 M KH2PO4,選擇感測電位為0.8 V (vs. Ag/AgCl Sat’d KCl),取樣時間為50秒下,感測之線性範圍為150μM~1 mM,此感測線性範圍包含了Cys在人體之正常濃度範圍。

綜合上述之研究成果,SAM修飾薄膜提供一體積小及操作簡便之分離方法;利用修飾電極搭配電化學感測方式,亦具備了操作簡便、感測時間短、材料價格較低及保存容易等優點。相信本研究對於生化感測之多元發展將有所幫助。


Due to the common problems found in bio-analytical methods, in which high cost, large instrument, uneasy storage and time consuming are encountered. This research tries to develop an inexpensive, small and fast response analyzing method by a modified membrane and a modified electrode. Major results of this research are summarized in the following paragraphes.

In polycarbonate track-etched (PCTE) porous membrane, its basic separation properties were measured by the fluid permeation, SEM and AFM. The results showed that the effective pore radius was 21±1 nm and the pore density was 7.5x108 pores/cm2. By using an electroless plating method, the surface of the PCTE membrane was covered with a conductive golden thin film. The average electroless plating rate was around 8~9 nm/hr. Based on this conductive golden-coated PCTE membrane, the permeated flux of the ions could be adjusted by an applied potential. Besides, a cysteine (Cys) self-assembling monolayer (SAM) of golden-coated PCTE membrane was used. Adjusting the pH value of the solution could control the surface charge of SAM membrane and achieve the selective permeation for a target molecule in the solution. The permeated properties of SAM membrane were studied with three kinds of molecules, methyl blue (MB), methyl orange (MeO) and morphine (MO). The results showed that the highest permeated flux were obtained with high, low and neutral pH values solution for MB, MeO, and MO, respectively.

In electrochemical MO sensing, cyclic voltammetry (CV) results showed that only high concentration of iodide solution could promote the oxidation of MO and enhance the current response. The amperometric detection of MO was performed by a static potential at 0.65 V (vs. Ag/AgCl) in 0.1 M iodide solution with the sampling time of 150 s. The sampled current was linearly dependent on MO concentration ranged from 100 μM to 600 μM. The sensing sensitivity was 3.69 μA/cm2-μM. Oxidized MO in this study would precipitate as white powder. After rinsing the white precipitation, it was analyzed by 1H NMR and MS, and identified to be the pseudomorphine (PMO) which was the same as the product reported in the literature.

Another electrochemical sensing was performed with a nickel hexacyanoferrate (NiHCF) modified electrode for Cys sensing. The NiHCF thin film was coated by the CV method on a F-doped tin oxide (FTO) conductive glass substrate. It was found that the stability of the NiHCF modified electrode could be improved by adding Ni2+ ions in the solution. The amperometric detection of Cys was performed by a static potential at 0.8 V (vs. Ag/AgCl) in 15 mM Ni2+ ions and 0.1 M KH2PO4 solution with the sampling time of 50 s. The sampled current was linearly dependent on Cys concentration ranged from 150μM to 1 mM. The linear correlation is within the normal Cys concentration in a healthy human body.

From the above results, the SAM modified membrane and the modified electrode provide a bioanalytical detection method with the potential for easy operation, short detecting time, inexpensive material and easy storage. We believe that the results will promote the multi-development on the bioanalysis.


中文摘要 …………………………………………………………I
英文摘要 …………………………………………………………III
誌謝 …………………………………………………………V
目錄 …………………………………………………………VI
表目錄 …………………………………………………………X
圖目錄 …………………………………………………………XI
符號說明 …………………………………………………………XVIII
縮寫說明 …………………………………………………………XX
第一章 緒言…………………………………………………… 1
1-1 生化分析感測之簡介………………………1
1-2 電化學感測器簡介…………………………5
1-3 自組裝修飾金薄膜之特性與應用發展……9
1-4 嗎啡之特性及其感測之發展………………14
1-5 半胱胺酸之特性及其感測之發展…………23
1-6 研究動機與架構……………………………30
第二章 原理…………………………………………………… 33
2-1 無電鍍原理…………………………………33
2-2 薄膜孔徑量測原理…………………………35
2-3 Michaelis-Menten 方程式……………… 37
2-4 I-/I3-氧化還原對感測之反應機制………40
2-5 NiHCF修飾電極感測之反應機制………… 42
第三章 實驗設備與方法……………………………………… 44
3-1 實驗儀器設備………………………………44
3-2 實驗藥品……………………………………45
3-3 實驗方法……………………………………47
3-3-1 表面修飾薄膜分離…………… 47
3-3-1-1 無電鍍金於PCTE薄膜上……… 47
3-3-1-2 自組裝表面改質……………… 48
3-3-1-3 PCTE薄膜孔徑量測…………… 48
3-3-1-4 薄膜擴散分離感測檢量線製備 50
3-3-2 嗎啡感測……………………… 50
3-3-2-1 電極前處理…………………… 50
3-3-2-2 循環伏安法實驗……………… 51
3-3-2-3 定電位法實驗………………… 51
3-3-2-4 反應產物分析………………… 52
3-3-3 半胱胺酸感測………………… 52
3-3-3-1 FTO/NiHCF修飾電極之製備……52
3-3-3-2 循環伏安法實驗……………… 53
3-3-3-3 定電位法實驗………………… 53
第四章 以奈米孔洞修飾薄膜進行選擇性透過分離………… 55
4-1 薄膜孔徑分析………………………………55
4-1-1 流體透過分析………………… 55
4-1-2 掃描式電子顯微鏡分析……… 58
4-1-3 原子力顯微鏡分析…………… 60
4-2 薄膜無電鍍金分析…………………………62
4-2-1 無電鍍金之組成分析………… 62
4-2-2 無電鍍金薄膜表面形態分析… 64
4-2-3無電鍍時間及溫度對薄膜孔徑的影響66
4-3 電場對無電鍍薄膜分離之影響…………… 68
4-3-1 甲基藍濃度之量測………………68
4-3-2甲基藍濃度對透過之莫耳流通量的影響69
4-3-3無電鍍金薄膜外加電場對透過莫耳流通量的影響72
4-4 SAM對無電鍍薄膜於分子分離之影響………75
4-4-1SAM薄膜表面電荷及帶電分子表面電荷之計算..75
4-4-2 SAM薄膜於單分子分離之應用… 79
4-4-3 SAM薄膜於雙分子分離之應用… 88
第五章 以I-/I3-氧化還原對進行嗎啡之氧化感測…….…… 92
5-1 碘的氧化還原特性………………………… 92
5-2 嗎啡與碘之循環伏安測試結果…………… 95
5-3 嗎啡之感測機制假設……………………… 100
5-4 嗎啡之碘離子溶液中之定電位行為……… 103
5-5 感測取樣時間決定………………………… 106
5-6 嗎啡之感測檢量線………………………… 108
5-7 嗎啡之感測反應產物分析………………… 110
第六章 以鐵氰化鎳修飾電極進行半胱胺酸之感測……………117
6-1 NiHCF析鍍鍍液選擇…………………………117
6-2 NiHCF薄膜析鍍方法…………………………119
6-2-1 循環伏安法析鍍NiHCF修飾電極 119
6-2-2 沈浸法析鍍NiHCF修飾電極…… 121
6-3 NiHCF薄膜氧化還原性質探討………………122
6-3-1金屬陽離子對NiHCF薄膜氧化還原行為的影響…122
6-3-2 NiHCF薄膜在電位掃描下的穩定度探討……124
6-3-3 NiHCF薄膜在定電位操作下的穩定度探討…129
6-3-4以沈浸法析鍍NiHCF薄膜的穩定度探討131
6-3-5pH值對NiHCF薄膜的穩定度探討………133
6-3-6NiHCF修飾電極之表面形態與操作環境之關係… 135
6-4 NiHCF薄膜於半胱胺酸感測之應用………… 139
6-4-1 半胱胺酸對NiHCF薄膜循環伏安圖形的影響 139
6-4-2 NiHCF薄膜在半胱胺酸中的定電位行為…… 141
6-4-3 感測取樣時間之決定…………… 145
6-4-4以FTO/NiHCF感測Cys之感測檢量線… 146
第七章 結論與建議……………………………………………….151
7-1 綜合討論………………………………………151
7-2 結論……………………………………………152
7-3 建議……………………………………………156
第八章 參考文獻………………………………………………….158

[1]A. J. Cunningham, “Introduction to Bioanalytical Sensors”, John Wiley & Sons, New York, pp.10-11 (1998).
[2]K. S. Tseng, “A Study of the Detection Mechanism of Cysteine on Indium Hexacyanoferrate Modified Electrodes”, MS Thesis, National Taiwan University, Taipei, Taiwan (2002).
[3]L. C. Clark and C. Lyons, Ann. N.Y. Acad. Sci., 102, 29 (1962).
[4]S. J. Updike and G. P. Hicks, Nature, 214, 986 (1967).
[5]P. M. S. Monk, “Fundamentals of Electroanalytical Chemistry”, John Wiley & Sons, Chichester (2001).
[6]A. J. Bard, “Electrochemical Method: Fundamentals and Applications 2nd ed.”, John Wiley & Sons, New York (2001).
[7]R. L. Fleischer, P. B. Price, and R. M. Walker, “Nuclear Tracks in Solids”, University of California Press, Berkeley, CA (1975).
[8]A. Ulman, “An Introduction to Ultrathin Organic Films, From Langmuir-Boldgett to Self-Assembly”, Academic press, Part three (1991).
[9]Y. Kobayashi and C. R. Martin, Anal. Chem., 71, 3665 (1999).
[10]D. B. Burns and A. L. Zydney, Biotechnol. Bioeng., 64, 27 (1999).
[11]Z.G Hou, N. L. Abbott, and P. Stroeve, Langmuir, 16, 2401 (2000).
[12]S. B. Lee and C. R. Martin, Chem. Mater., 13, 3236 (2001).
[13]S. Yu, S. B. Lee, M. Kang, and C. R. Martin, Nano Lett., 1, 495 (2001).
[14]T. C. Kuo, L. A. Sloan, J. V. Sweedler, and P. W. Bohn, Langmuir, 17, 6298 (2001).
[15]K. Y. Chun and P. Stroeve, Langmuir, 17, 5271 (2001).
[16]K. Y. Chun and P. Stroeve, Langmuir, 18, 4653 (2002).
[17]李志桓,藥物濫用,行政院衛生署管制藥品管理局,台北市,中華民國,第二章 (2002).
[18]H. C. Hsu, “On the Application of Morcularly Imprinted Polymers for Sensing Morphine”, MS Thesis, National Taiwan University, Taipei, Taiwan (2003)
[19]陳岱全,藥理學,合記圖書出版社,台北市,中國民國,第十七章 (1974).
[20]盧政典、吳念珍,有機藥物化學,大學圖書出版社,台北市,中華民國,pp. 530-538 (1972).
[21]顧學裘,鴉片,商務印書館,台北市,中華民國,pp. 89 (1936).
[22]H. C. Hsu, L. C. Chen, and K. C. Ho, Anal. Chim. Acta, 504, 141 (2004).
[23]D. S. Popa, R. Oprean, E. Curea, and N. Preda, J. Pharm. Biomed. Anal, 18, 645 (1998).
[24]I. B. Collison, V. R. Spiehler, S. Guluzian, and P. R. Sedgwick, J. Forensic. Sci., 43(2), 390 (1998).
[25]T. Değim, C. Akay, K. Büyükafs¸ar, S. Cevheroğlu, J. Pharm. Biomed. Anal. 26, 15 (2001).
[26]P. J. Holt, L. D. G. Stephens, N. C. Bruce and C. R. Lowe, Biosens. Bioelectron. 10, 517 (1995).
[27]K. Amarnath, V. Amarnath , K. Amarnath, H. L. Valentine, and W. M. Valentine, Talanta, 60, 1229 (2003).
[28]S. Yagi, K. Matsumura, Y. Nakano, E. Ikenaga, S.A. Sardar, J.A. Syed, K. Soda, E. Hashimoto, K. Tanaka, and M. Taniguchi, Nucl. Instrum. Methods Phys.Rres., B, Beam Interacts. Mater. Atoms, 199, 244 (2003).
[29]B. H. Lauterburg, T. Nguyen, B. Hartmann, E. Junker, A. Kupfer, and T. Cerny, Canncer Chemother. Pharmacol., 35, 132 (1994).
[30]C. M. Pfeiffer, D. L. Huff, and E. W. Gunter, Clin. Chem., 45, 290 (1999).
[31]A. R. Ivanov, I. V. Nazimov, and L. Baratova, J. Chromatogr.A, 895, 157 (2000).
[32]S. Melnyk, M. Pogribna, I. Pogribny, R. J. Hine, and S. J. James, J. Nutr. Biochem.10, 490 (1999).
[33]E. Bald, E. Kaniowska, G. Chwatko, and R. Glowacki, Talanta, 50, 1233 (2000).
[34]E. Kaniowska, G. Chwatko, R. Glowacki, P. Kubalczyk, and E. Bald, J. Chromatogr. A, 798, 27 (1998).
[35]G. Chwatko and E. Bald, Talanta, 52, 509 (2000).
[36]E. Bald, R. Glowacki, and J. Drzewoski, J. Chromatogr. A, 913, 319 (2001).
[37]G. Chwatko and E. Bald, J. Chromatogr. A, 949, 141 (2002).
[38]A. E. Katrusiak, P. G. Paterson, H. Kamencic, A. Shoker, and A. W. Lyon, J. Chromatogr. B, 758, 207 (2001).
[39]M. J. Magera, J. M. Lacey, B. Casetta, and P. Rinaldo, Clin. Chem. 45, 1517 (1999).
[40]M. J. MacCoss, N. K. Fukagawa, and D. E. Mathews, Anal. Chem. 71, 4527 (1999).
[41]C. Chassaing, J. Gonin, C. S. Wilcox, and I. W. Wainer, J. Chromatogr. B, 735, 219 (1999).
[42]C. M. Pfeiffer, D. Twite, J. Shih, S. R. Holets-McCormack, and E. W. Gunter, Clin. Chem., 45, 151 (1999).
[43]D. L. Rabenstein and R. Saetre, Anal. Chem., 49, 1036 (1977).
[44]L. A. Allison and R. E. Shoup, Anal. Chem., 55, 8 (1983).
[45]T. J. Mafatle and T. Nyokong, J. Electroanal. Chem., 408, 213 (1996).
[46]G. Y. Shi, J. X. Lu, F. Xu, W. L. Sun, L. T. Jin, K. Yamamoto, S. G. Tao, and J. Y. Jin, Anal. Chim. Acta., 391, 307 (1999).
[47]A. A. Karyakin, Electroanal., 13, 813 (2001).
[48]莊萬發,無電解鍍金:化學鍍金技術,復漢出版社,台南市,中華民國 (2000).
[49]V. P. Menon and C. R. Martin, Anal. Chem., 67, 1920 (1995).
[50]D.Nematollahi, A. Hamzehloei, M. Hesari, and J. Rahimi, Anal. Sci., 19, 937 (2003).
[51]http://www.aicgroup.com.tw/fine-c12.htm
[52]S. M. Chen, J. Electroanal. Chem. 521, 29 (2002).
[53]M. H. Pournaghi-Azar and H. Razmi-Nerbin, J. Electroanal. Chem., 456, 83 (1998).
[54]C. X. Cai, H. X. Ju, and H. Y. Chen, Anal. Chim. Acta, 310, 145 (1995).
[55]D. M. Zhou, H. X. Ju, and H. Y. Chen, J. Electroanal. Chem. 408, 219 (1996).
[56]K. B. Jirage, J. C. Hulteen, and C. R. Martin, Anal. Chem., 71, 4913 (1999).
[57]K. A. Johnson and D. Kriz, Instrumentation Science & Technology, 25, 29 (1997).
[58]B. Brunetti, P. Ugo, L. M. Moretto, and C. R. Martin, J. Electroanal. Chem., 491, 166 (2000).
[59]Z. Z. Hou, N. L. Abbott, and P. Stroeve, Langmuir, 14, 3287 (1998).
[60]L. Antonov, G. Gergov, V. Petrov, M. Kubista, and J. Nygren, Talanta, 49, 99 (1999).
[61]S. F. Yu, S. B. Lee, and C. R. Martin, Anal. Chem., 75, 1239 (2003).
[62]K. Lee and J. Hong, J. Membrane Sci., 75, 107 (1992).
[63]D. A. Bender, “Amino Acid Metabolism”, New York: Wiley, p203 (1975).
[64]Z. Dinga, Fre de ric Reymonda, P. Baumgartner, D. J. Fermõ n, P. F. Brevet, P. A. Carrupt, and H. H. Girault , Electrochimica Acta, 44, 3 (1998) .
[65]黃天守編譯, ”化學化工藥學大辭典”, 大學圖書公司, 民國70年.
[66]W. J. Liaw, S. T. Ho, J. J. Wang, O. Y. P. Hu, and J. H. Li, J. Chromatogr. B, 714, 237 (1998).
[67]E. C. Toren and C. P. Driscoll, Anal. Chem., 38, 872 (1966).
[68]A. J. Bard, “Electrochemical Method: Fundamentals and Applications 2nd ed.”, John Wiley & Sons, New York, P.809 (2001).
[69]J. E. Vitt and D. C. Johnson, J. Electrochem. Soc., 139, 774 (1992).
[70]L. Ma and J. E. Vitt, J. Electrochem. Soc., 146, 4152 (1999).
[71]R. F. Lane and A. T. Hubbard, J. Phys. Chem., 79, 808 (1975).
[72]X. Y. Liao, K. Tanno, and F. Kurosawa, J. Electroanal. Chem., 239, 149 (1988).
[73]T. Bejerano and E. Gileadi, J. Electroanal. Chem., 82, 209 (1977).
[74]S. Swathirajan and S. Bruckenstein, J. Electroanal. Chem., 125, 63 (1981).
[75]S. Swathirajan and S. Bruckenstein, J. Electroanal. Chem., 143, 167 (1983).
[76]P. H. Jordan and J. P. Hart, Analyst, 116, 991 (1991).
[77]B. Proksa and L. Molnar, Anal. Chim. Acta, 97, 149 (1978).
[78]J. R. B. Rodriguez, V. C. Diaz, A. C. Garcia, and P. T. Blanco, Analyst, 115, 209 (1990).
[79]H. Kupferberg, A. Burkhalter, and E. L. Way, J. Pharmacol. Exp. Ther., 145, 247 (1964).
[80]S. M. Chen, J. Electroanal. Chem., 417, 145 (1996).
[81]T. R. I. Cataldi and G. E. De Benedetto, J. Electroanal. Chem., 458, 149 (1998).
[82]D. M. Zhou, H. X. Ju, and H. Y. Chen, J. Electroanal. Chem., 408, 219 (1996).
[83]J. Bacskai, K. Martinusz, E. Czirok, G. Inzelt, P. J. Kulesza, and M. A. Malik, J. Electroanal. Chem., 385, 241 (1995).
[84]M. A. Malik, K. Miecznikowski, and P. J. Kulesza, Electrochim. Acta, 45, 3777 (2000).
[85]R. Vittal, H. Gomathi, and G. P. Rao, Electrochim. Acta, 45, 2083 (2000).
[86]S. D. Rassat, J. H. Sukamto, R. J. Orth, M. A. Lilga, and R. T. Hallen, Sep. Purification Technol., 15, 207 (1999).
[87]D. Ellis, M. Eckhoff, and V. D. Neff, J. Phys. Chem., 85, 1225(1981).
[88]S. Sinha, B. D. Humphrey, and A. B. Bocarsly, Inorg. Chem., 23, 203 (1984).
[89]E. Laviron, J. Electroanal. Chem., 122, 37 (1981).
[90]A. B. Bocarsly and S. Sinha, J. Electroanal. Chem., 140, 167 (1982).
[91]P. Haring and R. Kotz, J. Electroanal. Chem., 385, 273 (1995).
[92]R. B. Bird, W. E. Stewart, and E. N. Lightfoot, “Transport Phenomena”, John Wiley & Sons, New York, pp. 8, 42-48 (1960).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔