(3.238.130.97) 您好!臺灣時間:2021/05/14 19:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張明欽
研究生(外文):Ming-Ching Chang
論文名稱:二維噴流床之壓力擾動訊號分析
論文名稱(外文):Analysis of Pressure Fluctuation Signals of Two-Dimensional Spouted Beds
指導教授:呂理平
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:93
中文關鍵詞:二維噴流床
外文關鍵詞:spouted bed
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗裝置有兩個:二維噴流床與三維噴流床。兩者均採用角度為60�a的角錐底,二維噴流床上方接一高1000mm的壓克力矩形管所製成的噴流床,並使用0.785mm及1.7mm之玻璃珠。而三維噴流床上方接一高500mm的壓克力圓管所製成的噴流床。壓力探針分別置於粒子床下方進氣口處,角錐一半高處和床柱高2.5 cm、5 cm、7.5cm的管壁、管中心、管壁至管中心一半處,以量測壓降與壓力擾動標準偏差變化。探討不同之進氣管,不同粒徑,不同靜床高下的噴流情形。並研究以上各操作變數對最小噴流化速度的影響;並利用Fourier transform將原始數據轉換作分析。
實驗結果顯示,壓力擾動標準偏差S.D.不僅可以準確判斷流態變化,也可用來判斷最小噴流化速度。實驗中最小噴流化速度隨靜床高、粒徑增加而上升。又原始數據經FFT (快速傅利葉轉換)轉換後,發現主頻隨著流態而有所改變。
There are two spouted beds used in this study: two dimensional spouted bed and three dimensional one. They both consist of conical base with 60�a contact angle. The two dimensional spouted bed consists of a transparent plexiglas rectangular column of 1000mm height above the cone. The particles used are glass bead with average diameter of 0.785mm, 1.7mm respectively. And the three dimensional spouted bed consists of a transparent plexiglas circular column of 500mm height above the cone. The pressure taps are put below the bed, half of the conical section and 2.5, 5, 7.5cm height of the bed column. Three depths are measured: wall, center and 1/4 length of bed column. The effects of different inlet tubes, particle sizes and bed heights on the minimum spouting velocity and transition of regime, were studied with standard deviations and pressure drop. And analyzed these data with Fourier transform.
The results showed that standard deviations of pressure drop not only exactly described the transition of regime but also determine minimum spouting velocity. Minimum spouting velocity increased with increasing bed height, and particle diameter. After transforming these data with Fourier transform analysis, the major frequency was changed with the variation of hydrodynamics.
目 錄

中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
圖表索引 Ⅴ
一、 緒論 1

二、 文獻回顧 5
2-1. 噴流床之流態變化 5
2-2. 噴流床之構造 8
2-3. 噴流床的運動機構 10
2-4. 最小噴流化速度 14
2-5. 最大可噴流靜床高 14
2-6. 噴流床中之壓降變化 19
2-7. 噴流床的應用 20
2-8. 噴流床的設計 21
2-9. 以FFT之方法分析壓力訊號 23
2-10. 三維噴流床的流力行為 23

三、 實驗裝置與步驟 29
3-1. 實驗裝置 29
3-2. 實驗步驟 37
3-3. 數據分析 39
3-3.1. Fourier transform 39


四、 結果與討論 41
4-1. 不同探測位置與探測深度下壓降與流速的關係 41
4-2. 各探測位置之壓力擾動標準偏差S.D.與流速的關係 55
4-3. 利用Fourier transform之分析 56
4-4. 最小噴流化速度之決定 64
4-5. 粒徑、靜床高、改變進氣管(Inlet tube)對系統的影響 73
4-5.1. 靜床高對系統的影響 73
4-5.2. 粒徑對系統的影響 76
4-5.3. 改變進氣管(Inlet tube)對系統之影響 76
4-6. 最大壓降ΔPm、穩定壓降ΔPs與粒徑、靜床高的關係 79
4-7. 三維與二維噴流床之關係 81
五、 結論 85
六、 符號說明 87
七、 參考文獻 89
附錄 93
七、參考文獻
Asenjo, J. A., R. Munoz and D. L. Pyle, “On The Transition from a Fixed to a Spouted Bed”, Chem. Eng. Sci., 32, 109-117 (1977).

Bao, X., J. Xu, W. Wei, G. Shi, S. Shen, H. T. Bi, J. R. Grace and C. J. Lim, “Statistical and Frequency Analysis of Pressure Fluctuations in Spouted Beds”, Powder Technol., 140, 141-154 (2004).
Becker, H. A., “An Investigation of Laws Governing The Spouting of Coarse Particles”, Chem. Eng. Sci., 13, 245-262 (1961).
Bridgwater, J., in “Fluidization”, J. F. Davidson, R. Clift and D. Harrison, Eds., Chap.6 Academic Press, London (1985).
Brunello, G., G. D. Nina, F. C. S. Nunes and C. A. O. Nascimento, “Minimum Air Requirement for Spouting Mixed Particles”, Can. J. Chem. Eng., 52, 170-173 (1974).
Epstein, N., C. J. Lim and K. B. Mathur, “Data and Models for Flow Distribution and Pressure Drop in Spouted Beds”, Can. J. Chem. Eng., 56, 436-447 (1978).

Foong, S. K., C. J. Lim and A. P. Watkinson, “Coal Gasification in Spouted Bed”, Can. J. Chem. Eng., 58, 84-91 (1980).
Freychet, N., C. L. Briens, A. Bergougnou and J. F. Large, “A New Approach to Jet Phenomena Gas Entrainment and Recirculation in a Bidimensional Spouted Fluidized Bed”, Can. J. Chem. Eng., 67, 191-199 (1989).
Geldart, D., “Types of Gas Fluidization”, Powder Technol., 7, 285-292 (1973).
Geldart, D., “Single Particles, Fixed and Quiescent Beds”, in “Gas Fluidization Technology ”, D. Geldart, Eds., Chap.2, John Wiley & Son, New York (1986).

Grbavcic, Z. B., D. V. Vukovic, F. K. Zdanski, and H. Littman, “Fluid Flow Pattern, Minimum Spouting Velocity and Pressure Drop in Spouted Beds”, Can. J. Chem. Eng., 54, 33-42 (1976).

Huang, C. C. and C. S. Chyang, “ Gas Discharge Modes at a Single Nozzle in Two- Dimensional Fluidized Beds ”, J. Chem. Eng. Japan, 24, 633-639 (1991).

Ishikura, T., H. Nagashima and M. Ide, “Hydrodynamics of a Spouted Bed with a Porous Draft Tube Containing a Small Amount of Finer Particles”, Powder Technol., 131, 56-65 (2003).

Lefroy, G. A. and J. F. Davidson, “ The Mechanics of Spouted Beds”, Trans. Inst. Chem. Eng., 47, T120 (1969).

Lim, C. J. and K. B. Mathur, “Residence Time Distribution of Gas in Spouted Bed”, Can. J. Chem. Eng., 52, 150-155 (1974).
Littman, H. and M. H. Morgan III, “A New Spouting Regime in Beds of Coarse Particles Deeper than the Maximum Spoutable Height”, Can. J. Chem. Eng., 64, 505-508 (1986).
Littman, H., M. H. Morgan III, D. V. Vukovic, F. K. Zdanski and Z. B. Grbavcic, “A Theory For Predicting The Maximum Spoutable Height in a Spouted Bed”, Can. J. Chem. Eng., 55, 497-501 (1977).
Littman, H., M. H. Morgan III, D. V. Vukovic, F. K. Zdanski and Z. B. Grbavcic, “Prediction of The Maximum Spoutable Height and Average Spout to Inlet Tube Diameter Ratio in Spouted Beds of Spherical Particles”, Can. J. Chem. Eng., 57, 684-687 (1979).
Madonna, L. A. and R. F. Lama, “The Derivation of an Equation for Predicting Minimum Spouting Velocity”, AIChE J., 4, 497-498 (1958).
Malek, M. A. and B. C. Y. Lu, “Pressure Drop and Spoutable Bed Height in Spouted Beds”, Ind. Eng. Chem. Process Des. Dev., 4, 123-128 (1965).
Mathur, K. B. and N. Epstein, “Spouted Bed”, Academic Press, New York, U.S.A. (1974).
Mathur, K. B. and P. E. Gishler, “A Technique for Contacting Gases with Coarse Solid Particles”, AIChE J., 1, 157-164 (1955).
Morgan III, M. H. and H. Littman, “Predicting The Maximum Spoutable Height in Spouted Beds of Irregularly Shaped Particles”, Ind. Eng. Chem. Fundam., 21, 23-26 (1982).
Mukhlenov, I. P. and A. E. Gorshtein, “ Investigation of a Spouting Bed”, Khim. Prom., 41, 443 (1965).
Olazar, M., M. J. San Jose, A. T. Aguado, J. M. Arandes and J. Bilbao, “Stable Operation Conditions for Gas-Solid Contact Regimes in Conical Spouted Bed”, Ind. Eng. Chem. Res., 31, 1784-1791 (1992).

Reddy, K. V. S., R. J. Fleming and J. W. Smith, “Maximum Spoutable Bed Depths of Mixed Particle Size Beds”, Can. J. Chem. Eng., 46, 329-334 (1968).

Rocha, S. C. S., O. P. Taranto and G. E. Ayub, “Aerodynamics and Heat Transfer During Coating of Tablets in Two-Dimensional Spouted Bed”, Can. J. Chem. Eng., 73, 308-312 (1995).

San Jose, M. J., M. Olazar, S. Alvarez, M. A. Izquierdo and J. Bilbao, “Solid Cross-Flow into the Spout and Particle Trajectories in Conical Spouted Beds”, Chem. Eng. Sci., 53, 3561-3570 (1998).

San Jose, M. J., M. Olazar, R. Aguado and J. Bilbao, “Influence of The Conical Section Geometry on The Hydrodynamic of Shallow Spouted Bed”, Chem. Eng. Sci., 62, 113-120 (1996).

San Jose, M. J., M. Olazar, R. Aguado and J. Bilbao, “Expansion of Spouted Bed in Conical Contactors”, Chem. Eng. Journal, 51, 45-52 (1993).

Smith, J. W. and K. V. S. Reddy, “Spouting of Mixed Particle Size Beds”, Can. J. Chem. Eng., 42, 206-209 (1964).

Uemaki, O., R. Yamada and M. Kugo, “Particles Segregation in Spouted Beds of Binary Mixtures of Particles”, Can. J. Chem. Eng., 61, 303-307 (1983).

Volpicelli, G., G. Raso and L. Massimilla, “Gas and Solid-Flow in Bidimensional Spouted Beds”, in Proceedings of the International Symposium on Fluidization, A. A. H. Drinkenburg, Eds., pp. 123-133, Netherlands Univ. Press, Amsterdam (1967).

Wang, M., J. Xu, W. Wei, X. Bao and H. Bi, “Pressure Fluctuations in Gas-Solids Spouted Beds”, in Fluidization X, M. Kwauk, J. Li and W. C. Yang, Eds., pp.149-156, United Engineering Foundation, New York (2001).

Wu, S. W. M., C. J. Lim and N. Epstein, “Hydrodynamics of Spouted Beds at Elevated Temperatures”, Chem. Eng. Comm., 62, 251-268 (1987).

潘榮賢, “以壓力擾動標準偏差決定噴氣噴流床之流態變化與壁-床間熱傳之探討”, 化工系碩士論文, 國立台灣大學, 台北, 台灣 (2001).

羅敏謙, “噴流床之壓力擾動訊號分析”, 化工系碩士論文, 國立台灣大學, 台北, 台灣 (2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top