(3.238.235.155) 您好!臺灣時間:2021/05/11 01:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林義航
研究生(外文):Yi-Hang Lin
論文名稱:鈀銀合金薄膜電鍍配方及電鍍條件之研究
論文名稱(外文):On the Formulations and Electrodeposition Conditions for the Pd –Ag Alloy Films
指導教授:何國川
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:135
中文關鍵詞:合金電鍍脈衝電鍍定電位電鍍
外文關鍵詞:chronoamperometric electroplatingalloy electrodepositionpalladiumpulse platingsilver
相關次數:
  • 被引用被引用:0
  • 點閱點閱:531
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究以各種電鍍法製備鈀77wt%、銀23wt%合金金屬薄膜。本研究分別以定電流、定電位和脈衝電鍍等方法,針對不同電鍍液的組成進行電鍍實驗,鍍膜的基材則使用SS-316之不�袗�基材,銅基材和鈀基材,並以SEM分析表面結構、以ICP分析鍍膜中鈀銀合金金屬比例,以XRD分析是否形成合金相。

首先用定電流法操作於二氯四氨鈀、硝酸銀和氨水鍍液中,以電流密度為-0.1~-5mA/cm2對不�袗�基材進行電鍍,鍍層表面結構在高電流密度時為樹枝狀,而鍍膜組成之銀金屬比例在46%~97%之間。改以定電位操作在-0.4~1.2V(vs. Ag/ AgCl / sat’d KCl)對銅基材進行電鍍,鍍膜組成中鈀金屬比例在11~73wt%之間,其鍍層仍為樹枝狀結構,其XRD分析結果鍍層中鈀銀合金分佈並不均勻。

於二氯四氨鈀、硝酸銀和硫代硫酸鈉鍍液中,以定電位法在不�袗�基材和銅基材上進行電鍍,銅基材上的鍍層以ICP分析,操作電位在-1.0V ~-1.2V時,鍍層中鈀金屬組成在78% ~80%之間,操作電位在-0.5V~-0.9V時,鈀金屬組成為21% ~38%。在SEM分析觀察下鍍膜已形成膜狀。

於二氯四氨鈀、硝酸銀、乙烯二胺、2-硫氫基丙酸電鍍液中,對不同添加劑濃度(乙烯二胺和2-硫氫基丙酸)、鈀金屬離子濃度和銀金屬濃度進行定電位電鍍。以ICP分析其結果,在提高鍍液中2-硫氫基丙酸對乙烯二胺的濃度比例,鍍層中鈀金屬比例會低於15%。改變鍍液,調整鈀金屬離子濃度和銀金屬離子濃度比例時,鍍膜中鈀銀金屬比例亦會隨之改變。當二氯四氨鈀濃度為0.1M、硝酸銀濃度為0.03M、乙烯二胺為0.1M與2-硫氫基丙酸0.15M時,在操作電位為-0.8V~-1.2V下,鍍層中鈀金屬組成為68%~87%。以XRD分析,可知基材上之鍍膜已形成合金相。

在以定電位法進行電鍍實驗後,吾人以脈衝電鍍法對二氯四氨鈀、硝酸銀、乙烯二胺、2-硫氫基丙酸電鍍液進行電鍍,改變脈衝電鍍參數- 脈衝電鍍週期、P 值(pause time/ pulse time)、平均電流密度,進行電鍍實驗。得知在此鍍液下,改變脈衝電鍍週期和P 值對鍍層中的鈀銀合金比例沒有太大的影響,鍍層中鈀金屬比例則隨平均電流密度增加而增加。

在本研究中,以定電位法在第三種電鍍液所鍍出的鍍層是最佳的,鍍層和基材的附著力沒有問題,且此法可以用控制電位來獲得所需的鈀77%-銀23%鍍層。
This study is about the preparation and chracteriaztion of Pd-Ag alloy films based on various electrodeposition methods. The objective of the work is to produce the alloy thin films composed of Pd 77wt% - Ag 23wt%. The electrodeposition experiments was carried out by the methods of the chronopotentiometry, chronoamperometry, and pulse plating, with the change on the compositions of the electrodeposited bath. The substrates to be used in this study are SS-316 stainless steel, copper and palladium. The surface structure of the films was examined by SEM. The compositions of the electrodeposited films was analyzed by ICP. Also, the formation of the alloy phase was verified by XRD.

Firstly, Pd(NH3)4Cl2, AgNO3 and ammonia bath were used during the chronopotentiometric electroplating. The Pd-Ag alloy was electrodeposited on the stainless steel (ss-316) with current densities varied between -0.1mA/cm2 and -5mA/cm2. The surface structure is dendritic at high current densities with the composition of Ag in the range 46wt% ~ 97wt%. When the applied potential lies between -0.4V~-1.2V(vs. Ag/AgCl/sat’d KCl) on the Cu substrate, the Pd composition varies between 11~73wt% within the electrodeposited film, and the surface structure is dendritic. The XRD analysis results show that the Pd-Ag alloys are non-uniform within the electrodeposited film.

In the electrolyte bath composed of Pd(NH3)4Cl2, AgNO3 and Na2S2O3, the Pd-Ag alloy was electrodeposited both on the SS-316 stainless steel and the Cu substrates by the chronoamperometry method. When the operating potential of the eletrodeposition is controlled between -1.0V ~-1.2V, the Pd composition is between the 78% and 80% according to ICP analysis. The composition of Pd ranging between 21% ~ 38%, corresponding to the operating potentials in the range of -0.4V~1.2V. The electrodeposited films are continuous, as judged by the SEM analysis.

In electrolytic bath composed of Pd(NH3)4Cl2, AgNO3, enthylenediamine, 2-mercaptopropanoic acid, different electrolytic concentrations (enthylenediamine and 2-mercaptopropanoic acid) were used, together with the addition of the palladium ion and the silver ion for the chronoamperometric electrodeposition. The palladium compositions are below 15% in the electrodeposited film when increasing the ratio of 2-mercaptopropanoic acid to ethylenediamine, as analyzed by the ICP analysis. The ratio of palladium to silver within the electrodeposited film changed, when the ratio of palladium ions to silver ions was varied in the bath. The palladium compositions within the films varied between 68% ~87% at -0.8V~-1.2V, when 0.1M Pd(NH3)4Cl2, 0.03M AgNO3, 0.1M ethylenediamine, and 0.15M 2-mercaptopropanoic acid. It has been verified, by the XRD, that the Pd-Ag alloy phase has been formed for the electrodeposited films.
After performing the chronopotentiometric experiments, a pulse plating method for electrodeposition with an electrolytic bath composed of Pd(NH3)4Cl2, AgNO3, ethylenediamine, 2-mercaptopropanoic acid bath was tried. The pulse plating parameters, including the period of the pulse plating, P value (pause time / pulse time), and the average current density were varied in the experiments. In this electrolytic bath, the Pd-Ag alloy ratio wasn’t affected by changing both the period of the pulse plating and the P value. The Pd composition within the film increased with the increase of the average current density during the pulsing plating.

In this study, the best electrodeposited film was obtained by using the chronopotentiometric electroplating with the use of the Pd(NH3)4Cl2, AgNO3, ethylenediamine, 2-mercaptopropanoic acid electrolytic bath. The adhesion of the electrodeposited film is good and it can achieve the desired Pd 77wt%-Ag 23wt% electrodeposited films.
中文摘要 I
英文摘要 III
致謝 VI
目錄 VII
表目錄 X
圖目錄 XII
符號說明 XIX


第一章 序論 1
1-1 前言 1
1-2 氫氣的應用和市場 1
1-2-1氫氣使用概況 3
1-2-2應用情況 4
1-3文獻回顧 5
1-3-1鈀金屬之簡介 5
1-3-2鈀及其合金薄膜製備方法 11
1-4研究動機與方向 20

第二章 原理 21
2-1電鍍原理 21
2-1-1法拉第定律 21
2-1-2電流效率 22
2-1-3成核機制與鍍層結構 23
2-2 合金電鍍原理 30
2-3 脈衝電鍍原理 37

第三章 實驗設備與方法 42
3-1 儀器設備 42
3-2 實驗藥品 43
3-3 實驗方法與流程 45
3-3-1 基材的前處理 46
3-3-2 電鍍液之配製 47
3-3-2-1 二氯四氨鈀-硝酸銀-氨水鍍液 47
3-3-2-2 二氯四氨鈀-硝酸銀-硫代硫酸鈉鍍液 47
3-3-2-3 二氯四氨鈀-硝酸銀-乙烯二胺-二硫氫基丙酸鍍液 46
3-3-3 電鍍鈀銀合金薄膜 47
3-3-3-1 定電位/定電流鍍膜 48
3-3-3-2 脈衝電鍍鍍膜 48
3-3-4鍍膜分析 49
3-3-4-1 SEM表面分析 49
3-3-4-2 XRD分析 49
3-3-4-3 ICP分析 49

第四章 鈀銀合金於氨水鍍液和硫代硫酸鈉鍍液之結果與討論 52
4-1鈀銀合金於二氯四氨鈀-硝酸銀-氨水鍍液的效果 52
4-1-1以定電流電鍍在不�袗�基材 52
4-1-2以脈衝電流電鍍在不�袗�基材 56
4-1-3以定電位電鍍在銅基材 61
4-2鈀銀合金於二氯四氨鈀-硝酸銀-硫代硫酸鈉鍍液中之結果 68
4-2-1以定電位電鍍在不�袗�基材 68
4-2-2以定電位電鍍在銅基材 74

第五章 鈀銀合金於二氯四氨鈀-硝酸銀-乙烯二胺-2-硫氫基丙酸鍍液之結果與討論 77
5-1電鍍液穩定性之分析 77
5-2不同鈀鹽鍍液之XRD分析 81
5-3鈀銀合金於二氯四氨鈀-硝酸銀-乙烯二胺-2-硫氫基丙酸鍍液中的結果 84
5-3-1 電解質組成對定電位電鍍於銅基材成分之影響 84
5-3-2 脈衝電鍍 99
5-3-3 定電位法電鍍在鈀基材 112

第六章 結論與建議 119
6-1結論 119
6-1-1 二氯四氨鈀、硝酸銀和氨水鍍液 119
6-1-2 二氯四氨鈀、硝酸銀和硫代硫酸鈉鍍液 120
6-1-3 二氯四氨鈀、硝酸銀、乙烯二胺和二硫氫基丙酸鍍液 120
6-2建議 122

第七章 參考文獻 123
附錄A - Electrochemical atomic force microscopy 129
[1] Y. M. Lin and M. H. Rei, Process development for generating high purity hydrogen by using supported palladium membrane reactor as steam reformer, Int. J. Hydrogen Energy, 25, 211 (2000).
[2]D. Das and T. N. Veziroğlu, Hydrogen by biological process: a survey of literature, Int. J. Hydrogen Energy, 26, 13 (2001).
[3]Y. M. Lin and M. H. Rei, Separation of hydrogen from the gas mixture out of catalytic reformer by using supported palladium membrane, Int. J. Hydrogen Energy, 25, 87 (2001).
[4]洪國治,氫能科技與鎳氫化物蓄電池研討會,新竹市,中華民國, 60 (1993).
[5]王矞騏,”以不鏽鋼為基材之氫氣分離複合膜之製備研究”,中華民國,pp. 3 - 4 國立清華大學碩士論文 (2001).
[6] 柴國粱,氫的應用和市場,40-43, 上海化工 第7期 (2000).
[7]M. Schlesinger and M. Paunovic, Modern Electroplating, Fourth Edition, John Wiley & Sons, Inc., New York, 483-553 (2000).
[8]R. H. Atkinson and A. R. Raper, Electrodeposition of palladium, J. Electrodepositors Tech. Soc., 8, 10, 1 (1933).
[9]林永森,楊正旭,陶惟翰,以電腦輔助電漿濺鍍技術製備鈀銀合金薄膜於氫氣純化之研究, NSC-90-2216-E-214-014 (2000).
[10] S. G. Micklus, Palladium plating, Met. Finish, V84, n5, 41 (1986).
[11]A. L. Athayde, R. W. Baker, and P. Nguyen, Metal composite membranes for hydrogen separation, J. Mem. Sci., 94, 299 (1994).
[12]莊萬發,無電解鍍金,復漢出版社,台南市,中華民國 (2000)。

[13]R. S. Souleimanova, A. S. Mukasyan, and A. Varma, Effects of osmpsis on microstructure of Pd-composite membranes synthesized by electroless plating technique, J. Mem. Sci., 166, 249 (2000).
[14] Y. S. Cheng, M. A. Peňa, J. L. Fierro, D. C. W. Hui, K. L. Yeung. Performance of alumina, zeolite, palladium, Pd-Ag alloy membranes for hydrogen separation from towngas mixture, J. Mem. Sci., 204, 329 (2002).
[15]K. Hou and R. Hughes, Preparation of thin and highly stable Pd/Ag composite membranes and simulative analysis of transfer resistance for hydrogen separation, J. Mem. Sci., 214, 43 (2003).
[16]J. N. Keuler, L. Lorenzen, R. D. Sanderson, V. Prozesky and W. J. Przbylowicz, Characterization of electroless plated palladium-silver alloy membranes, Thin Solid Films, 347, 91 (1999).
[17]S. Tosti, L. Bettinali, S. Castelli, F. Sarto, S. Scaglione, and V. Violante, Suttered, electroless, and rilled palladium-ceremic membranes, J. Mem. Sci., 196, 241 (2002).
[18]Y. S. Cheng and K. L. Yeung, Palladium-silver composite membrane by electroless plating technique, J. Mem. Sci., 158, 127 (1999).
[19]S. Uemiya, T. Matsuda, and E. Kikucji, Hydrogen permeable palladium-silver alloy membrane supported on porous ceramics, J. Mem. Sci., 56, 315 (1991).
[20] S. Uemiya, N. Sato, H. Ando, Y. Kude, T. Matsuda, and E. Kikuchi, Separation of hydrogen through palladium thin film supported on a porous glass tube, J. Mem. Sci., 56, 303 (1991).
[21]A. E. Pap, K. Kordas, R. Peura, and S. Leppavuori, Simultaneous chemical silver and palladium deposition on porous silicon; FESEM, TEM, EDX and XRD investigation, Appl. Surf. Sci., 201, 56 (2002).
[22]B. A. Mccool and Y. S. Lin, Nanostructured thin palladium-silver membranes: effect of grain size on gas permeation properties, J. Mat. Sci., 36, 3221 (2001).
[23]H. D. Tong, J. W. E. Berenschot, M. J. D. Boer, and J. G. E. Gardeniers, Microfabrication of palladium-silver alloy membranes for hydrogen separation, J. Microelectromechanical System, vol. 12, No. 5, Oct., 622 (2003).
[24]H. T. Hoang, H. D. Tong, F. C. Gielens, H. V. Jansen, and M. C. Elwenspoek, Fabrication and characterization of dual sputtered Pd-Cu alloy films for hydrogen separation membranes, Mater. Lett., 58, 525 (2004).
[25]F. C. Gielens, H. D. Tong, C. J. M. V. Rijn, and M. A. G. Vorstman, High flux palladium-silver alloy membranes fabricated by microsystem technology, Desalination, 147, 417 (2002).
[26]A. D. Vasilyev and A. N. Bekrenev, Influence of free surface, and interfaces on diffusion coefficients in Pd-Ag and Pd-Au polycrystalline thin films systems, Appl. Surf. Sci., 161, 14 (2000).
[27]S. Y. Lu and Y. Z. Lin, Pd-Ag alloy films prepared by metallorganic chemical vapor deposition process, Thin Solid Films, 376, 67 (2000).
[28]D. S. Jiang, Y. Fukumoto, and T. Hayashi, Pulse plating of silver-palladium alloys, Plating Surf. Finish, v76, n7, p 56-61 (1989).
[29]P. Hasler and T. Allmendinger, Electrodeposition of thin Pd-Ag film, Surface and Coatings Technology, 58, 179-183 (1993).

[30]B. Sturzenegger and J. C. Puippe, Electrodeposition of palladium-silver alloy from ammoniacal electrolytes, Plati. Met. Rev., 28, 117 (1984).
[31]N. Kubota, S. Yoshimura, and E. Sato, Silver-palladium alloy deposition, Met. Finish., v84, n1, 55 (1986).
[32]R. Penven, W. Levason, and D. Pletcher, Studies of palladium electrodeposition from baths based on Pd(NH3)2X2 part II: X= Br and X= NO2, J. Appl. Electrochem., 22, 421, (1992).
[33]O. Dossenbach, B. Sturzenegger, and J. C. Puippe, Pulse current electrodeposition of palladium silver alloys, American Electroplaters & Surface Finishers Soc., pp. H1-H18 (1986).
[34]N. T. Kudryavtsev, I. F. Kushevich, and N.A. Zhandarova, The electrodepositing of silver-palladium alloys in an amminia-trilon electrolyte, Protection of Metals, v7, n2, 176 (1971).
[35]S. Yoshimura, S. Chida, and E. Sato, Pulsed current electrodeposition of palladium, Met. Finish., v84, n10, 39-42 (1986).
[36]G. H. Bruchköbel, T. F. Hanau, and O. C. Erlensee, Bath for the electrodeposition of palladium-silver alloys, U. S. Pat. 5,549,810 (1996).
[37]J. A. Abys, V. Chinchankar, V. T. Eckert, I. V. Kadija, E. J. Kudrak, Jr., J. J. Maisano, and H. K. Straschil, Electrodeposition of palladium film, U. S. Pat. 4,911,799 (1990).
[38]F. I. Nobel, Electrodeposition of palladium-silver alloys, U. S. Pat. 4,478,692 (1984).
[39]F. I. Nobel, Electrodeposition of palladium-silver alloys, U. S. Pat. 4,465,563 (1984).
[40] I. Karakaya and W.T. Thompson, Binary Alloy Phase Diagrams in H. Baker Editor, ASM Handbook, Vol. 3, p. 2-34, ASM intertional, OH, USA (1992).
[41]田福助,吳溪煌,電化學-原理與應用,新科技書局,台北市,中華民國,第六章,pp. 275-371(2000)。
[42] M. Schlesinger, M. Paunovic, and R. Weil, in Modern Electroplating, M. Schlesinger and M. Paunovic, Editors, 4th ed., pp.1-61, Wiley, New York, (2000).
[43]A. T. Vagramyan, Technology of Electrodeposition, Chapter 4, pp. 118-150, Draper, Great Britain (1961).
[44]J. R. Galvele, in Modern Aspects of Electrochemistry, R. E. White, J. O’ M. Bockris, and B. E. Conway, Editors, No. 27, Chapter 3, Plenum Press, New York and London (1989).
[45]D. Landolt and A. Marlot, Microstructure and composition of pulse-plate metals and alloys, Surface and Coating Technology 169-170, 8 (2003).
[46]S. Vandeputte, A. Hubin, and J. Vereechken, Electrochim. Acta, Vol. 42 Nos. 23-24, 3429 (1997).
[47] Kotrllý and Šŭcha, Handbook of Chemical Equilibria in Analytical Chemistry, p.211, Halsted Press, New York, USA (1985).
[48]W. Blum and G. H. Hogaboom, Principles of Electroplating and Electroforming, 3rd Edition, chapter 22, p.388, McGraw-Hill, N.Y., (1949).
[49]B. E. Conway, J. O’M, Bockris, and R. E. White, in Modern Aspect of Electrochemistry, K. I. Popov and M. D. Maksimovic, Editors, No. 19, p.193, Plenum Press, New York, USA (1989).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 朱自強:〈王淑芬兒童文學創作論〉,《兒童文學學刊》6期,2001年11月。
2. 江寶釵:〈試論民間故事之定義與特色〉,《國文天地》9卷2期,1993年7月。
3. 王勝忠:〈童言童語-童話在教學上的應用〉,《中國語文》93卷6期,2003年12月。
4. 王林:〈論童話文學的奇幻美〉,《兒童文學學刊》6期,2001年11月。
5. 毛一波:〈臺灣故事傳說與大陸〉,《臺灣風物》10卷1期,1960年1月。
6. 徐素霞 (1998)。〈從「傳統繪畫精神」與「筆墨」談水墨畫的創新〉。《美育雙月刊》。台北市:國立台灣藝術教育館。
7. 袁金塔 2002)。《中國遠古藝術與現代水墨創作》。《藝術家》。期321。頁124。台北市:藝術家雜誌社。
8. 王無邪、梁巨廷 (1983)。《平面設計基礎》。台北市:藝術家出版社。
9. 李國祁:〈歷史教育的目的與使命〉,《近代中國》3期,1977年9月。
10. 呂實強:〈綜論劉銘傳的歷史功績〉,《歷史月刊》,1996年1月號。
11. 呂婉如:〈國府遷臺初期的民族主義教育思想-以民國四十一年初中本國史教材為例〉,《歷史教育》2期,1997年12月。
12. 李玲玲:〈台灣民間故事中的報應觀〉,《德育學報》11期,1995年10月。
13. 阮美慧:〈尋訪失落的族群-以郁永河《裨海紀遊》為例重建清代平埔族的歷史圖像〉,《雲漢學刊》7期,臺南市:成大中文所,2000年6月。
14. 束沛德:〈新景觀 大趨勢-世紀之交中國大陸兒童文學掃描〉,《兒童文學學刊》6期,2001年11月。
15. 林武憲:〈民間故事的文化透視〉,《精湛季刊》19期,1993年7月5日。
 
系統版面圖檔 系統版面圖檔