(3.238.130.97) 您好!臺灣時間:2021/05/09 03:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王炳傑
研究生(外文):Ping-Chieh Wang
論文名稱:四氧化三鐵/聚甲基丙烯酸甲酯磁性複合乳膠顆粒:型態,成核機制,動力模擬以及應用
論文名稱(外文):Synthesis of Fe3O4/PMMA Composite Latex Particles: Morphology, Nucleation Mechanism, Kinetic Modeling and Application
指導教授:邱文英邱文英引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:168
中文關鍵詞:成核機制型態乳膠顆粒四氧化三鐵聚甲基丙烯酸甲酯動力模擬
外文關鍵詞:Kinetic ModelingNucleation MechanismMorphologyFe3O4PMMALatex Particles
相關次數:
  • 被引用被引用:4
  • 點閱點閱:185
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究,合成大小均一之功能性奈米含磁性Fe3O4核殼型態複合乳膠顆粒。在實驗方面,首次設計反應的條件,觀察複合乳膠顆粒,推論成核之機制,並利用羧酸基和Fe3O4成功地應用於細胞分離;在理論方面,首次利用成核機制模擬,並分析反應動力。
以乳化聚合反應方式合成Fe3O4/聚甲基丙烯酸甲酯 (PMMA) / 聚甲基丙烯酸甲酯 (PMMA)-co- 聚甲基丙烯酸 (PMAA) 之複合乳膠顆粒.此方法共分三步驟,第一步先利用化學共沈法合成合成穩定的Fe3O4 微粒懸浮液體,第二步將甲基丙烯酸甲酯單體在Fe3O4 微粒懸浮液體中進行乳化聚合合成包覆均勻之磁性乳膠顆粒,第三步將第二步所合成的種子乳液在甲基丙烯酸甲酯和聚甲基丙烯酸單體中,再進行種子乳化聚合反應合成核殼型態磁性複合乳膠顆粒,最後再利用此核殼型態磁性複合乳膠顆粒鍵結抗體,並利用磁場分離,達到分離細胞的目的,內容共分六個章節。
第一章主要是簡介及文獻回顧。
第二章首先探討利用化學共沈法合成合成穩定的Fe3O4微粒,利用超導量子干涉儀探討Fe3O4微粒磁性,利用穿透式電子顯微鏡觀察粒徑大小,找尋適當的界面活性劑處理Fe3O4 微粒,並探討界面活性劑的量對Fe3O4 微粒的影響,利用熱重分析去區分單層界面活性劑的化學鍵結,以及第二層界面活性劑的物理吸附。
第三章主要是探討甲基丙烯酸甲酯單體在Fe3O4 磁性流體中進行乳化聚合,利用穿透式電子顯微鏡觀察其成核的現象隨著轉化率之變化,推論出兩種機制-種子聚合以及均相成核,並利用種子成核,均相成核機構和微胞微胞成核機構來計算反應過程中聚體顆粒數目隨轉化率之變化、聚體顆粒內之平均自由基的數目、記算終止速率常數和凝膠效應的關係。
第四章主要是製備核殼型磁性複合乳膠顆粒是以聚甲基丙烯酸甲酯包覆四氧化三鐵為種子涵浸甲基丙烯酸甲酯單體以及甲基丙烯酸單體進行乳化聚合,並利用導電度法分析核殼型態複合乳膠顆粒之表面官能基,以及利用熱差分析儀以及傅立葉轉換紅外線光譜儀分析核殼型磁性複合乳膠顆粒。
第五章是利用偶合劑,將抗體接枝在核殼型磁性複合乳膠顆粒表面,利用其去分離溶血性病人的血液以及經過白血球分離術的檢體,並通過一磁場達到分離的效果,並利用流式細胞儀去分析分離的結果以及利用掃瞄式電子顯微鏡觀察。
第六章是總結及未來的展望。
In this work, Fe3O4/poly(methyl mathacrylate)/poly (methyl mathacrylate-co- mathacrylate acid ) (Fe3O4/PMMA/P(MMA-co-MAA) core-shell magnetic composite latex was synthersized by the emulsion polymerization, which included three steps: the first step was to prepare the stable Fe3O4 colloid (ferrofluid). The second step was to synthesize PMMA in the presence of ferrofluid by emulsion polymerization. The third step was to synthesize the PMMA-co-PMAA in the presence of product from the second step.
First, Fe3O4 particles were prepared by chemical coprecipitation. The magnetic properties and particle size of these magnetic fluids, characterized by transmission electron microscopy and superconducting quantum interference device, respectively, indicated the formation of single-domain nanoparticles. Thermogravimetric analysis measurements showed the existence of two distinct populations of surfactants on the particle surface, which suggests the primary and secondary surfactants.
Second, magnetic poly (methyl methacrylate) [PMMA] composite latex was prepared by emulsion polymerization in the presence of ferrofluid, and the ferrofluid was prepared by means of a coprecipitation method. The effects of some polymerization parameters, such as monomer concentration, ferrofluid content, and initiator concentration on the conversion curve and particle size of magnetic composite latex particles were examined in detail. The results showed that two nucleation mechanisms, seeded polymerization and self-nucleation polymerization, would vary with the polymerization conditions. In the monomer rich and less ferrofluid system, self-nucleation of PMMA was dominant over the entire course of emulsion polymerization. In the monomer less and ferrofluid rich system, seeded emulsion polymerization was the main course to form the magnetic composite latex particles. A generalized mathematical model was developed to estimate the variation of particle concentration during the entire course of emulsion polymerization of methyl methacrylate (MMA) with ferrofluid. Two mechanisms for the nucleation and growth of particles throughout the polymerization reaction were discussed: MechanismⅠ-seeded polymerization; and MechanismⅡ-self-nucleation polymerization. Here the self-nucleation included homogeneous nucleation and micelle nucleation. Coagulation between particles, which came from different nucleation mechanisms during the course of polymerization, was considered and included in our model. When appropriate parameters were selected, our model could be successfully used to interpret the variation of particle concentration during the entire reaction. Under different conditions, the rate of polymerization, the number of radicals in each particle, the average molecular weight of polymers, and the rate constant of termination were also calculated. All of them explained the experimental results quite well.
Third, the magnetic PMMA/P(MMA–MAA) core-shell composite polymer latex was synthesized in the presence of Fe3O4 ferrofluid. Certain kinds of fatty acid modified the surface of Fe3O4 particles, and the resulting Fe3O4 ferrofluid acted as seeds in the polymerization process. Adjusting the MAA shell composition could control the amount of COOH groups on the surface of the magnetic core-shell composite polymer particles.
Last but not least, Immuno magnetic latices were derived through the reaction of COOH groups from the magnetic PMMA/P(MMA–MAA) core-shell composite polymer latex with antibodies or streptavidin. The zeta potential indirectly proved the antibodies or streptavidin did bind with magnetic latex. The potential of the immuno magnetic latex in the clinical application of cell separation was evaluated.
Outline of Contents
OUTLINE OF CONTENTS I
LIST OF TABLES VIII
LIST OF FIGURES X
ABSTRACT (IN CHINESE) XIII
ABSTRACT (IN ENGLISH) XV
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 SYNTHESIS OF FERROFLUID BY CHEMICAL COPRECIPITATION 8
ABSTRACT 8
2.1. INTRODUCTION 9
2.2. EXPERIMENT 13
2.2.1. Material 13
2.2.2. Synthesis of Fe3O4 13
2.2.3. Particle size of Fe3O4 13
2.2.4. Magnetic measurements 13
2.2.5. Surface treatment of Fe3O4 particles 13
2.2.3. Monolayer surfactant coated magnetic Fe3O4 particles 14
2.2.4. Bilayer surfactant-coated magnetic Fe3O4 particles 14
2.2.5. FTIR measurement on surfactant stabilized Fe3O4 particles 15
2.2.6. TGA measurement on surfactant-coated Fe3O4 particles 15
2.2.7. Measurement of stability of ferrofluid 15
2.2.8. Surface tension measurements 15
2.3. RESULT & DISCUSSION 16
2.3.1. Synthesis of Fe3O4 particles 16
2.3.2. Magnetic measurements 16
2.3.3. Surface treatment of Fe3O4 particles 16
2.3.3.1. Surface treatment with fatty acid 16
2.3.3.2. Surface tension of Fe3O4 suspension after surface treatment of fatty acid 17
2.3.3.3. Surface treatment with surfactant 19
2.3.3.4. Surface treatment with polymer 20
2.3.4 Morphology of Fe3O4 particles after surface treatment 20
2.3.5. FTIR measurement on surfactant stabilized Fe3O4 particles 20
2.3.6.TGA measurement on surfactant-coated Fe3O4 particles 21
2.3.7. The stability of ferrofluid 22
2.4 CONCLUSION 23
CHAPTER 3 SYNTHESIS OF MAGNETIC COMPOSITE POLYMER LATEX 25
ABSTRACT 25
3.1. INTRODUCTION 27
3.2. EXPERIMENT 33
3.2.1. Material 33
3.2.2. Synthesis of magnetic composite polymer latex 33
3.2.3. Conversion 33
3.2.4. Morphology and Size of latex particles 34
3.2.5. Particle concentration vs. conversion 34
3.2.6. Average molecular weight of polymers 35
3.3. THEORETICAL TREATMENT 36
3.3.1. Concentration of polymer particles 36
3.3.2 Rate of polymerization 38
3.3.3 Volume of a swollen polymer particle 39
3.3.4. Average molecular weight of polymers and rate constant of termination 39
3.4. RESULT & DISCUSSION 41
3.4.1. Conversion 41
3.4.1.1. Monomer concentration effect 41
3.4.1.2. Ferrofluid concentration effect 41
3.4.1.3. Initiator concentration effect 42
3.4.2. Morphology of latex particles 42
3.4.2.1. Monomer concentration effect 42
3.4.2.2. Ferrofluid concentration effect 44
3.4.2.3. Initiator concentration effect 45
3.4.3. Size of latex particles 45
3.4.3.1. Monomer concentration effect 46
3.4.3.2. Ferrofluid concentration effect 46
3.4.3.3. Initiator concentration effect 47
3.4.4. Proposed mechanism of particle nucleation and particle growth 47
3.4.5. Conversion and rate of polymerization (Rp) 48
3.4.5.1. Monomer concentration effect 49
3.4.5.2. Ferrofluid concentration effect 49
3.4.5.3. Initiator concentration effect 49
3.4.6. The morphology of composite polymer particles 49
3.4.7. Concentration of polymer particles (N) 50
3.4.7.1. Monomer concentration effect 50
3.4.7.2. Ferrofluid concentration effect 51
3.4.7.3. Initiator concentration effect 51
3.4.8. Simulation of concentration of polymer particles 51
3.4.9. The ratio of polymer particles encapsulating Fe3O4 52
3.4.10. Coagulation rate constant 52
3.4.10.1. Monomer concentration effect 52
3.4.10.2. Ferrofluid concentration effect 53
3.4.10.3. Initiator concentration effect 53
3.4.11. Average number of radicals per polymer particle 53
3.4.11.1. Monomer concentration effect 53
3.4.11.2. Ferrofluid concentration effect 54
3.4.11.3. Initiator concentration effect 54
3.4.12.Volume of a swollen polymer particle 54
3.4.12.1.Monomer concentration effect 54
3.4.12.2. Ferrofluid concentration effect 55
3.4.12.3. Initiator concentration effect 55
3.4.13. Average molecular weight of polymers 55
3.4.13.1. Monomer concentration effect 55
3.4.13.2.Ferrofluid concentration effect 56
3.4.13.3.Initiator concentration effect 56
3.4.14.Termination Rate Constant (kt) 57
3.5. CONCLUSION 58
CHAPTER 4 SYNTHESIS OF MAGNETIC CORE-SHELL COMPOSITE POLYMER LATEX 63
ABSTRACT 63
4.1. INTRODUCTION 64
4.2. EXPERIMENT 66
4.2.1. Synthesis of magnetic core-shell composite polymer latex 66
4.2.2 Conversion 66
4.2.3 Morphology and size of latex particles 67
4.2.4 Magnetic measurements of PMMA magnetic core latex 67
4.2.5 TGA measurement of PMMA magnetic core latex 67
4.2.6 DSC measurement of PMMA magnetic core latex 67
4.2.7. Measurement of the concentration of carboxylic groups on the core-shell magnetic composite polymer latex 68
4.2.8. DSC measurement of the core-shell magnetic composite polymer latex 68
4.2.9. FTIR measurement of the core-shell magnetic composite polymer latex 69
4.3. RESULT & DISCUSSION 70
4.3.1. Synthesis of PMMA magnetic core latex 70
4.3.2. Magnetic measurements of 70
PMMA magnetic core latex 70
4.3.3. TGA measurement on PMMA magnetic core latex 70
3.3.4. Magnetite content in the PMMA magnetic core latexes 71
4.3.5.DSC measurement of PMMA magnetic core latex 71
4.3.5.1 Monomer concentration effect 71
4.3.5.2. Ferrofluid concentration effect 71
4.3.5.3.Initiator concentration effect 72
4.3.6. Synthesis of magnetic core-shell composite polymer latex 72
4.3.7. Conversion 72
4.3.8. Morphology of magnetic core-shell composite polymer latex 72
4.3.9. The concentration of carboxylic acid groups on magnetic core-shell composite polymer latex 73
4.3.10. DSC measurement of the core-shell magnetic composite polymer latex 73
4.3.11. FTIR measurement of the core-shell magnetic composite polymer latex 74
4.4. CONCLUSION 76
CHAPTER 5 APPLICATION OF IMMUNO MAGNETIC LATEX 83
ABSTRACT 83
5.1. Introduction 84
5.2. EXPERIMENT 87
5.2.1. Materials 87
5.2.2. Preparation of magnetic immunolatices 88
5.2.3. Preparation of magnetic immunolatices under preactivation covalent procedure 89
5.2.4 Zeta potential 89
5.2.5 Immunological studies and magnetic positive selection 90
5.2.6. Immunological studies and stem cells positive selection 90
5.2.7. Flow cytometry analysis 91
5.2.8. The morphology of sample 91
5.3. RESULT & DISCUSSION 92
5.3.1. Binding antibody on the magnetic core-shell composite polymer latex 92
5.3.2. Immunological studies 92
5.3.3. Flow cytometry analysis 93
5.4. CONCLUSION 94
CHAPTER 6 CONCLUSION AND FUTURE WORK 95
REFERENCE 98
[1]Halbreich A, Roger J, Pons JN, Da Silva MF, Bacri JC. In: Arshady R, editor. Microspheres, Microcapsules and liposomes: Citus: London, 2001. pp. 459-491.
[2]Widjojoatmodjo MN, Fluit AC, Torensma R, Verhoef J. J Immunol Methods 1993;165(1):11-19.
[3]Chosy EJ, Nakamura M, Melnik K, Comella K, Lasky LC, Zborowski M, Chalmers JJ. Biotechnology & Bioengineering. 2003;82(3):340-351.
[4]Jordan A, Scholz R, Wust P, Schirra H, Schiestel T, Schmidt H, Felix R. Journal of Magnetism and Magnetic Materials1999;194(1-3):185-196.
[5]Jordan A, Scholz R, Maier-Hauff K, Johannsen M, Wust P, Nadobny J, Schirra H, Schmidt H, Deger S, Loening S, Lanksch W, Felix R. Journal of Magnetism and Magnetic Materials 2001;225(1-2):118-126.
[6]Chen J, Johnson R, Griffiths M. Applied and Environmental Microbiology 1998;64(1):147-152.
[7]Ruan C, Wang H, Li Y. Transactions of the American Society of Agricultural Engineers 2002;45(1):249-255.
[8]Buxton EC, Westphall M, Jacobson W, Tong X, Smith LM. Laboratory Robotics and Automation 1996;8(6):339-349.
[9]Varlan AR, Sansen W, Van Loey A, Hendrickx M. Biosens Bioelectron 1996;11(4):443-448.
[10]Barker SD, Casado E, Gomez-Navarro J, Xiang J, Arafat W, Mahasreshti P, Pustilnik TB, Hemminki A, Siegal GP, Alvarez RD, Curiel DT. Gynecol Oncol 2001;82(1):57-63.
[11]Gunzer M, Weishaupt C, Planelles L, Grabbe S. J Immunol Methods 2001;258(1-2):55-63.
[12]Luxembourg AT, Borrow P, Teyton L, Brunmark AB, Peterson PA, Jackson MR. Nat Biotechnol 1998;16(3):281-285.
[13]Jansen J, Hanks S, Akard L, Martin M, Thompson J, Chang Q, Ash R, Garrett P, Figg F, English D. Bone Marrow Transplant 1995;15(2):271-278.
[14]Bjerke T, Nielsen S, Helgestad J, Nielsen BW, Schiotz PO. J Immunol Methods 1993;157(1-2):49-56.
[15]Koenig A, Wolff MH. Journal of Medical Virology. 2003;70(Suppl 1):S59-63.
[16]Schmitz M, Zhao S, Schakel K, Bornhauser M, Ockert D, Rieber EP. Blood. 2002;100(4):1502-1504.
[17]Cumbal L, Greenleaf J, Leun D, SenGupta AK. Reactive and Functional Polymers 2003;54(1-3):167-180.
[18]Ugelstad J, Berge A, Ellingsen T, Schmid R, Nilsen T-N, Mork PC, Stenstad P, Hornes E, Olsvik O. Progress in Polymer Science 1992:87-161.
[19]Lopez D, Cendoya I, Torres F, Tejada J, Mijangos C. Journal of Applied Polymer Science 2001;82(13):3215-3222.
[20]Berkovsky BM, Medvedev VF, Krakov MS. Magnetic fluids : engineering applications: Oxford ; New York : Oxford University Press, 1993.
[21]Starodoubtsev SG, Saenko EV, Khokhlov AR, Volkov VV, Dembo KA, Klechkovskaya VV, Shtykova EV, Zanaveskina IS. Microelectronic Engineering 2003;69(2-4):324-329.
[22]Hasegawa M, Hanaichi T, Shoji H, Kawaguchi T, Maruno S. Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers 1998;37(3A):1029-1032.
[23]Tanyolac D, Ozdural AR. Reactive and Functional Polymers 2000;45(3):235-242.
[24]Yanase N, Noguchi H, Asakura H, Suzuta T. Journal of Applied Polymer Science 1993;50(5):765-776.
[25]Kondo A, Fukuda H. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1999;153(1):435-438.
[26]Elai, die, ssari A, Bourrel V. Journal of Magnetism and Magnetic Materials 2001;225(1-2):151-155.
[27]Wormuth K. Journal of Colloid and Interface Science 2001;241(2):366-377.
[28]Dresco PA, Zaitsev VS, Gambino RJ, Chu B. Langmuir 1999;15(6):1945-1951.
[29]Denkbas EB, Kilicay E, Birlikseven C, Ozturk E. Reactive and Functional Polymers 2002;50(3):225-232.
[30]Furusawa K, Nagashima K, Anzai C. Colloid and Polymer Science 1994;272(9):1104-1110.
[31]Xie G, Zhang Q, Luo Z, Wu M, Li T. Journal of Applied Polymer Science 2003;87(11):1733-1738.
[32]Piirma I. Emulsion polymerization. New York: Academic Press, 1982.
[33]Panda RB, Patel N, Sinha BK. Journal of Applied Polymer Science 1988;35(8):2193-2200.
[34]Puig JE, Perez-Luna VH, Perez-Gonzalez M, Macias ER, Rodriguez BE, Kaler EW. Colloid and Polymer Science 1993;271(2):114-123.
[35]Yu Z-Z, Li B-G, Cai M-J, Li B-F, Cao K. Journal of Applied Polymer Science 1995;55(8):1209-1215.
[36]Said ZFM, Fataftah ZA. Polymer International 1996;40(4):307-313.
[37]Lee D-Y, Kim J-H. Proceedings of the 1997 Las Vegas ACS Meeting, Sep 7-12 1997,1997, Las Vegas, NV, USA (ACS, Washington, DC, USA), 38, 418-419.
[38]Madaeni SS, Ghanbarian M. Polymer International 2000;49(11):1356-1364.
[39]Goodall AR, Wilkinson MC, Hearn J. Journal of Polymer Science, Polymer Chemistry Edition 1977;15(9):2193-2218.
[40]Cox RA, Wilkinson MC, Creasey JM, Goodall AR, Hearn J. Journal of Polymer Science, Polymer Chemistry Edition 1977;15(10):2311-2319.
[41]Chen CY, Piirma I. Journal of Polymer Science, Polymer Chemistry Edition 1980;18(6):1979-1993.
[42]Vanderhoff JW. Journal of Polymer Science, Polymer Symposia 1985(72):161-198.
[43]Priest WJ. The Journal of Physical Chemistry 1952;56:1077-1082.
[44]Fitch RM, Tsai CH. In. New York: Plenum, 1971. pp. 73-102.
[45]Fitch RM. British Polymer Journal 1973;5(6):467-483.
[46]Hansen FK, Ugelstad J. Journal of Polymer Science, Polymer Chemistry Edition 1978;16(8):1953-1979.
[47]Hansen FK, Ugelstad J. Journal of Polymer Science, Polymer Chemistry Edition 1979;17(10):3033-3045.
[48]Hansen FK, Ugelstad J. Journal of Polymer Science, Polymer Chemistry Edition 1979;17(10):3047-3067.
[49]Ugelstad J, Hansen FK. Rubber Chemistry and Technology 1976;49(3):536-609.
[50]Hansen FK, Ugelstad J. In. New York: Academic Press, 1982. pp. 51-92.
[51]Lee C-F, Chiu W-Y, Chern Y-C. Journal of Applied Polymer Science 1995;57(5):591-603.
[52]Lee C-F, Chiu W-Y. Journal of Applied Polymer Science 1995;56(10):1263-1274.
[53]Lee C-F, Chiu W-Y. Journal of Applied Polymer Science 1997;65(3):425-438.
[54]Amina N. The preparation and magnetic properties of iron oxide particles. Clarkson University, 1986.
[55]Lin J-K. The formation and characterization of RF reactively sputtered iron oxide thin films as magentic recording media. Clarkson University, 1986.
[56]Lin CH. In: Chin T-S, editor. Handbook of magnetic technologies, 2002. pp. 441-454.
[57]Berkovsky BM, Medvedev VF, Krakov MS. Magnetic fluids : engineering applications: Oxford ; New York : Oxford University Press, 1993.
[58]Rosensweig RE. Ferrohydrodynamics: Cambridge ; New York : Cambridge University Press, 1985.
[59]Ziolo RF, Giannelis EP, Weinstein BA, O''Horo MP, Ganguly BN, Mehrotra V, Russell MW, Huffman DR. Science 1992;257(5067):219-223.
[60]Raj K, Moskowitz R. Journal of Magnetism and Magnetic Materials
Proceedings of the Fifth International Conference on Magnetic Fluids, Sep 18-22 1989 1990;85(1-3):233-245.
[61]Nixon L, Koval CA, Noble RD, Slaff GS. Chemistry of Materials 1992;4(1):117-121.
[62]McMichael RD, Shull RD, Swartzendruber LJ, Bennett LH, Watson RE. Journal of Magnetism and Magnetic Materials 1992;111(1-2):29-33.
[63]Safarik I, Safarikova M. Journal of Chromatography. B, Biomedical Sciences & Applications. 1999;722(1-2):33-53.
[64]Roger J, Pons JN, Massart R, Halbreich A, Bacri JC. EPJ Applied Physics 1999;5(3):321-325.
[65]Sousa MH, Rubim JC, Sobrinho PG, Tourinho FA. Journal of Magnetism and Magnetic Materials 2001;225(1-2):67-72.
[66]Montagne F, Mondain-Monval O, Pichot C, Mozzanega H, Elaissari A. Journal of Magnetism and Magnetic Materials 2002;250:302-312.
[67]Berkowitz AEL, J. A.; VanBuren, C. E. IEEE Transactions on Magnetics 1980;MAG-16(2):184-190.
[68]Massart R. IEEE Transactions on Magnetics 1981;MAG-17(2):1247-1248.
[69]Massart R, Dubois E, Cabuil V, Hasmonay E. Journal of Magnetism and Magnetic Materials 1995;149(1-2):1-5.
[70]Hiemenz PC. Principles of colloid and surface chemistry, 3rd ed: New York : Marcel Dekker, 1997.
[71]Shimoiizaka JN, K.; Fujita, T.; Kounosu, A. IEEE Transactions on Magnetics 1980;MAG-16(2):368-371.
[72]Khalafalla SE, Reimers GW. IEEE Transactions on Magnetics 1980;16(2):178-183.
[73]Wooding A, Kilner M, Lambrick DB. Journal of Colloid and Interface Science 1991;144(1):236-242.
[74]Shen L, Laibinis PE, Hatton TA. Langmuir 1999;15(2):447-453.
[75]Shen L, Laibinis PE, Hatton TA. Journal of Magnetism and Magnetic Materials 1999;194(1-3):37-44.
[76]Bellamy LJ. The infra-red spectra of complex molecules: London : Chapman and Hall ; New York : Wiley, 1975.
[77]Kataby G, Cojocaru M, Prozorov R, Gedanken A. Langmuir 1999;15(5):1703-1708.
[78]Moore RGC, Evans SD, Shen T, Hodson CEC. Physica E: Low-Dimensional Systems and Nanostructures 2001;9(2):253-261.
[79]Rocchiccioli-Deltcheff C, Franck R, Cabuil V, Massart R. Journal of Chemical Research. Synopses 1987;5:126-127.
[80]Wang PC, Cuiu WY, Lee CF, Young TH. Journal of Polymer Science, Part A: Polymer Chemistry;t o appear.
[81]Chen Y-C. MS Thesis. Institute of Materials Science & Engineering. Taiwan: National Taiwan University, 1993.
[82]Garrett RW, Hill DJT, O''Donnell JH, Pomery PJ, Winzor CL. Polymer Bulletin (Berlin) 1989;22(5-6):611-616.
[83]Zhu S, Tian Y, Hamielec AE, Eaton DR. Macromolecules 1990;23(4):1144-1150.
[84]Song Z, Poehlein GW. Journal of colloid and Interface Science 1989;128(2):486-500.
[85]Chen Y-C, Lee C-F, Chiu W-Y. Journal of Applied Polymer Science 1996;61(12):2235-2244.
[86]Song Z, Poehlein GW. Journal of Polymer Science, Part A: Polymer Chemistry 1990;28(9):2359-2392.
[87]Plotz CM, Singer JM. Am J Med 1956;21(6):888-892.
[88]Plotz CM, Singer JM. Am J Med 1956;21(6):893-896.
[89]Christian CL, Mendez-bryan R, Larson DL. Proc Soc Exp Biol Med 1958;98(4):820-823.
[90]Singer JM. Am J Med 1961;31:766-779.
[91]Chantler S, Devries E, Allen PR, Hurn BA. Journal of Immunological Methods. 1976;13(3-4):367-380.
[92]Rembaum A, Yen SPS, Cheong E, Wallace S, Molday RS, Gordon IL, Dreyer WJ. Macromolecules 1976;9(2):328-336.
[93]Rembaum A, Yen SPS, Monlday RS. Journal of Macromolecular Science. A, Chemistry 1979;13:603-632.
[94]Marumoto K, Suzuta T, Noguchi H, Uchida Y. 1978;19(8):867-871.
[95]Kondo A, Yamasaki R, Higashitani K. Journal of Fermentation and Bioengineering 1992;74(4):226-229.
[96]Quesada M, Puig J, Delgado JM, Peula JM, Molina JA, HidalgoAlvarez R. Colloids and Surfaces B-Biointerfaces 1997;8(6):303-309.
[97]Zwetsloot JPH, Leyte JC. Journal of Colloid and Interface Science 1994;163(2):362-371.
[98]Slawinski M, Meuldijk J, Van Herk AM, German AL. Journal of Applied Polymer Science 2000;78(4):875-885.
[99]Huang C-F, Chang F-C. Polymer 2003;44(10):2965-2974.
[100]Motzer HR, Painter PC, Coleman MM. Macromolecules 2001;34(23):8390-8393.
[101]Kuo SW, Chang FC. Macromolecules 2001;34(12):4089-4097.
[102]Krause DS, Fackler MJ, Civin CI, May WS. Blood 1996;87(1):1-13.
[103]Sutherland DR, Keating A. J Hematother 1992;1(2):115-129.
[104]Steen R, Tjonnfjord GE, Gaudernack G, Brinch L, Egeland T. Br J Haematol 1996;94(4):597-605.
[105]Gale RP, Henon P, Juttner C. Bone Marrow Transplant 1992;9(3):151-155.
[106]Berenson RJ, Bensinger WI, Hill RS, Andrews RG, Garcia-Lopez J, Kalamasz DF, Still BJ, Spitzer G, Buckner CD, Bernstein ID, et al. Blood 1991;77(8):1717-1722.
[107]Schiller G, Vescio R, Freytes C, Spitzer G, Sahebi F, Lee M, Wu CH, Cao J, Lee JC, Hong CH, et al. Blood 1995;86(1):390-397.
[108]Benedetti F. Tumori 1996;82(2 Suppl):S3-13.
[109]Stockschlader M, Hassan HT, Zeller W, Kruger W, Clausen J, Loliger C, Dieck AT, Kroger N, Link H, Kabisch H, Hossfeld DK, Zander A. Leuk Lymphoma 1997;25(1-2):145-151.
[110]Kvalheim G, Wang MY, Pharo A, Holte H, Jacobsen E, Beiske K, Kvaloy S, Smeland E, Funderud S, Fodstad O. J Hematother 1996;5(4):427-436.
[111]Shpall EJ, Jones RB, Bearman SI, Franklin WA, Archer PG, Curiel T, Bitter M, Claman HN, Stemmer SM, Purdy M, et al. J Clin Oncol 1994;12(1):28-36.
[112]Choi D, Perrin M, Hoffmann S, Chang AE, Ratanatharathorn V, Uberti J, McDonagh KT, Mule JJ. Clin Cancer Res 1998;4(11):2709-2716.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 23. 高明智,「由『旅情』體驗行銷與服務」,突破雜誌,第187期,14-16頁,90年2月。
2. 21. 范碧珍,「體驗是顧客滿意的原動力」,突破雜誌,第213期,47頁,92年4月。
3. 16. 林宏達,「eMarketer入圍案例-第1名:統一超商7-Eleven『童年福利社』讓王子麵大賣20萬包!」,e天下雜誌,第36期,51-57頁,92年12月。
4. 13. 吳怡靜,「前瞻.創新.深化知識—一九九八標竿企業」,天下雜誌,第210期 , 66-72頁,87年11月。
5. 11. 吳崑玉,「行銷初體驗 典範轉移下的行銷」,突破雜誌,第187期,31-33頁,90年2月。
6. 10. 吳崑玉,「酒神文化與體驗行銷—體驗行銷大師在臺演講紀實」,突破雜誌,第191期,128-129頁,90年6月。
7. 3. 王鳳生,「體驗經濟時代創造體驗」,卓越雜誌,第l71期,16頁,87年11月。
8. 29. 陳怡萍,「體驗行銷挑逗消費神經」,遠見雜誌,第215期,270-273頁,93年5月。
9. 32. 黃慶源,宋碧娟,張雅菁,「現代書局之體驗行銷策略—以大高雄誠品書局為例」,樹德科技大學學報,第4卷第2期 ,159-172頁,91年6月。
10. 34. 張克偉,「專訪體驗行銷大師伯德.史密特博士」,廣告雜誌,第134期, 30頁,91年7月。
11. 38. 蔡蕙如,「眼耳口鼻手店頭賣體驗」,天下雜誌,第22期,130-132頁,90年12月。
12. 39. 溫珮妤,「哥倫比亞大學全球品牌中心創辦人伯德.史密特—體驗行銷的秘密」,Cheers,第22期,146-149,91年7月。
13. 42. 鄭明松、王世澤,「體驗行銷創造消費價值」,貿易雜誌,第150期,22-26頁,93年6月。
14. 43. 鄭明松、王世澤,「體驗行銷—創造體驗與體驗價值的時代」,卓越雜誌,第236期,168-170頁,93年4月。
15. 50. 羅文坤,「二十一世紀品牌行銷新主張」,動腦雜誌,279 輯,33-38頁,88年7月。
 
系統版面圖檔 系統版面圖檔