(3.227.0.150) 您好!臺灣時間:2021/05/08 10:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭彥如
研究生(外文):Yen-Ju Cheng
論文名稱:以矽烷基為間隔之芳香基雙乙烯基高分子在能量轉移及手性光學轉移之研究
論文名稱(外文):Energy Transfer and Chiroptical Transfer in Silylene-Spaced Divinylarene Copolymers
指導教授:陸天堯陸天堯引用關係
指導教授(外文):Tien-Yau Luh
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:148
中文關鍵詞:Energy TransferSilylene-SpacedChiropitcal Transfer
外文關鍵詞:能量轉移手性光學轉移矽烷基為間隔
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用銠催化的矽氫化反應,雙乙炔和雙矽氫化合物可以合成一系列有規則以矽為間隔並且交錯排列的芳香基雙乙烯基高分子 [(donor-SiMe2)n=1-3-(acceptor)-SiMe2]。藉由單體的精心設計,給體與受體在高分子中之比例可以被良好的控制。鎳催化雙硫縮醛化合物與格林納試劑偶合反應可以方便的得到乙烯基矽基醚,再經由LAH還原反應,得到相對應的矽基氫化合物。先經由Heck偶合反應再進行Sonogashira或Kumada-Corriu偶合反應可以合成雙給體的雙乙炔單體。三給體的雙乙炔單體則是經由矽氫化反應來合成。不同於大部份的雙聚合物,我們的合成策略提供了一個很有效的方法來建構有精確位置化學及重複規則排列的高分子聚合物。具有與高分子相同發光團的參考單體也被製備用以作為光物理性質的比較。矽基團在聚合物中除了扮演一絕緣體的角色也連接不同的發光團。當高分子中的發光團具有一定的共軛長度時,並無激發態錯合物的生成。光誘導的電子轉移在此聚合物系統並不重要。當激發波長在給體的在最大吸收時,在螢光光譜中並無觀察到從給體所放出的螢光,說明高分子內可以進行非常有效率且完全的能量轉移。此外,高分子也展現了光收成的能力,隨著增加能量給體對於受體的比例,聚合物中受體螢光的強度也隨之增強。在高分子中配對不同能量的給體與受體,當激發在紫外光區的波長時,經由能量轉移的機制可以調控得到不同顏色的可見光。此外含有三種不同共軛長度發光團的高分子也被成左漲X成,隨著共軛長度的增加,能量也隨之遞減,藉由此設計的能量梯度,可以進行連續的能量轉移。這些結果說明以矽烷基來建構含給體與受體的高分子擁有絕佳的結構來進行能量轉移與光收成。
另一方面,以矽為間隔的芳香基雙乙烯基之手性高分子也被設計與合成。聚集效應明顯扮演了重要的角色來說明此高分子在圓形二色性光譜的性質。在低濃度時,高分子鏈呈現不規則的構形因此無法誘導圓形二色性光譜產生訊號。然而在高濃度下,由圓形二色性光譜可以發現光學手性之誘導及轉移,混合實驗建議在聚集狀態下光學手性之轉移在高分子鏈內似乎較為重要。
A series of regioregular silylene-spaced alternating [(donor-SiMe2)n=1-3-(acceptor)-SiMe2] copolymers was synthesized by rhodium-catalyzed hydrosilylation of bis-alkynes with bis-silylhydrides. The ratio of donor to acceptor can be well controlled by appropriate design of the monomeric precursors. Bis-silylhydrides were prepared by nickel-catalyzed olefination of the corresponding aryl dithioacetals with Grignard reagent followed by LAH reduction. Two-donor bis-alkynes were obtained by Heck reaction followed by subsequent Sonogashira or Kumada-Corriu reaction. The synthesis of three-donor bis-alkyne was based on hydrosilylation of two different donor precursors. Unlike most copolymers, our strategy has furnished a powerful arsenal for the construction of copolymers with precise regiochemistry and repetitive units. Monomeric reference compounds having similar chromophore components were also prepared for photophysical comparison. The silylene moieties serve as insulating building block between chromophores. No excimer-like formation has been found in these types of polymers with relatively long conjugation chromophores. The effect of photoinduced electron transfer plays a negligible role in these polymeric systems. No emission coming from donor was observed in fluorescence spectra, illustrating that intrachain energy transfer is highly efficient along the polymeric chain. The polymers exhibit light-harvesting ability and the intensity of emission spectra are enhanced with the increasing number of donor to acceptor ratio. Upon excitation of these copolymers at UV wavelengths, versatile colors of light from acceptors via energy transfer can be accessed by incorporating well-designed ��-conjugated energy pairs into the polymeric chain. In addition, polymer composed of three different conjugated chromophores has been synthesized. In the polymeric segments of energy gradient, the bandgap energy of chromophore decreases gradually due to the increasing conjugation length. Well design of energy gradient in the silylene-spaced copolymer will pave a way for continuous energy transfer. These results suggested that the utility of silylene linkers for the construction of donor-acceptor polymers has provided a new ideal architecture for light-harvesting and energy transfer.
On the other hand, chiral silylene-spaced divinylarene copolymers were designed and synthesized. Aggregation apparently plays an important role in dictating the circular dichroic properties of these copolymers. At lower concentration, the polymeric chains may be conformationally disordered so that the CD intensity is too weak to observe. However, at higher concentration, chiroptical properties of silylene-spaced copolymers are induced and transferred as evidenced by CD spectra. Based on the mixing experiments, it appears that intrachain chiropitcal transfer in aggregated state is more important.
Contents

Acknowledgement ……………………………………………………………… i
Abstract ………………………………………………………………………..... ii
Abstract (Chinese) ………………………………………………………….….. iv
Contents ………………………………………………………………………… vi
List of Tables ………………………………………………………….……….... viii
List of Figures ……………..…………………………………………………... ix
Abbreviations….………………………………………………………………… xiii
Chapter 1. Introduction …………………………….………………………….. 1
Chapter 2. Chiroptical Transfer………………...….. 11
2.1. Background …………………………………………………………….… 11
2.2. Results and Discussions ………………………………………………….. 13
2.3. Conclusion ………………………………………………………………... 25
Chapter 3. Energy Transfer…………………………. 27
3.1. Introduction …………………………………………………………….… 27
3.2. Results and Discussions ………………………………………………….. 33
3.2.1. One-Donor-One-Acceptor System………………………………….. 33
3.2.2. Two-Donor-One-Acceptor System………………………………….. 56
3.2.3. Three-Donor-One-Acceptor System………………………………… 74
3.2.4. Three Chromophore System………………………………………… 80
3.3. Conclusion ………………………………………………………………... 86
Chapter 4. Experimental Section ….…………………………………………... 88
4.1. Instrumentation and General Information...…………………………….… 88
4.2. Experimental Section…………….....…………………………………….. 91
Chapter 5. References ……………………….…………………………...…….. 139
Publication List………………………………………………………………….. 147
Appendix……………………….…………………………...…………………… 148
Chapter 5. References
1.Steinmetz, M. G. Chem. Rev. 1995, 95, 1527.
2.(a) West, R. J. Organomet. Chem. 1986, 300, 327. (b) West, R.; David, L. D.; Djurovich, P. I.; Stearley, K. L.; Srinivasan, K. S. V.; Yu, H. J. Am. Chem. Soc. 1981, 103, 7352.
3.Ishikawa, M.; Hasegawa, Y.; Kunai, A. J. Organomet. Chem. 1990, 381, C57.
4.Ijadi-Maghsoodi, S.; Barton, T. J.; Macromolecules 1990, 23, 4485.
5.Corriu, R. J. P.; Guerin, C.; Henner, B.; Kuhlmann, T.; Jean, A. Chem. Mater. 1990, 2, 351.
6.Feng, M.-C.; Watanabe, A.; Matsuda, M. Macromoelcules 1996, 29, 6807.
7.Feng, M.-C.; Watanabe, A.; Matsuda, M. Chem. Lett. 1994, 13.
8.a) Yang, Z.; Sokolik, I.; Karasz, F. E. Macromolecules 1993, 26, 1188. b) Kim, D. J. S.; Kim, H.; Lee, J. H.; Kang, S. J.; Kim, H. K.; Zyung, T.; Cho, I.; Choi, S. K. Mol. Cryst. Liq. Cryst. 1996, 280, 391. c) Brouwer, H. J.; Krasnikov, V. V.; Hilberer, A.; Hadziioannou, G. Adv. Mater. 1996, 8, 935 and references therein.
9.Herrema, J. K.; Hutten, P. F. V.; Gill, R. E.; Wildeman, J.; Wieringa, R. H.; Hadziioannou, G. Macromolecules 1995, 28, 8102.
10.Kim, H. K.; Ryu, M.-K.; Lee, S. M. Macromolecules 1997, 30, 1236.
11.(a) van Walree, C. A.; Roest, M. R. P.; Schuddeboom, W.; Jenneskens, L. W.; Verhoeven, J. W.; Warman, J. M.; Kooijman, H.; Spek, A. L. J. Am. Chem. Soc. 1996, 118, 8395. (b) Zehnacker, A.; Lahmani, F.; Vanwalree, C. A.; Jenneskens, L. W. J. Phys. Chem. A, 2000, 104, 1377.
12.Miller, R. D. Chem. Rev. 1989, 89, 1359 and references therein.
13.(a) Ohshita, J.; Takata, A.; Kai, H.; Kunai, A.; Komaguchi, K.; Shiotani, M.; Adachi, A.; Sakamaki, K.; Okita, K.; Harima, Y.; Kunugi, Y.; Yamashita, K.; Ishikawa, M. Organometallics 2000, 19, 4492. (b) Chicart, P.; Corriu, R. J. P.; Moreau, J. J. E. Chem. Mater. 1991, 3, 8.
14.Jung, S.-H.; Kim, H. K.; Kim, S.-H.; Kim, Y. H.; Jeoung, S. C.; Kim, D. Macromolecules 2000, 33, 9277.
15.Pang, Y.; Ijadi-Maghsoodi, S.; Barton, T. J.; Macromolecules 1990, 23, 4485.
16.(a) Son, D. Y.; Bucca, D.; Keller, T. M. Tetrahedron Lett. 1996, 37, 1579. (b) Kunai, A.; Toyoda, E.; Nagamoto, I.; Horio, T.; Ishikawa, M. Organometallics 1996, 15, 75.
17.Mori, A.; Takahisa, E.; Kajiro, H.; Nishihara, Y.; Hiyama, T. Macromolecules, 2000, 33, 1115.
18.(a) Ni, Z.-J.; Luh, T.-Y, J. Org. Chem. 1988, 53, 2129, 5582. (b) Ni, Z.-J.; Yang, P.-F.; Ng, D. K. P.; Tzeng, Y.-L.; Luh, T.-Y. J. Am. Chem. Soc. 1990, 112, 9356. (c) Ni, Z.-J; Luh, T.-Y. Org. Syn. 1991, 70, 240. (d) Wong, K.-T.; Wuan, T.-N.; Wang, M.-C.; Tung, H.-H.; Luh, T.-Y. J. Am. Chem. Soc. 1994, 116, 8920.
19.For reviews, see: (a) Luh, T-Y. Acc. Chem. Res. 1991, 24, 257. (b) Luh, T.-Y.; Wong, K.-T. Synthesis 1993, 349. (c) Luh, T.-Y. Pure Appl. Chem. 1996, 68, 105.
20.Chen, R.-M.; Luh, T.-Y. Tetrahedron 1998, 54, 1197.
21.(a) Chen, R.-M.; Chien, K.-M.; Wong, K.-T.; Jin, B.-Y.; Luh, T.-Y.; Hsu, J.-H.; Fann, W. J .Am. Chem. Soc. 1997, 119, 11321. (b) Hwu, T.-Y.; Basu, S.; Chen, R.-M.; Cheng, Y.-J.; Hsu, J.-H.; Fann, W.; Luh, T.-Y. J. Polym. Sci. Part A: Polym. Chem. 2003, 40, 2218. (c) Chen, R.-M., Ph.D. Thesis, National Taiwan University, Taipei, 1998. (d) Hwu, T.-Y. Master. Thesis, National Taiwan University, Taipei, 2000.
22.Miao, Y.-J.; Herkstroeter, W. C.; Sun, B. J.; Wong-Foy, A. G.; Bazan, G. C. J .Am. Chem. Soc. 1995, 117, 11407.
23.Bazan, G. C.; Miao, Y.-J. Macromolecules 1997, 30, 7414.
24.Okamoto, Y.; Nakano, T. Chem. Rev. 1994, 94, 349.
25.Peeters, E.; Delmotte, A.; Janssen, A. J.; Meijer, E. W. Adv. Mater. 1997, 9, 493.
26.(a) Yashima, E.; Maeda, K.; Okamoto, Y. Nature 1999, 399, 449. (b) Yashima, E.; Matsushima, T.; Okamoto, Y. J. Am. Chem. Soc. 1997, 119, 6345. (c) Yashima, E.; Maeda, Y.; Okamoto, Y. J. Am. Chem. Soc. 1998, 120, 8895. (d) Yahima, E.; Maeda, K.; Sato, O. J. Am. Chem. Soc. 2001, 123, 8159.
27.(a) Pu, L. Acta Polym. 1997, 48, 116. (b) Huang, W.-S.; Hu, Q.-S.; Pu, L. J. Org. Chem. 1999, 64, 7940. (c) Yu, H.-B.;Hu, Q.-S.; Pu, L. J. Am. Chem. Soc. 2000, 122, 6500.
28.Eliel, E. L.; Wilen, S. H. Stereochemistry of Organic Compounds, VCH Publishers, New York, 1994, pp. 1060-1071.
29.(a) Yashima. E.; Matsushima, T.; Okamoto, Y. J. Am. Chem. Soc. 1995, 117, 11596. (b) Yashima, E.; Maeda, K.; Sato, O. J. Am. Chem. Soc. 2001, 123, 8159.
30.Takata, T.; Furusho, Y.; Murakawa, K.-i.; Endo, T.; Matsuoka, H.; Hirasa, T.; Matsuo, J.; Sisido, M. J. Am. Chem. Soc. 2000, 122, 6500.
31.(a) Fujiki, M. J. Am. Chem. Soc. 1994, 116, 11976. (b) Koe, J. R.; Fujiki, M.; Nakashima, H.; J. Am. Chem. Soc. 1999, 121, 9734. (c) Fujiki, M. J. Am. Chem. Soc. 2000, 122, 3336.
32.(a) Kamer, P. C. J.; Nolte, R. J. M.; Drenth, W. J. Am. Chem. Soc. 1988, 110, 6818. (b) Nolte, R. J. M. Chem. Rev. 1994, 11. (c) Green, M. M.; Gross, R. A.; Schilling, F. C.; Zero, K.; Crosby, C. Macromolecules 1988, 21, 1839.
33.(a) Green, M. M.; Peterson, N. C.; Sato, T.; Teramoto, A.; Cook R.; Lifson, S. Science 1995, 268, 1860. (b) Li, J.; Schuster, B.; Cheon, K.-S.; Green, M. M.; Selinger, J. V. J. Am. Chem. Soc. 2000, 122, 2603. (C) Green, M. M.; Park, J.-W.; Sato, T.; Teramoto, A.; Lifson, S.; Selinger, R. L. B.; Selinger, J. V. Angew. Chem. Int. Ed. 1999, 38, 3138.
34.Moore, J. S.; Gorman, C. B.; Grubbs, R. H. J. Am. Chem. Soc. 1991, 113, 1704.
35.Yashima, E.; Maeda, Y.; Okamoto, Y. J. Am. Chem. Soc. 1998, 120, 8895.
36.Harada, N.; Nakanishi, K. Circular Dichroic Spectroscopy, Oxford University Press, Oxford 1983.
37.Reidy, M. P.; Green, M. M. Macromolecules 1990, 23, 4225;
38.Langeveld-Voss, B. M. W.; Janssen, R. A. J.; Christiaans, M. P. T.; Meskers, S. C. J.; Dekkers, H. P. J. M.; Meijer, E. W. J. Am. Chem. Soc. 1996, 118, 4908.
39.(a) Bouman, M. M.; Meijer, E. W. Adv. Mater. 1995, 7, 385. (b) Peeters, E.; Christiaans, M. P. T.; Janssen, R. A. J.; Schoo, H. F. M.; Dekkers, H. P. J. M.; Meijer, E. W. J. Am. Chem. Soc. 1997, 119, 9909.
40.Nakashima, H.; Fujiki, M.; Koe, J. R.; Motonaga, M. J. Am. Soc. Chem. 2001, 123, 1963.
41.(a) Hu, S. S.; Weber, W. P. Polym. Bull. 1989, 21, 133. (b) Corriu, R. J. P.; Guerin, C.; Henner, B.; Kuhlmann, T.; Jean, A.; Garnier, F.; Yassar, A. Chem. Mater. 1990, 2, 351. (c) Ohshita, J.; Kanaya, D.; Ishikawa, M.; Koike, T.; Yamanaka, T. Macromolecules 1991, 24, 2106. (d) Wu, H. J.; Interrante, L. V. Macromolecules 1992, 25, 1840. (e) Pang, Y.; Ijadi-Maghsoodi, S.; Barton, T. J. Macromolecules 1993, 26, 5671. (f) Malliaras, G. G.; Herrema, J. K.; Wildeman, J.; Wieringa, R. H.; Gill, R. E.; Lampoura, S. S.; Hadziioannou, G. Adv. Mater. 1993, 5, 721. (g) Kim, H. K.; Ryu, M.-K.; Lee, S.-M. Macromolecules 1997, 30, 1236. (h) Miao, Y.-J.; Bazan, G. C. Macromolecules 1997, 30, 7414.
42.Cheng, Y.-J.; Hwu, T.-Y.; Hsu, J.-H.; Luh, T.-Y. Chem Commun 2002, 1978.
43.(a) Braun, J. C.; Fisher, G. S. Tetrahedron Lett. 1960, 21, 9. (b) Zweifel, G.; Brown, H. C. J. Am. Chem. Soc. 1964, 86, 393.
44.Cheng, Y.-J.; Liang, H.; Luh, T.-Y. Macromolecules 2003, 36, 5912.
45.Turro, N. J. Modern Molecular Photochemistry, University Science Books, Sausalito, 1991.
46.Dexter, D. L. J. Chem. Phys. 1953, 21, 836.
47.Förster, T. Ann. Phys. 1948, 2, 55.
48.(a) Kühlbrandt, W.; Wang, D. N. Nature 1991, 350, 130. (b) Kühlbrandt, W.; Wang, D. N.; Fujiyoshi, Y. Nature 1994, 614. (c) Kühlbrandt, W. Nature 1995, 374, 497. (d) Hu, X.; Damjanovic, A.; Ritz, T.; Schulten, K. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 5935.
49.Tomita, G.; Rabinovitch, E. Biophys. J. 1962, 2, 483.
50.Grätzel, M., Ed. Energy Resuorces through Photochmistry and Cataylsis; Academic Press: New York, 1983.
51.(a) berberan-Santos, M. N.; Pouget, J.; Valeur, B.; Canceill, J.;Jullien, L.; Lehn, J.-M. J. Phys.Chem. 1993, 97, 11376. (b) Jullien, L.; Canceill, J.; Valeur, B.; Bardez, E.; Lehn, J.-M. Angew. Chem., Int. Ed. Engl. 1994, 33, 2438. (C) Jullien, L.; Canceill, J.; Valeur, B.; Bardez, E.; Lefèvre, J.-P.; Lehn, J.-M.; Marchi-Artzner, V.; Pansu, R. J. Am. Chem. Soc. 1996, 118, 5432. (d) Wang, P. F.; Valeur, B.; Filhol, J.-S.; Canceill, J.; Lehn, J.-M. New J. Chem. 1996, 20, 895. (e) Paddon-Row, M. N. Acc. Chem. Res. 1994, 27, 18. (f) Clayton, A. H. A.; Scholes, G. D.; Ghiggino, K. P.; Paddon-Row, M. N. J. Phys. Com. 1996, 100, 10912. (g) Stewart, G. M.; Fox, M. A. J. Am. Chem. Soc. 1996, 118, 4354. (h) Beggren, M.; Dodabalapur, A.; Slusher, R. E.; Bao, Z. Nature 1997, 389, 466. (i) Vollmer, M. S.; Würthner, F.; Effenberger, F.; Emele, P.; Meyer, D. U.; Stümpfig, T.; Port, H.; Wolf, H. C. Chem. Eur. J. 1998, 4, 260. (j) Steinberg-Yfrach, G.; Liddell, P. A.; Hunf, S.-C.; Moore, A. L.; Gust, D.; Moore, T. A. Nature 1997, 385, 239.
52.(a) Seth, J.; Palaniappan, V.; Johnson, T. E.; Prathapan, S.; Lindsey, J. S.; Bocian, D, F. J. Am. Chem. Soc. 1994, 116, 10578. (b) Wagner, R. W.; Johnson, T. E.; Lindsey, J. S. J. Am. Chem. Soc. 1996, 118, 11166. (c) Hsian, J.-S.; Kruefer, B. P.; Wagner, R. W.; Johnson, T. E.; Delaney, J. K.; Mauzerall, D. C.; Fleming, G. R.; Lindsey, J. S.; Bocian, D. F.; Donohoe, R. J. Am. Chem. Soc. 1994, 116, 11181. (d) Seth, J.; Palaniappan, V.; Wagner, R. W.; Johnson, T. E.; Lindsey, J. S.; Bocian, D. F. J. Am. Chem. Soc. 1996, 118, 11194. (e) Strachan, J.-P.; Gentenmann, S.; Seth, J.; Kalsbeck, W. A.; Lindsey, J. S.; Holten, D.; Bocian, D. F. J. Am. Chem. Soc. 1997, 119, 11191. (f) Li, F.; Yang, S. L.; Cirngh, Y.; Seth, J.; Martin, C. H.; Ш; Singh, D. L.; Kim, d.; Birge, R. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Am. Chem. Soc. 1998, 120, 10001. (g) Nakano, A.; Osuka, A.; Yamazaki, I.; Yamazaki, T.; Nishimura, Y, Angew. Chem., Int. Ed. Engl. 1998, 37, 3023.
53.(a) Denti, G.; Campagna, S.; Serroni, S.; Ciano, M.; Balzani, V. J. Am. Chem. Soc. 1992, 114, 2944. (b) Belser, P.; von Zelewaky, A.; Frank, M.; Seel, C.; Vögtle, F.; De Cola, L.; Barigelletti, F.; Balzani, V. J. Am. Chem. Soc. 1993, 115, 4076.
54.(a) Ng, D.; Guillet, J. E. Macromolecules 1982, 15, 724. (b) Ng, D.; Guillet, J. E. Marcromolecules 1982, 15, 728. (c) Guillet, J. E. Polymer photophysics and photochemistry; Cambridge Univerisity Press: Cambridge, 1985; pp 220-260. (d) Fox, M. A. Acc. Chem. Res. 1992, 25, 569. (e) Webber, S. E. Chem. Rev. 1990, 90, 1469. (f) Jones, G.; Rahman, A. Chem. Phys. Lett. 1992, 200, 241. (g) Jones, G.; Rahman, A. Chem. Phys. Lett. 1992, 200, 241. (h) Nowakowska, M. Foyle, P. V., Guillet, J. E. J. Am. Chem. Soc. 1993, 115, 5975. (i) Itoh, Y.; Nakada, M.; Satoh, H.; Hachimori, A.; Webber, S. E. Macromolecules 1993, 26, 1941. (j) Watkins, D. M.; Fox, M. A. J. Am. Chem. Soc. 1994, 116, 6441. (k) Hisada, K.; Ito, S.; Yamamoto, M. Langmuir 1995, 11, 996. (l) Sato, T.; Jiang, D.-L.; Aida, T. J. Am. Chem. Soc. 1999, 121, 10658. (m) Schultze, X.; Serin, J.; Adronov, A.; Fréchet, J. M. J. Chem. Comm. 2001, 1160. (n) Russel, D. M.; Arias, C. A.; Friend, R. H.; Silvia, C.; Ego, C.; Grimsdale, A. C.; Müllen, K. Appl. Phys. Lett. 2002, 80, 2204.
55.(a) Xu, Z.; Moore, J. S. Acta polym. 1994, 45, 85. (b) Devadoss, C.; Bharati, P.; Moore, J. S. J. Am. Chem. Soc. 1996, 118, 9635. (c) Wang, P.-W.; Liu, Y.-J.; Devadoss, C.; Bharathi, P.; Moore, J. S. Adv. Mater. 1996, 3, 237. (d) Shortreed, M. R.; Swallen, S. F.; Shi, Z.-Y.; Tan, W.; Xu, Z.; Devadoss, C.; Moore, J. S.; Kopelman, R. J. Phys. Chem. B 1997, 101, 6318. (e) Balzani, V.; Campagna, S.; Denti, G.; Juris, A.; Serroni, S.; Venturi, M. Acc. Chem. Res. 1998, 31, 26. (f) Jiang, D.-L.; Aida, T.; Nature 1997, 388, 454. (g) Aida, T.; Jiang, D.-L.; Yashima, E.; Okamoto, Y. Thin Solid Films 1998, 331, 254. (h) Aida, T.; Jiang, D.-L. J. Am. Chem. Soc. 1998, 120, 10895. (i) Kawa, M.; Fréchet, J. M. J. Chem. Mater. 1998, 10, 286. (j) Adronov, A.; Gilat, S. L.; Fréchet, J. M. J.; Ohta, K.; Neuwahl, F. V. R.; Fleming, G. R. J. Am. Chem. Soc. 2000, 122, 1175. (k) Adronov, A.; Fréchet, M. J. Chem. Comm., 2000, 1701. (l) Choi, M.-S.; Aida, T.; Yamazaki, T.; Yamazaki, I. Chem. Eur. J. 2002, 8, 2667.
56.(a) Yamamoto,T.; Zhou, Z-h.; Kanbara, T.; Shimura, M.; Kizu, K.; Maruyama, T.; Nakamura, Y. ; Fukuda, T.; Lee, B-L.; Ooba, N.; Tomaru, S.; Kurihara, T.; Kaino, T.; Kubota, K.; Sasaki, S.; J. Am. Chem. Soc.,1996, 118, 10389. (b) Yamamoto, T.; Sugiyama, K.; Kushida, T.; Inoue, T.; Kanbara, T. J. Am Chem. Soc., 1996, 118, 3930. (c) Devasagayaraj, A.; Tour, J. M. Macromolecules 1999, 32, 6425.
57.Neuteboom, E. E.; Meskers, S. C. J.; van Hal, P. A.; van Duren, J. K. J.; Meijer, E. W.; Janssen, R. A. J.; Dupin, H.; Pourtois, G.; Cornil, J.; Lazzaroni, R.; Bredas, J.-L.; Beljonne, D. J. Am. Chem. Soc. 2003, 125, 8625.
58.Nakanishi, H.; Sumi, N.; Otsubo, T. J. Org. Chem. 1998, 63, 8632.
59.Lee, C.-F.; Yang, L.-M.; Hwu, T.-Y.; Feng, A.-S.; Tseng, J.-C.; Luh, T.-Y. J. Am Chem. Soc. 2000, 122, 4992.
60.Bourson, J.; Mugnier, J.; Valeur, B. Chem. Phys. Lett. 1982, 92, 430.
61.Karabelas, K.; Hallberg, A. J. Org. Chem. 1986, 51, 5286.
62.Jeffery, T. Tetaherdron Lett. 1999, 40, 1673.
63.Yang, L.-M. Huang, L.-F. Luh, T.-Y. Org. Lett. 2004, 6, 1461.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 以氦氖雷射曝光於低濃度光聚合物摻雜液晶盒之光電特性研究
2. 盤狀液晶分子及紫質高分子之合成及其在有機半導體元件之應用
3. 以氮原子為共價橋樑所形成之五環多電子平面分子:合成、鑑定及其共軛高分子於有機太陽能電池之應用
4. 員工內在動機與工作滿意度、工作績效之研究-以組織認同為中介變數
5. 以純刮刀塗佈技術製作有機發光二極體暨有機太陽能電池
6. 具交替吩與苯環之九環平面梯狀分子於高效能高分子太陽能電池之應用
7. 以笏為主體並具有長碳鏈側鏈之七環梯狀分子 於高分子太陽能電池之應用
8. 以氮原子為共價橋樑形成施體受體互為熔合之平面分子 : 合成、鑑定及其共軛高分子於太陽能電池之應用
9. 具有在氧化鈦上形成自組裝單層結構及交聯特性之碳六十衍生物其在反式高分子太陽能電池之應用;摻混含有五氟苯基之碳六十衍生物於穩定有機太陽能電池形貌之研究
10. 高三重態能隙有機半導體材料之特性與元件應用
11. 光交聯碳六十衍生物及聚(3-烷基)噻吩之合成與其在有機太陽能電池之應用
12. 熱交聯電洞傳遞層材料在高分子發光二極體上的應用
13. 含1,2,3-三氮唑液晶化合物及多苯環芳香族亞醯胺衍生物之合成與分子自組裝及其在有機薄膜電晶體之研究
14. 可熱交聯之碳六十、碳七十衍生物:合成、鑑定及其在反式太陽能電池之應用
15. 鉻、鐵、鈷過渡金屬錯合物之電子組態與電荷密度研究
 
系統版面圖檔 系統版面圖檔