(3.236.222.124) 您好!臺灣時間:2021/05/08 07:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉耕硯
研究生(外文):Ken-Yen Liu
論文名稱:含共價結合給受體螢光染色基團之溶膠合成與光物理及光電池之研究
論文名稱(外文):Photophysics and Light-Induced Current Generation in Organic-Inorganic Hybrid Materials Incorporated with Donor-Acceptor Chromophores
指導教授:陸天堯陸天堯引用關係
指導教授(外文):Tien-Yau Luh
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:101
中文關鍵詞:光電流發光團能量轉移溶膠凝膠法光收成
外文關鍵詞:light-induced currentchromophoresol-gel techniqueenergy transferlight harvesting
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要

近年來科學家對於利用人工合成之系統模仿自然界的光收成及能量轉移抱持著很大的興趣。 在此篇論文中報導了利用含有雙矽氧烷基之共軛基團當作給受體,並且和四乙氧基矽烷用溶膠凝膠法形成含二到四種發光團之單相均勻有機無機混成材料,能藉由給受體間的能量轉移,進而表現出光收成的效果。當只有一種發光團時,會因為分子之間的堆疊造成自生淬息及螢光紅移的現象(跟單體之螢光光譜比較),而加入另一發光團時便可將原發光團隔開而減低堆疊的產生。 而隨著給體比例升高而增強的受體螢光強度,則證明了光收成的現象。這些結果和大自然的光收成現象相吻合。另外,在三種及四種發光團的系統裡,我們也能觀察到能量轉移的發生。
這樣的有機無機混成材料也具有光電流的性質。使用二氧化鈦當作有效的電子受體,在加入四異丙氧基鈦烷一起形成有機-矽-鈦混成材料後,得到較大的光電流。製成Grätzel型電池元件,得到近1%的效率。
Abstract

There have been ever burgeoning interests on synthetic light harvesting systems to effectively mimic the natural process of energy transfer. In this thesis, different kinds of bis[(alkox)silane] moieties with different aromatic cores as donor and acceptor were empolyed. The organic-inorganic hybrids silica containing a combination of two to four kinds of chromophores were prepared by the sol-gel technique. When the hybrid material contained only one kind of the chromophore, self-quenching leading to red shift in the emission spectra in comparison with those of monomeric compounds measured in solution (aggregation may occur). Incorporation of a second chromophore into the system may segregate such kind of aggregation so that self-quenching might be avoided. The higher the donor concentration, the higher the emission intensity. These results are consistent with the light harvesting nature of our hybrid materials. Energy transfer can also occur in the hybrid material contained three and four kind of the chromophores.
Furthermore, such system can show light-induced current generation property. Titanium oxide has been demonstrated to serve as an efficient electron acceptor in this system. When the hybrid material was prepared from TTIP and TEOS, a further enhancement of the photocurrent was obtained. The hybrid systems were used to fabricate Grätzel cells, and the efficiency reached around 1%。
章節目錄

中文摘要………………………………………………………………..Ⅰ
英文摘要………………………………………………………………..Ⅱ
章節目錄………………………………………………………………..Ⅲ
第一章 緒論 ……………………………………………………..1
第二章 結果與討論…………………………………………..21
第三章 實驗部分…………………………………………………..64
第四章 參考文獻…………………………………………………..82
附錄……………………………………………………………….....85
(1) Stewart, G. M.; Fox, M. A. J. Am. Chem. Soc. 1996, 118, 4354-4360.
(2) Devadoss, P.; Moore, J. S. J. Am. Chem. Soc. 1996, 118, 9635-9644.
(3) Jiang, D.-L.; Aida, T.; Nature, 1997, 388, 454-457.
(4) Gilat, S. L.; Adronov, A.; Fréchet, J. M. J. Angew. Chem. Int. Ed. 1999, 38, 1422-1426.
(5) Plevoets, M.; Vögtle, F.; de Cola, L.; Balzani, V. New J. Chem. 1999, 23, 63-69.
(6) Adronov, A.; Fréchet, J. M. J. Chem. Comm. 2000, 1701-1710.
(7) Adronov, A.; Gilat, S. L.; Fréchet, J. M. J.; Ohta, K.; Neuwahl, F. V. R.; Fleming, G. R. J. Am. Chem. Soc. 2000, 122, 1175-1185.
(8) Serin, J. M.; Brousmiche, D. W.; Fréchet, J. M. J. Chem. Comm. 2002, 2605-2607.
(9) Melinger, J. S.; Pan, Y.; Kleiman, V. D.; Peng, Z.; Davis, B. L.; McMorrow, D.; Lu, M. J. Am. Chem. Soc. 2002, 124, 12002-12012.
(10) Nakano, A.; Osuka, A.; Yamazaki, I.; Yamazaki, T.; Nishimura, Y. Angew. Chem. Int. Ed. 1998, 37, 3023-3027.
(11) Haycock, R. A.; Yartsev, A.; Michelsen, U.; Sundström, V.; Hunter, C. A. Angew. Chem. Int. Ed. 2000, 39, 3616-3619.
(12) Nakano, A.; Osuka, A.; Yamazaki, T.; Nishimura, Y.; Akimoto, S.; Yamazaki, I.; Itaya, A.; Murakami, M.; Miyasaka, H. Chem. Eur. J. 2001, 7, 3134-3151.
(13) Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 2001, 34, 40-48.
(14) Choi, M.-S.; Aida, T.; Yamazaki, T.; Yamazaki, I. Chem. Eur. J. 2002, 8, 2667-2678.
(15) Tomizaki, K.; Loewe, R. S.; Kirmaier, C.; Schwartz, J. K.; Retsek, J L.; Bocian, D. F.; Lindsey, J. S. J. Org. Chem. 2002, 67, 6519-6534.
(16) Nowakowska, M.; Foyle, P. V.; Guillet, J. E. J. Am. Chem. Soc. 1993, 115, 5975-5981.
(17) Hisada, K.; Ito, S.; Yamamoto, M. Langmuir, 1995, 11, 996-1000.
(18) Schultze, X.; Serin, J.; Adronov, A.; Fréchet, J. M. J. Chem. Comm. 2001, 1160-1161.
(19) Russel, D. M.; Arias, C. A.; Friend, R. H.; Silvia, C.; Ego, C.; Grimsdale, A. C.; Müllen, K. Appl. Phys. Lett. 2002, 80, 2204-2206.
(20) Cheng, Y.-J.; Hwu, T.-Y.; Hsu, J.-H.; Luh, T.-Y. Chem. Comm. 2002, 1978-1979.
(21) Cheng, Y.-J.; Liang, H.; Luh, T.-Y. Macromolecules 2003, 36, 5912-5914.
(22) Kimura, M.; Ueki, H.; Ohta, K.; Hanabusa, K.; Shirai, H.; Kobayashi, N. Langmuir 2002, 18,7683.
(23) Morita, T.; Kimura, S.; Imanasi, Y. Langmuir, 1998, 14, 171-175.
(24) Matsui, J.; Mitsuishi, M.; Miyashita, T. Macromolecules, 1999, 32, 381-386.
(25) Dutton, P. J.; Conte, L. Langmuir, 1999, 15, 613-617.
(26) Kaschak, D. M.; Mallouk, T. E. J. Am. Chem. Soc. 1996, 118, 4222-4223.
(27) Kaschak, D. M.; Lean, J. T.; Warakska, C. C.; Saupe, G. B.; Usami, H.; Mallouk, T. E. J. Am. Chem. Soc. 1999, 120, 3435-3445.
(28) Charreyre, M.-T.; Yekta, A.; Winnik, M. A.; Delai, T.; Pichot, C. Langmuir, 1995, 11, 2423-2428.
(29) Caruso, F.; Donath, E.; Mowhald, H. J. Phy. Chem. B, 1998, 102, 2011-2016.
(30) Chrisstoffels, L. A. J.; Adronov, A.; Fréchet, J. M. J. Angew. Chem. Int. Ed. 2000, 39, 2163-2167
(31) Ebelmen, M. Ann. Chimie Phys. 1846, 16, 129.
(32) Ebelmen, M. C. R. Acad. Sci. 1847,25, 854.
(33) Cerveau, G.; Corriu, R. J. P. Coord. Chem. Rev. 1998, 178-180, 1051-1071.
(34) Cerveau, G.; Corriu, R. J. P.; Framery, E. Chem. Mater. 2001, 13, 3373-3388.
(35) Shea, K. J.; Loy, D. A. Acc. Chem. Res. 2001, 34, 707-716.
(36) Shane, S. H. Mao; F-Q. Liu.; T. D. Tilley. J. Am. Chem. Soc. 1998, 120, 1193-1206.
(37) Baumgarten , M.; Yuksel, T. Phys. Chem. Chem. Phys. 1999, 1, 1699-1706.
(38) H. Irngartinger, R. Herpich, Eur. J. Org. Chem. 1998, 595-604.
(39) Kilbinger, A. F. M.; Feast, W. J. J. Mater. Chem. 2000, 10, 1777-1784.
(40) Nakayama, J.; Konishi, T.; Murabayashi, S.; Hoshino, M. Heterocycles. 1987, 26(7), 1793-1796.
(41) P. A. Chaloner; S. R. Gunatunga; P. B. Hitchcock. J. Chem. Soc. Perkin Trans. 2. 1997, 1597-1604.
(42) Azumi, R.; Götz, G.; Debaerdemaeker, T.; Bäuerle, Peter. Chem. Eur. J. 2000, 6(4), 735-744.
(43) Turro, N. J. Modern Molecular Photochemistry, University Science
Books, Sausalito, 1991.
(44) Dexter, D. L. J. Chem. Phys., 1953, 21, 836.
(45) Förster , T. Ann. Phys., 1948, 2, 55.
(46) Förster, T. Z. Naturforsch., 1949, 4, 321.
(47) Wieb Van Der Meer, B.; Coker III, G.; Chen, Simon S.-Y. Resonance
Energy Transfer, Theory and Data, VCH, Weinheim, 1994.
(48) O’Regan, B.; Grätzel, M. Nature 1991, 353 737.
(49) Nazeeruddin, M. K. A.; Kay, I. Rodicio, Humphry-Baker, R.; Müller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc. 1993, 115, 6382.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔