(3.235.191.87) 您好!臺灣時間:2021/05/13 04:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳慧中
研究生(外文):Huay-Zhong Chen
論文名稱:自組裝單層膜表面對有機半導體分子蒸鍍膜堆疊位向結構影響之研究
論文名稱(外文):Influence of Self-Assembled Monolayers on the Stacking Orientation of Organic Semiconductor Thin Film
指導教授:周大新
指導教授(外文):Tahsin J. Chow
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:85
中文關鍵詞:對位六聯噻有機半導體自組裝單層膜菁銅
外文關鍵詞:self-assembled-monolayera-sorganic-semiconductor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:121
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇主要為對?六聯噻吩及酞菁銅兩種有機半導體分子,以真空
蒸鍍於乾淨金、不同自組裝單層膜以及聚亞甲基薄膜表面作為基材之
蒸鍍膜堆疊位向結構研究。
藉由反射式紅外光譜、原子力顯微鏡影像、近緣X-射線吸收微
組態(NEXAFS)光譜以及X 光繞射圖譜結果,我們可以判斷出這兩種
有機半導體分子蒸鍍膜在常溫下乾淨金表面時,分子呈現平行於基材
表面方向堆疊,而在自組裝單層膜表面則呈現接近垂直於基材表面方
向排列。若是在於聚亞甲基薄膜表面蒸鍍?六聯噻吩,分子大略呈現
垂直於基材的狀態,而當聚亞甲基薄膜表面經刷磨處理後,分子除了
平行於基材表面外,晶體生長方向也受到了影響,而得到二維方向整
齊排列的有機半導體分子。
薄膜晶體中分子堆疊方向不同也呈現了不同的光學性質。在?
六聯噻吩蒸鍍膜中,分子的堆疊方向的不同使得螢光的強度有著很大
的差異;對於酞菁銅蒸鍍膜中,分子的堆疊則影響了紫外光吸收的能
量區域。
In this thesis, we mainly studied the stacking orientation of two
kinds of organic semiconductor thin films: ?sexithiophene and copper
phthalocyanine (CuPc), by thermal evaporation on gold and modified
gold surface such as self-assembled monolayer (SAM) and
poly-methylene film. We determined the organic semiconductor thin
films orientation by using reflection absorption IR (RAIR), Atomic Force
Microscopy (AFM) image, Near Edge X-Ray Absorption Fine Structure
(NEXAFS) spectra as well as Powder X-Ray Diffraction (XRD) spectra.
On the gold surface, all of the molecules were stacking parallel to
the surface, but on self-assembled monolayer, they were stacking near
perpendicular to the surface. As we deposit the ?sexithiophene on
rubbed poly-methylene surfaces, the RAIR showed that the molecules
were oriented parallel to the poly-methylene surface. Moreover, the
AFM images showed that the crystals of ?sexithiophene were aligning
perpendicular to the rubbing direction.
The different molecular stacking orientation of the thin films also
gave a distinction of the optical properities. For ?sexithiophene, when
the molecules were parallel to the surface, a much stronger fluorescence
intensity was obtained. As for CuPc, a red shift in UV-vis spectra was
observed when the molecules were perpendicular to the surface.
總目錄
中文摘要...................................................I
Abstract..................................................II
總目錄...................................................III
圖目錄....................................................VI
表目錄....................................................XI
一. 緒論...................................................1
1-1 自組裝單層膜...........................................1
1-1.1 烷基硫醇自組裝單層膜.................................4
1-1.2 具芳香環硫醇分子自組裝單層膜.........................5
1-1.3 混合自組裝單層膜.....................................6
1-2 有機半導體.............................................7
1-2.1 有機半導體簡介.......................................7
1-2.2 有機半導體材料.......................................9
1-2.3 有機半導體蒸鍍薄膜成長機構與分子堆疊方向性控制......10
1-2.4 有機半導體材料之應用................................12
1-3 分子電子學............................................15
二、 研究動機與方法.......................................18
三、 實驗.................................................20
3-1 實驗用藥品............................................20
3-2 實驗步驟..............................................21
3-2.1 ?六聯噻吩合成.....................................21
3-2.2 金基材製備..........................................23
3-2.3 自組裝單層膜製備....................................24
3-2.4 混合自組裝單層膜製備................................24
3-2.5 以微米轉印製備混合單層膜............................25
3-2.6 聚亞基薄膜製備......................................26
3-2.7 有機半導體分子膜蒸鍍................................26
3-3 實驗用儀器與技術......................................27
3-3.1 真空蒸鍍機..........................................27
3-3.2 核磁共振光譜儀......................................27
3-3.3 傅立葉紅外線光譜儀..................................27
3-3.4 近緣X-射線吸收微組態光譜............................28
3-3.5 原子力顯微..........................................30
3-3.7 螢光光譜儀..........................................31
3-3.8 擴散反射式紫外-可見光光譜儀.........................31
四、 結果與討論...........................................31
4-1 自組裝單層膜反射式紅外線光譜..........................32
4-2 ?六聯噻吩蒸鍍膜.....................................39
4-2.1 反射式紅外線光譜結果................................40
4-2.1.1 室溫蒸鍍?六聯噻吩分子...........................41
4-2.1.2 高溫蒸鍍?六聯噻吩分子...........................43
4-2.2 近緣X-射線吸收微組態光譜............................48
4-2.3 原子力顯微鏡結果....................................51
4-2.4 X-光繞射圖譜........................................56
4-2.5 螢光光譜............................................60
4-3 酞菁銅蒸鍍膜..........................................64
4-3.1 反射式紅外線光譜結果................................64
4-2.1.1 室溫蒸鍍酞菁銅分子................................65
4-2.1.2 高溫蒸鍍酞菁銅分子................................70
4-3.2 近緣X-射線吸收微組態光譜............................71
4-3.3 原子力顯微鏡結果....................................74
4-3.4 X-光繞射圖譜........................................76
4-3.5 擴散反射式紫外-可見光光譜...........................78
五、 結論與展望...........................................80
六、 參考文獻.............................................82
1.(a) K. Xiao, Y. Liu, Y. Guo, G. Yu, L. Wan, D. Zhu, “Influence of self-assembly monolayers on ghe characteristics of copper phthalacyanine thin film transistor.”, Appl. Phys. A, 2003. (b) J. Cui, Q. L. Huang, Q. W. Wang, T. J. Marks, Langmuir, 2001, 17, 2051. (c) I. Kymissis, C. D. Dimitrakopoulos, S. Purushothaman, IEEE Trans. Electron Devices, 2001, 48, 1060.
2.I. Zuppiroli, L. Si-Ahamed, K. Kamaras, F. Nüesch, M. N. Bussac, D. Ades, A. Siove, E. Moons, M. Grätzel, Eur. Phys. J. B, 1999, 11, 505.
3.W. C. Bigelow, D. L. Pickett, W. A. Zisman, J. Collid Interface Sci. 1946, 1, 513.
4.B. Mann, H. Khun, J . Appl. Phys. 1971, 42, 4398.
5.R. G. Nuzzo, D. L. Allara, J. Am. Chem. Soc. 1983, 105, 4418.
6.(a) A. Dulcic, Chem. Phys., 1979, 37, 57. (b) M. F. Daniel, G. W. Smith, Mol. Cryst. Liq. Cryst., 1984, 102, 193. (c) G. L. Gaines, Nature, 1982, 298, 544.
7.E. Delamarche, B. Michel, H. Kang, C. Gerber, Langmuir, 1994, 10, 4103.
8.(a) D. L. Allara, R. G. Nuzzo, Langmuir, 1985, 1, 54. (b) P. E. Laibinis, J. J. Hickinan, M. S. Wrighton, G. M. Whitesides, Science 1989, 245, 845. (c) Y.-T. Tao, M.-T. Lee, S.-C. Chang, J. Am. Chem. Soc. 1993, 115, 9547.
9.J. B. Brzoska, I. B. Azouz, F. Rondelez, Langmuir, 1994, 10, 4367.
10.K.-B. Lee, S.-J. Park, C. A. Mirkin, J. C. Smith, M. Mrksich, Science 2002, 295, 1702.
11.(a) I. Willner, V. Heleg-Shabtai, R. Blonder, E. Katz, G. Tao, J. Am. Chem. Soc. 1996, 118, 10321. (b) M. Wells, R. M. Crooks, J. Am. Chem. Soc. 1996, 118, 3988.
12.K.-B. Lee, S.-J. Park, C. A. Mirkin, J. C. Smith, M. Mrksich, Science, 2002, 295, 1702.
13.C. A. Widrig, C. A. Alves, M. D. Poter, J. Am. Chem. Soc., 1991, 113, 2805.
14.S.-C. Chang, Ito Chao, Y,-T. Tao, J. Am. Chem. Soc., 1994, 116, 6792.
15.B. Liedberg, Z. Yang, I. Engquist, M. Wirde, U. Gelius, G. Gotz, P. Bauerle, R.-M. Rummel, Ch. Ziegler, W. Gopel, J. Phys. Chem. B, 1997, 101, 5951.
16.J. Chen, M. A. Reed, A. M. Rawlett, J. M. Tour, Science, 1999, 286, 1550.
17.L. Bertilsson, B. Liedberg, Langmuir, 1993, 9, 141.
18.S. J. Stranick, A. N. Parikh, Y.-T. Tao, D. L. Allara, P. S. Weiss, J. Phys. Chem., 1994, 98, 7636.
19.(a) H. Shirakawa, . J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, Chem. Commun. 1977, 578. (b) C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S.C. Gua, and A. G. MacDiarmid, Phys. Rev. Lett. 1997, 39, 1098. (c) C. K. Chiang, M. A. Druy, S.C. Gua, A. J.Heeger, H. Shirakawa, E. J. Louis, A. G. MacDiarmid, and Y. W. Park, J. Am. Chem. Soc., 1978, 100, 1013.
20.G. Horowitz, Adv. Mater., 1998, 10, 365.
21.(a) T. Holstein, Ann. Phys. 1959, 8, 325 and 343. (b) E. A. Silinsh, A. Klimkans, S. Larsson, V. Cápek, Chem. Phys., 1995, 198, 311. (c) E. A. Silinsh, V. Cápek, Organic Molecular Crystals. (d) G. G. Robertson, N. Aspley, R. W. Munn, Physics Reports, 1980, 60,59.
22.H. Baessler, in Primary Photoexcitations in Conjugated Polymers: Molecular versus Semiconductor Band Model, edited by N. S. Sariciftci
23.H. Sirringhaus, P. J. Brown, R. H. Frined, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw, Nature, 1999, 401, 685.
24.(a) S. F. Nelson, Y.-Y. Lin, D. J. Gundlach, T. N. Jackson, Appl. Phys. Lett., 1998, 72, 1854. (b) D. J. Gundlach, S. F. Nelson, T. N. Jackson, IEEE Electron Device Lett. 1997, 18, 87.
25.D. J. Gundlach, Y.-Y. Lin, T. N. Jackson, D. G. Schlom, Appl. Phys. Lett., 1997, 71, 3853.
26.G. Horowitz, D. Fichou, X. Z. Peng, Z. G. Xu, F. Garnier, Solid State Commun., 1989, 72, 381.
27.D. D. Eley, Nature, 1948, 162, 819.
28.(a) H. Sirringhaus, R. H. Friend, X. C. Li, S. C. Moratti, A. B. Holmes, N. Feeder, Appl. Phys. Lett. 1997, 71, 3871. (b) W. Li, H. Katz, A. J. Lovinger, J. G. Laguindanum, Chem. Mater. 1999, 11, 458. (c) H. E. Katz, J. Johnson, A. J. Lovinger, W. Li, J. Am. Chem. Soc. 2000, 122, 7787. (d) H. E. Katz, Z. Bao, S. L. Gilat, Acc. Chem. Res. 2001, 34, 359.
29.(a) Y.-Y. Noh, J.-J. Kim, Y. Yoshida, K. Yase, Adv. Mater. 2003, 15, 699. (b) Y. Toda, H. Yanagi, Appl. Phys. Lett. 1996, 69, 2315.
30.J. Stöhr, M. G. Samant, J. Electron Spectrosc. Rel. Phenom. 1999, 98-99, 189.
31.X. L. Chen, A. J. Lovunger, Z. Bao, J. Sapjeta, Chem. Mater, 2001, 13, 1341.
32.M. Volmer, Ann. Physik 1913, 40, 775.
33.R. Farchioni, G. Grosso, Organic Electronic Materials.
34.M. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys. 1963, 38, 2042
35.A. Tsumura, H. Koezuka, T. Ando, Appl. Phys. Lett., 1986, 49, 1210.
36.A. R. Brown, A. Pomp, C. M. Hart, D. M. de Leeuw, Science, 1995, 270, 972.
37.A. Aviram and M. A. Ratner, Chem. Phys. Lett. 1974, 29, 277.
38.(a) R. M. Metzger et al., J. Am. Chem. Soc., 1997, 119, 10455. (b) C. Zhou et al., Appl. Phys. Lett.,1997, 71, 611.
39.Yu Huang, Xiangfeng Duan, Qingqiao Wei, and Charles M. Lieber, Science, 2001, 291, 630.
40.Garnier, F., Hajlaoui, R., Yassar, A.& Srivastava, P. Science, 1994, 265, 1684.
41.(a) G. H. Gelinck, T. C. T. Genus, D. M. de Leeuw, Appl. Phys. Lett., 2000, 77, 1487. (b) C. D. Sherraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, J. West, Appl. Phys. Lett. 2002, 80, 1088. (c) B. Crone, A. Dodabalapur, A. Gelperin, L. Torsi, H. E. Katz, A. J. Lovinger, Z. Bao, Appl. Phys. Lett. 2001, 78, 2229.
42.C. D. Dimitrakopoulos, D. J. Mascaro, IBM J. Res. & Dev., 2001, 45, 22.
43.(a) G. H. Heilmeier, L. A. Zanoni, J. Phys. Chem. Solids, 1964, 25, 603. (b) G. Horowitz, D. Fichou, X. Peng, Z. Xu, F. Garnier, Solid State Commun, 1989, 72, 831. (c) G. Horowitz, X. Peng, D. Fichou, F. Garnier, Synth. Met. 1992, 51, 419. (d) A. Dobabalapur, L. Torsi, H. E. Katz, Science, 1995, 268, 270.
44.M. Fahlman, W. R. Salaneck, Surface Science, 2002, 500, 904.
45.K. Tamao, S. Kodama, I. Nakajima, M. Kumada, Tetrahedron, 1982, 38, 3347.
46.J. Kagan, S. K. Arora, Heterocycles, 1983, 20, 1937.
47.J. Kagan, S. K. Arora, Tetra. Lett., 1983, 24, 4043.
48.F. Garnier, R. Yassar, G. Hajlaoui, F. Horowitz, F. Deloffre, B. Servet, S. Ries, P. Alnot, J. Am. Chem. Soc., 1993, 115, 8716.
49.J. L. Wilbur, E. Kim, Y. Xia, and G. M. Whitesides, Adv. Mater., 1995, 7, 649.
50.K. Seshadri, S. V. Atre, Y.-T. Tao, M.-T. Lee, D. L. Allara, J. Am. Chem. Soc., 1997, 119, 4698.
51.J. Stohr, Nexafs Spectroscopy (Springer Series in Surface Sciences, No 25), 1992
52.G. Binnig, C. F. Quate, Ch. Gerber, Phys. Rev. Lett. 1986, 56, 930.
53.P. E. Laibinis, G. M. White sides, D. L. Allara, Y.-T. Tao, A. N. Parikh, R. G. Nuzzo, J. Am. Chem. Soc., 1991, 113, 7152.
54.M. D. Porter, T. B. Bright, D. L. Allara, C. E. D. Chidsey, J. Am. Chem. Soc., 1987, 109, 3559.
55.(a) R. G. Nuzzo, E. M. Korenic, L. H. Dubois, J. Chem. Phys., 1990, 93, 767. (b) J. T. Young, W. H. Tasi, F. Boerio, J. Macromolecules, 1992,25,887. (c) G. Varsanyi, Vibrational Spectra of Benzene Derivatives, Academic Press, New York, 1974.
56.P. Lang, R. Hajlaoui, F. Gamier, B. Desbat, T. Buffeteau, G. Horowitz, A. Yassar, J. Phys. Chem., 1995, 99, 5492. (b) G. Louarn, J. P. Buisson, S. Lefrant, and D. Fichou, J. Phys. Chem., 1995, 99, 11399.
57.J. Stöhr, J. L. Gland, E. B. Kollin, R. J. Roestner, Allen L. Johnson, E. L. Muetterties, F. Sette, Phys. Rev. Lett., 1984, 53, 2161.
58.D. Fichou, Journal of Materials Chemistry, 2000, 10, 571.
59.H. Yanagi, S. Okamoto, Appl. Phys. Lett., 1997, 71, 2563.
60.(a) Masahiko Fukui, Norihisa Katayama, Yukihiro Ozaki, Toshinari Araki, Keiji Iriyama,. Chem. Phys. Lett., 1991, 177, 247. (b) S. Seelan, A. K. Sinha, D. Srinivas, S. Sivasanker, J. Mole. Catal. A., 2000, 157, 163.
61.K. W. Hipps, Xing Lu, X. D. Wang, Ursula Mazur, J. Phys. Chem., 1996, 100, 11207.
62.O. Berger, W.-J. Fischer, B. Adolphi, S. Tierbach, V. Melev, J. Schreiber, Journal of Material Science : Materials in Electronics, 2000, 11, 331.
63.Anabela S. Oliveira, Milena B. Fernandes, Josino C. Moreira, Luis F. Vieira Ferreira, J. Braz. Chem. Soc., 2002, 13, 245.
64.R. Yerushalmi, A. Scherz, Milko E. van der Boom, J. Am. Chem. Soc., 2004, 126, 2700.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔