(34.226.234.102) 您好!臺灣時間:2021/05/12 09:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉姿蘭
研究生(外文):Tzu-Lan Liu
論文名稱:終紋床核在記憶穩固歷程中的角色─麩胺酸雨正腎上腺素之互動
論文名稱(外文):Role of the Bed Nucleus of the Stria Terminalis on Memory Formation Precesses: Interaction Between Norepinephrine and Glutamate
指導教授:梁庚辰梁庚辰引用關係
指導教授(外文):Keng-Chen Liang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:心理學研究所
學門:社會及行為科學學門
學類:心理學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:98
中文關鍵詞:NMDA受器β受器正腎上腺素終紋床核麩胺酸逃避學習
外文關鍵詞:β-adrenergic receptorsavoidance learningbed nucleus of the stria terminalisNMDA receptorsglutamatenorepinephrine
相關次數:
  • 被引用被引用:1
  • 點閱點閱:385
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
許多研究指出,情緒記憶的形成涉及杏仁核內的神經機制與其輸入、輸出結構的神經互動。終紋床核(bed nucleus of the stria terminalis)是杏仁核一重要的聯絡區域,它透過終紋(stria terminalis)與杏仁核進行溝通。過去的研究顯示,終紋床核上分佈有正腎上腺素與麩胺酸神經,且彼此間會相互影響。過去甚少研究探討終紋床核內正腎上腺素與麩胺酸在學習記憶上所扮演的角色。因此本論文利用抑制型逃避作業、水迷津作業與驚跳反應之恐懼增益作業探討終紋床核內麩胺酸NMDA(N-methyl-D-aspartic acid)受器在記憶穩固歷程中的角色,並進一步探討該受器與正腎上腺素之互動。實驗1發現訓練後在終紋床核內注射麩胺酸會促進大白鼠在抑制型逃避作業的記憶表現,且此效果可被APV(DL-2-amino-5-phosphonovaleric acid)逆轉。實驗2發現訓練後以APV阻斷終紋床核內NMDA受器會損害大白鼠在抑制型逃避作業的記憶表現。然而麩胺酸與APV不影響動物在水迷津作業與驚跳反應之恐懼增益作業上的記憶表現。實驗3發現麩胺酸與正腎上腺素對促進抑制型逃避記憶具有加成效果(additive effect)。實驗4顯示APV對記憶的損害效果可被正腎上腺素逆轉。實驗5發現麩胺酸對記憶的促進效果無法被α1受器拮抗劑prazosin減弱。實驗6於訓練後以propranolol阻斷終紋床核內β受器會損害大白鼠在抑制型逃避作業的記憶表現,而正腎上腺素對記憶的促進效果可以被propranolol逆轉。實驗7顯示麩胺酸對記憶的促進效果可被β受器拮抗劑propranolol逆轉。綜合以上之結果,終紋床核內NMDA受器與β受器參與抑制型逃避記憶的穩固,而麩胺酸與正腎上腺素可以分別透過NMDA受器與β受器調節抑制型逃避記憶的穩固。另外,經NMDA受器調節釋放的正腎上腺素會透過β受器參與抑制型逃避記憶的穩固歷程。這些結果顯示終紋床核在逃避記憶的形成上扮演重要角色。
Extensive evidence implicates the amygdala in modulation of memory processes. Previous research indicated that the stria terminalis mediates the memory modulatory influences from the amygdala. The bed nucleus of the stria terminalis (BNST) is a projection target of the stria terminalis. Neuroanatomical and immunohistochemical studies demonstrated a variety of neurotransmitters and neuropeptides, including norepinephrine and glutamate, present in the perikarya or afferent terminals of the BNST. Some of the noradrenergic terminals in the BNST possess presynaptic NMDA receptors. Norephinephrine released in the BNST may be regulated by presynaptic NMDA receptors. Moreover, previous evidence showed that norepinephrine released in the BNST could modulate memory processes through ?-adrenergic receptors. While the NMDA receptor in various brain regions is importanted in neural plasticity, but its role in the BNST in terms of interacting with norepinephrine in modulating memory processing is still obscured. The present study investigated the involvement of NMDA receptors, as well as the interaction of norepinephrine and glutamate in the BNST in memory consolidation processes. Rats with the BNST bilaterally implanted cannula were trained on the inhibitory avoidance task, water maze task, and fear-potentiated startle task. Drugs were bilaterally infused into the BNST shortly after training. Results indicated that immediate post-training intra-BNST infusion of 1.0 μg L-glutamate enhanced retention of the inhibitory avoidance response, and the memory enhancing effect was attenuated by 1.0 μg APV. Post-training intra-BNST infusion of 5.0 μg APV impaired retention of the inhibitory avoidance task. These effects were not observed in either the water maze or the fear-potentiated startle task. Posttraining intra-BNST infusion of 10.0 μg propranolol impaired retention of the inhibitory avoidance response. The memory enhancing effect of 1.0 μg norepinephrine was attenuated by 5.0 μg propranolol. Intra-BNST infusion of 0.02 μg norepinephrine and 0.2 μg L-glutamate, in which either drug by itself had no discernible effect, enhanced inhibitory avoidance retention if given concurrently right after training. The amnestic effect of APV in the inhibitory avoidance task could be ameliorated by 0.02 μg norephinephrine, which by itself caused no enhancing effect. The memory enhancing effect of L-glutamate was not attenuated by prazosin, but ameliorated by propranolol. These findings suggest that in the inhibitory avoidance task, the glutamate released in the BNST could modulate memory processes through NMDA receptors. Furthermore, release of norepinephrine in the BNST, which may be regulated by presynaptic NMDA receptors, could act on postsynapticβ-adrenergic receptors in modulating memory consolieation processes.
緒論..................................................... 1
第一節 引言........................................... 1
第二節 杏仁核及其傳輸路徑在情緒記憶中所扮演的角色..... 2
第三節 終紋床核的神經解剖與化學物質................... 4
第四節 麩胺酸與正腎上腺素之互動....................... 7
第五節 終紋床核的生理行為角色......................... 9
第六節 本論文之研究議題與策略.........................11
材料與方法...............................................15
實驗1:訓練後在終紋床核內注射麩胺酸Glutamate對不同作業的影
響................................................25
實驗2:訓練後在終紋床核內注射NMDA受器拮抗劑APV對不同作業的
影響..............................................30
實驗3:訓練後於終紋床核內同時注射正腎上腺素與麩胺酸對抑制型
逃避作業影響......................................36
實驗4:正腎上腺素阻斷APV在終紋床核之記憶損害作用.........38
實驗5:prazosin不影響麩胺酸在終紋床核之記憶促進作用......40
實驗6:訓練後在終紋床核內注射正腎上腺素β受器拮抗劑
propranolol對抑制型逃避反應的影響.................42
實驗7:propranolol阻斷麩胺酸在終紋床核之記憶促進作用.....45
綜合討論.................................................47
第一節 學習後處置之合理性.............................48
第二節 終紋床核內麩胺酸與NMDA受器在不同學習作業上的角
色.............................................49
第三節 終紋床核內麩胺酸與正腎上腺素間的互動...........53
第四節 終紋床核在學習記憶中的角色.....................57
參考文獻................................................62
附圖說明................................................71
附圖....................................................77
陳秀貞(2000)。「終紋床核在逃避反應之學習與記憶的角色」(未發表之碩士論文)。台北:國立台灣大學心理學研究所。
Albert, D. J., Petrovic, D. M., Walsh, M. L., & Jonik, R. H. (1989). Medial accumbens lesions attenuate testosterone-dependent aggression in male rats. Physiology and Behavior, 46, 625-631.
Campeau, S., Miserendino, M. J., & Davis, M. (1992). Intra-amygdala infusion of the N-methyl-D-aspartate receptor antagonist AP5 blocks acquisition but not expression of fear-potentiated startle to an auditory conditioned stimulus. Behavioral Neuroscience, 106, 569-574.
Canteras, N. S., & Swanson, L. W. (1992). Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: a PHAL anterograde tract-tracing study in the rat. Journal of Comparative Neurology, 324, 180-194.
Casada, J. H., & Dafny, N. (1991). Restraint and stimulation of bed nucleus of the stria terminalis produce similar stress-like behaviors. Brain Research Bulletin, 27, 207-212.
Cecchi, M., Khoshbouei, H., Javors, M., & Morilak, D. A. (2002). Modulatory effects of norepinephrine in the lateral bed nucleus of the stria terminalis on behavioral and neuroendocrine responses to acute stress. Neuroscience, 112, 13-21.
Cecchi, M., Khoshbouei, H., & Morilak, D. A. (2002). Modulatory effects of norepinephrine, acting on alpha 1 receptors in the central nucleus of the amygdala, on behavioral and neuroendocrine responses to acute immobilization stress. Neuropharmacology, 43, 1139-1147.
Cratty, M. S., & Birkle, D. L. (1999). N-methyl-D-aspartate (NMDA)-mediated corticotropin-releasing factor (CRF) release in cultured rat amygdala neurons. Peptides, 20, 93-100.
Dalsass, M., & Siegel, A. (1987). The bed nucleus of the stria terminalis: electrophysiological properties and responses to amygdaloid and hypothalamic stimulation. Brain Research, 425, 346-350.
Davis, M. (1992). The role of the amygdala in conditioned fear. In J. P. Aggleton (Ed.), The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction (pp. 255-305). New-York: Wiley-Liss.
Davis, M., & Shi, C. (1999). The extended amygdala: are the central nucleus of the amygdala and the bed nucleus of the stria terminalis differentially involved in fear versus anxiety? Annals of the New York Academy of Sciences, 877, 281-291.
Davis, M., Walker, D. L., & Lee, Y. (1997). Amygdala and bed nucleus of the stria terminalis: differential roles in fear and anxiety measured with the acoustic startle reflex. Philosophical transactions of the Royal Society of London Series B, Biological sciences, 352, 1675-1687.
Day, H. E., Campeau, S., Watson, S. J., Jr., & Akil, H. (1997). Distribution of alpha 1a-, alpha 1b- and alpha 1d-adrenergic receptor mRNA in the rat brain and spinal cord. Journal of chemical neuroanatomy, 13, 115-139.
Erb, S., Shaham, Y., & Stewart, J. (1996). Stress reinstates cocaine-seeking behavior after prolonged extinction and a drug-free period. Psychopharmacology (Berl), 128, 408-412.
Erb, S., Shaham, Y., & Stewart, J. (1998). The role of corticotropin-releasing factor and corticosterone in stress- and cocaine-induced relapse to cocaine seeking in rats. Journal of Neuroscience, 18, 5529-5536.
Erb, S., & Stewart, J. (1999). A role for the bed nucleus of the stria terminalis, but not the amygdala, in the effects of corticotropin-releasing factor on stress-induced reinstatement of cocaine seeking. Journal of Neuroscience, 19, RC35.
Fendt, M., Endres, T., & Apfelbach, R. (2003). Temporary inactivation of the bed nucleus of the stria terminalis but not of the amygdala blocks freezing induced by trimethylthiazoline, a component of fox feces. Journal of Neuroscience, 23, 23-28.
Fink, K., Bonisch, H., & Gothert, M. (1990). Presynaptic NMDA receptors stimulate noradrenaline release in the cerebral cortex. European Journal of Pharmacology, 185, 115-117.
Forray, M. I., Andres, M. E., Bustos, G., & Gysling, K. (1995). Regulation of endogenous noradrenaline release from the bed nucleus of stria terminalis. Biochemical pharmacology, 49, 687-692.
Forray, M. I., Bustos, G., & Gysling, K. (1997). Regulation of norepinephrine release from the rat bed nucleus of the stria terminalis: in vivo microdialysis studies. Journal of Neuroscience Research, 50, 1040-1046.
Forray, M. I., Bustos, G., & Gysling, K. (1999). Noradrenaline inhibits glutamate release in the rat bed nucleus of the stria terminalis: in vivo microdialysis studies. Journal of Neuroscience Research, 55, 311-320.
Forray, M. I., Gysling, K., Andres, M. E., Bustos, G., & Araneda, S. (2000). Medullary noradrenergic neurons projecting to the bed nucleus of the stria terminalis express mRNA for the NMDA-NR1 receptor. Brain Research Bulletin, 52, 163-169.
Freedman, L. J., & Cassell, M. D. (1994). Distribution of dopaminergic fibers in the central division of the extended amygdala of the rat. Brain Research, 633, 243-252.
Gracy, K. N., & Pickel, V. M. (1995). Comparative ultrastructural localization of the NMDAR1 glutamate receptor in the rat basolateral amygdala and bed nucleus of the stria terminalis. Journal of Comparative Neurology, 362, 71-85.
Javitch, J. A., Strittmatter, S. M., & Snyder, S. H. (1985). Differential visualization of dopamine and norepinephrine uptake sites in rat brain using [3H]mazindol autoradiography. Journal of Neuroscience, 5, 1513-1521.
Ju, G., & Swanson, L. W. (1989). Studies on the cellular architecture of the bed nuclei of the stria terminalis in the rat: I. Cytoarchitecture. Journal of Comparative Neurology, 280, 587-602.
Kim, M., & McGaugh, J. L. (1992). Effects of intra-amygdala injections of NMDA receptor antagonists on acquisition and retention of inhibitory avoidance. Brain Research, 585, 35-48.
LaLumiere, R. T., Pizano, E., & McGaugh, J. L. (2004). Intra-basolateral amygdala infusions of AP-5 impair or enhance retention of inhibitory avoidance depending on training conditions. Neurobiology of Learning and Memory, 81, 60-66.
Le Gal La Salle, G., Paxinos, G., & Ben Ari, Y. (1978). Neurochemical mapping of GABAergic systems in the amygdaloid complex and bed nucleus of the stria terminalis. Brain Research, 155, 397-403.
LeDoux, J. (1999). The emotional brain. London: Phoenix.
Lee, Y., & Davis, M. (1997). Role of the hippocampus, the bed nucleus of the stria terminalis, and the amygdala in the excitatory effect of corticotropin-releasing hormone on the acoustic startle reflex. Journal of Neuroscience, 17, 6434-6446.
Liang, K. C., Chen, H. C., & Chen, D. Y. (2001). Posttraining infusion of norepinephrine and corticotropin releasing factor into the bed nucleus of the stria terminalis enhanced retention in an inhibitory avoidance task. Chinese Journal of Physiology, 44, 33-43.
Liang, K. C., Hon, W., & Davis, M. (1994). Pre- and posttraining infusion of N-methyl-D-aspartate receptor antagonists into the amygdala impair memory in an inhibitory avoidance task. Behavioral Neuroscience, 108, 241-253.
Liang, K. C., Hon, W., Tyan, Y. M., & Liao, W. L. (1994). Involvement of hippocampal NMDA and AMPA receptors in acquisition, formation and retrieval of spatial memory in the Morris water maze. Chinese Journal of Physiology, 37, 201-212.
Liang, K. C., Juler, R. G., & McGaugh, J. L. (1986). Modulating effects of posttraining epinephrine on memory: involvement of the amygdala noradrenergic system. Brain Research, 368, 125-133.
Liang, K. C., & McGaugh, J. L. (1983a). Lesions of the stria terminalis attenuate the amnestic effect of amygdaloid stimulation on avoidance responses. Brain Research, 274, 309-318.
Liang, K. C., & McGaugh, J. L. (1983b). Lesions of the stria terminalis attenuate the enhancing effect of post-training epinephrine on retention of an inhibitory avoidance response. Behavioural Brain Research, 9, 49-58.
Liang, K. C., McGaugh, J. L., & Yao, H. Y. (1990). Involvement of amygdala pathways in the influence of post-training intra-amygdala norepinephrine and peripheral epinephrine on memory storage. Brain Research, 508, 225-233.
Lorton, D., & Davis, J. N. (1987). The distribution of beta-1- and beta-2-adrenergic receptors of normal and reeler mouse brain: an in vitro autoradiographic study. Neuroscience, 23, 199-210.
Maren, S., Aharonov, G., Stote, D. L., & Fanselow, M. S. (1996). N-methyl-D-aspartate receptors in the basolateral amygdala are required for both acquisition and expression of conditional fear in rats. Behavioral Neuroscience, 110, 1365-1374.
Matsui, H., & Yamamoto, C. (1984a). Neuronal sensitivity to opiate and opioid peptides in the bed nucleus of the stria terminalis. Effects of chronic treatment with morphine. Neuropharmacology, 23, 755-762.
Matsui, H., & Yamamoto, C. (1984b). The possible involvement of adenylate cyclase inhibition in the field potential suppression through alpha-2 adrenergic receptors in the bed nucleus of the stria terminalis. Brain Research, 293, 187-190.
McGaugh, J. L., Introini-Collison, I. B., Juler, R. G., & Izquierdo, I. (1986). Stria terminalis lesions attenuate the effects of posttraining naloxone and beta-endorphin on retention. Behavioral Neuroscience, 100, 839-844.
McGaugh, J. L., McIntyre, C. K., & Power, A. E. (2002). Amygdala modulation of memory consolidation: interaction with other brain systems. Neurobiology of Learning Memory, 78, 539-552.
Moore, R. Y. (1978). Catecholamin innervation of the basal forebrain. I. The septal area. Journal of Comparative Neurology, 177, 665-684.
Morris, R. G. (1989). Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5. Journal of Neuroscience, 9, 3040-3057.
Nijsen, M. J., Croiset, G., Diamant, M., De Wied, D., & Wiegant, V. M. (2001). CRH signalling in the bed nucleus of the stria terminalis is involved in stress-induced cardiac vagal activation in conscious rats. Neuropsychopharmacology, 24, 1-10.
Onaka, T., & Yagi, K. (1998). Role of noradrenergic projections to the bed nucleus of the stria terminalis in neuroendocrine and behavioral responses to fear-related stimuli in rats. Brain Research, 788, 287-293.
Pacak, K., McCarty, R., Palkovits, M., Kopin, I. J., & Goldstein, D. S. (1995). Effects of immobilization on in vivo release of norepinephrine in the bed nucleus of the stria terminalis in conscious rats. Brain Research, 688, 242-246.
Parent, M. B., & McGaugh, J. L. (1994). Posttraining infusion of lidocaine into the amygdala basolateral complex impairs retention of inhibitory avoidance training. Brain Research, 661, 97-103.
Paxinos, G., & Watson, C. (1997). The rat brain in stereotaxic coordinates. (3 ed.). San Diego: Academic Press.
Pellegrino, J. L., Pellegrino, A. S., & Cushman, A. J. (1979). A stereotaxic atlas of the rat brain (2 ed.). New York, US: Plenum Press.
Phelix, C. F., Liposits, Z., & Paull, W. K. (1992a). Monoamine innervation of bed nucleus of stria terminalis: an electron microscopic investigation. Brain Research Bulletin, 28, 949-965.
Phelix, C. F., Liposits, Z., & Paull, W. K. (1992b). Serotonin-CRF interaction in the bed nucleus of the stria terminalis: a light microscopic double-label immunocytochemical analysis. Brain Research Bulletin, 28, 943-948.
Phelix, C. F., Liposits, Z., & Paull, W. K. (1994). Catecholamine-CRF synaptic interaction in a septal bed nucleus: afferents of neurons in the bed nucleus of the stria terminalis. Brain Research Bulletin, 33, 109-119.
Phelix, C. F., & Paull, W. K. (1990). Demonstration of distinct corticotropin releasing factor--containing neuron populations in the bed nucleus of the stria terminalis. A light and electron microscopic immunocytochemical study in the rat. Histochemistry, 94, 345-364.
Pickel, V. M., Segal, M., & Bloom, F. E. (1974). A radioautographic study of the efferent pathways of the nucleus locus. Journal of Comparative Neurology, 155, 15-42.
Riche, D., De Pommery, J., & Menetrey, D. (1990). Neuropeptides and catecholamines in efferent projections of the nuclei of the solitary tract in the rat. Journal of Comparative Neurology, 293, 399-424.
Richmond, M. A., Yee, B. K., Pouzet, B., Veenman, L., Rawlins, J. N., Feldon, J., et al. (1999). Dissociating context and space within the hippocampus: effects of complete, dorsal, and ventral excitotoxic hippocampal lesions on conditioned freezing and spatial learning. Behavioral Neuroscience, 113, 1189-1203.
Riedel, G., Platt, B., & Micheau, J. (2003). Glutamate receptor function in learning and memory. Behavioral Brain Research, 140, 1-47.
Roberts, G. W., Woodhams, P. L., Crow, T. J., & Polak, J. M. (1980). Loss of immunoreactive VIP in the bed nucleus following lesions of the stria terminalis. Brain Research, 195, 471-475.
Roder, S., & Ciriello, J. (1994). Collateral axonal projections to limbic structures from ventrolateral medullary A1 noradrenergic neurons. Brain Research, 638, 182-188.
Roozendaal, B., & McGaugh, J. L. (1996). The memory-modulatory effects of glucocorticoids depend on an intact stria terminalis. Brain Research, 709, 243-250.
Sakanaka, M., Shibasaki, T., & Lederis, K. (1986). Distribution and efferent projections of corticotropin-releasing factor-like immunoreactivity in the rat amygdaloid complex. Brain Research, 382, 213-238.
Sakanaka, M., Shiosaka, S., Takatsuki, K., Inagaki, S., Takagi, H., Senba, E., et al. (1981). Experimental immunohistochemical studies on the amygdalofugal peptidergic (substance P and somatostatin) fibers in the stria terminalis of the rat. Brain Research, 221, 231-242.
Sawada, S., & Yamamoto, C. (1981). Postsynaptic inhibitory actions of catecholamines and opioid peptides in the bed nucleus of the stria terminalis. Experimental Brain Research, 41, 264-270.
Sawchenko, P. E., & Swanson, L. W. (1983). The organization of forebrain afferents to the paraventricular and supraoptic nuclei of the rat. Journal Comparative Neurology, 218, 121-144.
Sawchenko, P. E., & Swanson, L. W. (1985). Localization, colocalization, and plasticity of corticotropin-releasing factor immunoreactivity in rat brain. Federation Proceedings, 44, 221-227.
Schulz, D., & Canbeyli, R. (1999). Freezing behavior in BNST-lesioned Wistar rats. Annals of the New York Academy of Sciences, 877, 728-731.
Sequeira, S. M., Malva, J. O., Carvalho, A. P., & Carvalho, C. M. (2001). Presynaptic N-methyl-D-aspartate receptor activation inhibits neurotransmitter release through nitric oxide formation in rat hippocampal nerve terminals. Molecular Brain Research, 89, 111-118.
Shaham, Y., Funk, D., Erb, S., Brown, T. J., Walker, C. D., & Stewart, J. (1997). Corticotropin-releasing factor, but not corticosterone, is involved in stress-induced relapse to heroin-seeking in rats. Journal of Neuroscience, 17, 2605-2614.
Shaikh, M. B., Brutus, M., Siegel, H. E., & Siegel, A. (1986). Regulation of feline aggression by the bed nucleus of stria terminalis. Brain Research Bulletin, 16, 179-182.
Sherry, D. F., & Schacter, D. L. (1987). The evolution of multiple memory systems. Psychological Review, 94, 439-454.
Sofroniew, M. V. (1983). Direct reciprocal connections between the bed nucleus of the stria terminalis and dorsomedial medulla oblongata: evidence from immunohistochemical detection of tracer proteins. Journal of Comparative Neurology, 213, 399-405.
Swanson, L. W., & Cowan, W. M. (1979). The connections of the septal region in the rat. Journal Comparative Neurology, 186, 621-655.
Torras-Garcia, M., Costa-Miserachs, D., Portell-Cortes, I., & Morgado-Bernal, I. (1998). Posttraining epinephrine and memory consolidation in rats with different basic learning capacities. The role of the stria terminalis. Experimental Brain Research, 121, 20-28.
Uhl, G. R., Kuhar, M. J., & Synder, S. H. (1978). Enkephalin-containing pathway: amygdaloid efferents in the stria terminalis. Brain Research, 149, 223-228.
Uhl, G. R., & Snyder, S. H. (1979). Neurotensin: a neuronal pathway projecting from amygdala through stria terminalis. Brain Research, 161, 522-526.
Veinante, P., & Freund-Mercier, M. J. (1998). Intrinsic and extrinsic connections of the rat central extended amygdala: an in vivo electrophysiological study of the central amygdaloid nucleus. Brain Research, 794, 188-198.
Vyas, A., Bernal, S., & Chattarji, S. (2003). Effects of chronic stress on dendritic arborization in the central and extended amygdala. Brain Research, 965, 290-294.
Walaas, I., & Fonnum, F. (1980). Biochemical evidence for glutamate as a transmitter in hippocampal efferents to the basal forebrain and hypothalamus in the rat brain. Neuroscience, 5, 1691-1698.
Walker, D. L., & Davis, M. (1997). Double dissociation between the involvement of the bed nucleus of the stria terminalis and the central nucleus of the amygdala in startle increases produced by conditioned versus unconditioned fear. Journal of Neuroscience, 17, 9375-9383.
Woodside, B. L., Borroni, A. M., Hammonds, M. D., & Teyler, T. J. (2004). NMDA receptors and voltage-dependent calcium channels mediate different aspects of acquisition and retention of a spatial memory task. Neurobiolgy of Learning and Memory, 81, 105-114.
Woulfe, J. M., Flumerfelt, B. A., & Hrycyshyn, A. W. (1990). Efferent connections of the A1 noradrenergic cell group: a DBH immunohistochemical and PHA-L anterograde tracing study. Experimental Neurology, 109, 308-322.
Woulfe, J. M., Hrycyshyn, A. W., & Flumerfelt, B. A. (1988). Collateral axonal projections from the A1 noradrenergic cell group to the paraventricular nucleus and bed nucleus of the stria terminalis in the rat. Experimental Neurology, 102, 121-124.
Zardetto-Smith, A. M., Beltz, T. G., & Johnson, A. K. (1994). Role of the central nucleus of the amygdala and bed nucleus of the stria terminalis in experimentally-induced salt appetite. Brain Research, 645, 123-134.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔