(3.238.99.243) 您好!臺灣時間:2021/05/15 18:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張元貞
研究生(外文):Yuan-Chen Chang
論文名稱:骨髓性血癌細胞內GEF-H1的調節機制在RhoA訊息傳導途徑上所扮演的角色
論文名稱(外文):The role of GEF-H1 regulation in RhoA signaling pathway in myeloid leukemia cells
指導教授:張智芬
指導教授(外文):Zee-Fen Chang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物化學暨分子生物學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:55
中文關鍵詞:細胞凋亡訊息傳遞
外文關鍵詞:GEF-H1apoptosisRhoA signaling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
酯化合物PMA依細胞種類不同,可誘發細胞走向分裂、分化或凋亡的命運。以血球前驅細胞TF-1不需細胞介素的變異株D2而言,處理PMA可誘使一半細胞貼附於培養皿並分化成類單核球/巨噬細胞球樣的形態,而另一部分細胞雖仍然維持懸浮狀態卻走向凋亡的途徑。在我們實驗室過去的研究中已證明,RhoA在PMA誘使細胞走向分化或凋亡的過程中,扮演決定性的角色。在PMA誘發的貼附細胞中,其RhoA活性降性;而PMA刺激下的懸浮細胞則維持高的RhoA活性。

在本研究中,旨在探討究竟是何種機制負責參與PMA誘發的訊息傳導途徑以調控RhoA活性。我利用GST-RhoA affinity capture的方式,在D2細胞中找到具有和RhoA專一性結合能力的GEF-H1蛋白。過去相關的研究已指出,在培養的哺乳細胞中,大部分表現的GEF-H1會和細胞骨架微管 (microtubules) 結合。然而我的研究結果顯示,D2細胞中的GEF-H1主要分布於細胞質中而未和微管結合。而在PMA誘發的貼附細胞中會有部分GEF-H1和微管結合,至於PMA誘發的懸浮細胞,GEF-H1則仍維持在細胞質中。由於GEF-H1是具專一性活化RhoA的GEF,因此我推論GEF-H1的活性會因其分布在細胞質中而活化RhoA,並引發細胞走向凋亡。在接下來的實驗中陸續證明此假說的成立,我首先發現當D2細胞過量表現不具和微管結合能力之持續活化態GEF-H1(1-572),確實會促使細胞在PMA誘發下走向凋亡。而利用RNAi knockdown的方式,抑制D2細胞中GEF-H1的表現,則降低了細胞中RhoA的活性,並伴隨誘使在PMA刺激下有較少的細胞走向凋亡。

總括上述,我發現在PMA所誘發之懸浮與貼附的D2細胞,GEF-H1受到不同的調控而在細胞中有不同的分布情形。而GEF-H1分布情形的差異參與了調控RhoA活性的高低,因此在PMA刺激下影響了細胞附著與存活的能力。
Phorbol-12-myristate-13-acetate (PMA) induces proliferation, differentiation, or apoptosis depending on the cell type. In the case of the erythroblastic D2 cell line, which is a cytokine-independent variant derived from TF-1 cells, PMA treatment induces a half of D2 cells adhesion and differentiates into monocyte/macrophage-like morphology, while the other population remains in suspension and undergoes apoptosis. In our laboratory, we have shown that RhoA acts as a switcher in determining whether D2 cells undergo differentiation or apoptosis in response to PMA. RhoA activity is downregulated in PMA-induced adherent cells, while in suspended cells RhoA activity remains elevated.

In this study, I aimed to understand the mechanism responsible for differential regulation of RhoA in D2 cells upon PMA treatment. By using the strategy of GST-RhoA affinity capture, we identified protein GEF-H1 that was specifically interacting with RhoA in D2 cells. It has been reported that majority of GEF-H1 is colocalized with microtubules when expressed in cultured mammalian cells. However, in my study I found that subcellular distribution of GEF-H1 was mainly in the cytosolic fraction but not bound to microtubules in D2 cells. In PMA-induced attached cells, GEF-H1 became associated with microtubules, whereas in PMA-induced suspension cells GEF-H1 remained in the cytosol. Since GEF-H1 is a GEF specific for RhoA, I proposed that the elevated level of GEF-H1 in cytosolic fraction plays a role in modulating RhoA activity, contributing to PMA-induced apoptosis. In support of this hypothesis, I found that overexpression of active form of GEF-H1, which lacks microtubule binding domain, increased PMA-induced apoptosis in D2 cells, and that knockdown of GEF-H1 decreased RhoA activity and PMA-induced apoptosis concomitantly.

In summary, I discovered that the subcellular localization of GEF-H1 is differently regulated in PMA-induced suspended and attached D2 cells. This difference takes a part in modulation of RhoA activity, thus affecting cell spreading and survival in response to PMA stimulation.
中文摘要 І
Abstract ІІ
Table of Contents ІІІ
Preface ΙV
Chapter 1
-- Overview in PMA-induced signal transduction and RhoA signaling pathway
1. Phorbol ester PMA and its PKC signal transduction 1
2. Small GTP-binding proteins 2
3. Regulation of small GTP-binding proteins 3
4. Rho downstream signaling 7
5. Rho signaling in PMA-induced apoptosis 9
6. Experimental rationale 10
Chapter 2
-- The role of GEF-H1 regulation in RhoA signaling pathway in myeloid leukemia cells
1. Introduction 12
2. Materials and Methods 16
3. Results 27
4. Discussion 35
5. Figures and Legends 39
�� Reference 48
1.Nishizuka, Y. (1995). Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 9, 484-96.
2.Ron, D., and Kazanietz, M. G. (1999). New insights into the regulation of protein kinase C and novel phorbol ester receptors. FASEB J 13, 1658-76.
3.Liu, W. S. and Heckman, C. A. (1998). The sevenfold way of PKC regulation. Cell signal 10, 529-42.
4.Takai, Y., Sasaki, T., and Matozaki, T. (2001). Small GTP-binding proteins. Physiol Rev 81, 153-208.
5.Paduch, M., Jelen, F., and Otlewski, J. (2001). Structure of small G proteins and their regulators. Acta Biochimica Polonica 48, 829-50.
6.Milburn, M. V., Tong, L., deVos, A. M., Brunger, A., Yamaizumi, Z., Nishimura, S., and Kim, S. H. (1990). Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247, 939-45.
7.Ihara, K., Muraguchi, S., Kato, M., Shimizu, T., Shirakawa, M., Kuroda, S., Kaibuchi, K., and Hakoshima, T. (1998). Crystal structure of human RhoA in a dominantly active form complexed with a GTP analogue. J Biol Chem 273, 9656-66.
8.Wherlock, M. and Mellor, H. (2002). The Rho GTPase family: a Racs to Wrchs story. J Cell Sci 115, 239-240.
9.Zohn, I. M., Campbell, S. L., Khosravi-Far, R., Rossman, K. L., and Der, C. J. (1998). Rho family proteins and Ras transformation: the RHOad less traveled gets congested. Oncogene 17, 1415-38.
10.Boettner, B. and Aelst, L. V. (2002). The role of Rho GTPases in disease development. Gene 286, 155-74.
11.Schmidt, A. and Hall, A. (2002). Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev 16, 1587-1609.
12.Zheng, Y. (2001). Dbl family guanine nucleotide exchange factors. Trends Biochem Sci 26, 724-32.
13.Peck, J., IV, G. D., Wu, C. H., and Burbelo, P. D. (2002). Human RhoGAP domain-containing proteins: structure, function and evolutionary relationship. FEBS lett 528, 27-34.
14.Moon, S. Y. and Zheng, Y. (2003). Rho GTPase-activating proteins in cell regulation. Trends Cell Biol 13, 13-22.
15.Olofsson, B. (1999). Rho guanine dissociation inhibitors: pivotal molecules in cellular signaling. Cell signal 11, 545-54.
16.Adra, C. N., Manor, D., Ko, J. L., Zhu, S., Horiuchi, T., Aelst, L. V., Cerione, R. A., and Lim, B. (1997). RhoGDI: A GDP-dissociation inhibitor for Rho proteins with preferential expression in brain and pancreas. Proc Natl Acad Sci USA 94, 4279-84.
17.Hall, A. (1998). Rho GTPases and the actin cytoskeleton. Science 279, 509-14.
18.Fujisawa, K., Madaule, P., Ishizaki, T., Watanabe, G., Bito, H., Saito, Y., Hall, A., and Narumiya, S. (1998). Different regions of Rho determine Rho-selective binding of different classes of Rho target molecules. J Biol Chem 273, 18943-49.
19.Kaibuchi, K., Kuroda, S., and Amano, M. (1999). Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu Rev Biochem 68, 459-86.
20.Aznar, S. and Lacal, J. C. (2001). Rho signals to cell growth and apoptosis. Cancer lett 165, 1-10.
21.Narumiya, S., Ishizaki, T., and Watanabe, N. (1997). Rho effectors and reorganization of actin cytoskeleton. FEBS lett 410, 68-72.
22.Wettschureck, N. and Offermanns, S. (2002). Rho/Rho-kinase mediated signaling in physiology and pathophysiology. J Mol Med 80, 629-38.
23.Aelst, L. V. and D’Souza-Schorey, C. (1997). Rho GTPases and signaling networks. Genes Dev 11, 2295-322.
24.Maekawa, M., Ishizaki, T., Boku, S., Watanabe, N., Fujita, A., Iwamatsu, A., Obinata, T., Ohashi, K., Mizuno, K., and Narumiya, S. (1999). Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285, 895-98.
25.Coleman, M. L., Sahai, E. A., Yeo, M., Bosch, M., Dewar, A., and Olson, M. F. (2001). Membrane blebbing during apoptosis results from caspase-mediated activation of ROCKⅠ. Nat Cell Biol 3, 339-45.
26.Sebbagh, M., Renvoize, C., Hamelin, J., Riche, N., Bertoglio, J., and Breard, J. (2001). Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 3, 346-52.
27.Coleman, M. L., Olson, M. F. (2002) Rho GTPase signalling pathways in the morphological changes associated with apoptosis. Cell Death Differ 9, 493-504.
28.Chao, J. R., Chen, C. S., Wang, T. F., Tseng, L. H., Tsai, J. J., Kuo, M. L., Yen, J. J., and Yang Yen, H. F. (1997). Characterization of factor-independent variants derived from TF-1 hematopoietic progenitor cells: the role of the Raf/MAP kinase pathway in the anti-apoptotic effect of GM-CSF. Oncogene 14, 721-28.
29.Lai, J. M., Lu, C. Y., Yang-Yen, H. F., Chang, Z. F. (2001). Lysophosphatidic acid promotes phorbol-ester-induced apoptosis in TF-1 cells by interfering with adhesion. Biochem J 359, 227-33.
30.Lai, J. M., Hsieh, C. L., and Chang, Z. F. (2003). Caspase activation during phorbol ester-induced apoptosis requires ROCK-dependent myosin-mediated contraction. J Cell Sci 116, 3491-501.
31.Lai, J. M., Wu, S., Huang, D. Y., and Chang, Z. F. (2002). Cytosolic retention of phosphorylated extracellular signal-regulated kinase and a Rho-associated kinase-mediated signal impair expression of p21Cip1/Waf1 in phorbol 12-myristate-13-acetate-induced apoptotic cells. Mol Cell Biol 22, 7581-92.
32.Collins, S. J. (1987). The HL-60 promyelocytic leukemia cell line: proliferation, differentiation, and cellular oncogene expression. Blood 70, 1233-44.
33.Kang, C. D., Lee, B. K., Kim, K. W., Kim, C. M., Kim, S. H., and Chung, B. S. (1996). Signaling mechanism of PMA-induced differentiation of K562 cells. Biochem Biophys Res Commun 221, 95-100.
34.Hass, R., Gunji, H., Datta, R., Kharbanda, S., Hartmann, A., Weichselbaum, R., and Kufe, D. (1992). Differential and retrodifferentiation of human myeloid leukemia cells is associated with reversible induction of cell cycle-regulatory genes. Cancer Res 52, 1445-50.
35.Kizaki, H., Tadakuma, T., Odaka, C., Muramatsu, J., and Ishimura, Y. (1989). Activation of a suicide process of thymocytes through DNA fragmentation by calcium ionophores and phorbol esters. J immunol 143, 1790-94.
36.Ishii, H. H. and Gobe, G. C. (1993). Epstein-Barr virus infection is associated with increased apoptosis in untreated and phorbol ester-treated human Burkitt’s lymphoma (AW-Ramos) cells. Biochem Biophys Res Commun 192, 1415-23.
37.Ren, Y., Li, R., Zheng, Y., and Busch, H. (1998). Cloning and characterization of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and Rho GTPases. J Biol Chem 273, 34954-60.
38.Reddy, B. A., Chatterjee, A., Rothblum, L. I., Black, A., and Busch, H. (1989). Isolation and characterization of complementary DNA to proliferating cell nucleolar antigen p40. Cancer Res 49, 1763-67.
39.Krendel, M., Zenke, F. T., and Bokoch, G. M. (2002). Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat Cell Biol 4, 294-301.
40.Cherfils, J. and Chardin, P. (1999). GEFs: structural basis for their activation of small GTP-binding proteins. Trends Biochem Sci 24, 306-11.
41.Glaven, J. A., Whitehead, I. P., Nomanbhoy, T., Kay, R., and Cerione, R. A. (1996). Lfc and Lsc oncoproteins represent two new guanine nucleotide exchange factors for the Rho GTP-binding protein. J Biol Chem 271, 27374-81.
42.Zenke, F. T., Krendel, M., DerMardirossian, C., King, C. C., Bohl, P. B., and Bokoch, G. M. (2004). p21-activated kinase1 phosphorylates and regulates 14-3-3 binding to GEF-H1, a microtubule-localized Rho exchange factor. J Biol Chem 279, 18392-400.
43.Takakura, A., Miyoshi, J., Ishizaki, H., Tanaka, M., Togawa, A., Nishizawa, Y., Yoshida, H., Nishikawa, S., and Takai, Y. (2000). Involvement of a small GTP-binding protein (G protein) regulator, small G protein GDP dissociation stimulator, in antiapoptotic cell survival signaling. Mol Biol Cell 11, 1875-86.
44.Yamamoto, T., Kaibuchi, K., Mizuno, T., Hiroyoshi, M., Shirataki, H., and Takai, Y. (1990). Purification and characterization from bovine brain cytosol of proteins that regulate the GDP/GTP exchange reaction of smg p21s, ras p21-like GTP-binding proteins. J Biol Chem 265, 16626-34.
45.Kikuchi, A., Kaibuchi, K., Hori, Y., Nonaka, H., Sakoda, T., Kawamura, M., Mizuno, T., and Takai, Y. (1992). Molecular cloning of the human cDNA for a stimulatory GDP/GTP exchange protein for c-Ki-ras p21 and smg p21. Oncogene 7, 289-93.
46.Kawamura, M., Kaibuchi, K., Kishi, K., and Takai, Y. (1993). Translocation of Ki-ras p21 between membrane and cytoplasm by smg GDS. Biochem Biophys Res Commun 190, 832-41.
47.Peifer, M., Berg, S., and Reynolds, A. B. (1994). A repeating amino acid motif shared by proteins with diverse cellular roles. Cell76, 789-91.
48.Benais-Pont, G., Punn, A., Flores-Maldonado, C., Eckert, J., Raposo, G., Fleming, T. P., Cereijido, M., Balda, M. S. and Matter, K. (2003). Identification of a tight junction–associated guanine nucleotide exchange factor that activates Rho and regulates paracellular permeability. J Cell Biol 160, 729-40.
49.Zong, H., Kaibuchi, K., and Quilliam, L.A. (2001). The insert region of RhoA is essential for Rho kinase activation and cellular transformation. Mol Cell Biol 21, 5287-98.
50.Self, A. J. and Hall, A. (1995). Purification of recombinant Rho/Rac/ G25K from Escherichia coli. Methods Enzymol 256, 3-10.
51.Diekmann, D. and Hall, A. (1995). In vitro binding assay for interactions of Rho and Rac with GTPase-activating proteins and effectors. Methods Enzymol 256, 207-15. nucleotide loading buffer
52.Yan, J. X., Wait, R., Berkelman, T., Harry, R. A., Westbrook, J. A., Wheeler, C. H., and Dunn, M. J. (2000). A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 21, 3666-72.
53.Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996). Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68, 850-58.
54.Perkins, D. N., Pappin, D. J., Creasy, D. M., and Cotrell, J. S. (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–67.
55.Solmon, F. (1986). Direction identification of microtubule-associated proteins by selective extraction of cultured cells. Methods Enzymol 134, 139-47.
56.Bernstein, E., Denli, A. M., and Hannon, G. J. (2001). The rest is silence. RNA 7, 1509-21.
57.McManus, M. T. and Sharp, P. A. (2002). Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3, 737-47.
58.Arenz, C. and Schepers, U. (2003). RNA interference: from an ancient mechanism to a state of the art therapeutic application? Naturwissenschaften 90, 345-59.
59.Cheng, J. C., Moore, T. B., and Sakamoto, K. M. (2003). RNA interference and human disease. Mol Genet Metab 80, 121-28.
60.Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494-98.
61.Heidenreich, O., Krauter, J., Riehle, H., Hadwiger, P., John, M., Heil, G., Vornlocher, H. P. and Nordheim, A. (2003). AML1/MTG8 oncogene suppression by small interfering RNAs supports myeloid differentiation of t(8;21)-positive leukemic cells. Blood 101, 3157-63.
62.Paddison, P.J., Caudy, A. A., Bernstein, E., Hannon, G. J., and Conklin, D. S. (2002). Short hairpin RNAs (shRNAs) induce sequence-specific silencing in Mammalian cells. Genes Dev 16, 948-58.
63.Brummelkamp, T. R., Bernards, R., and Agami, R. (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550-53.
64.Lee, M. M., Coburn, G. A., McClure, M. O., and Cullen, B. R. (2003). Inhibition of human immunodeficiency virus type 1 replication in primary macrophages by using Tat- or CCR5-specific small interfering RNAs expressed from a lentivirus vector. J Virol 77, 11964-72.
65.An, D. S., Xie, Y., Mao, S. H., Morizono, K., Kung, S. K., and Chen, I. S. (2003). Efficient lentiviral vectors for short hairpin RNA delivery into human cells. Hum gene ther 14, 1207-12.
66.Elbashir, S. M., Harborth, J., Weber, K., and Tuschl, T. (2002). Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26, 199-213.
67.Khvorova, A., Reynolds, A., and Jayasena, S. D. (2003). Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209-16.
68.Schwarz, D. S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P. D. (2003). Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199-208.
69.Ren, X. D., Kiosses, W. B., and Schwartz, M. A. (1999). Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J 18, 578-85.
70.Meller, N., Irani-Tehrani, M., Kiosses, W. B., Del Pozo, M. A., and Schwartz, M. A. (2002). Zizimin1, a novel Cdc 42 activator, reveals a new GEF domain for Rho proteins. Nat Cell Biol 4, 639-47.
71.Dykxhoorn, D. M., Novina, C. D., and Sharp, P. A. (2003). Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 4, 457-67.
72.Yamamoto, M., Marui, N., Sakai, T., Morii, N., Kozaki, S., Ikai, K., Imamura, S., and Narumiya, S. (1993). ADP-ribosylation of the rhoA gene product by botulinum C3 exoenzyme causes Swiss 3T3 cells to accumulate in the G1 phase of the cell cycle. Oncogene 8, 1449-55.
73.Olson, M. F., Ashworth, A., and Hall, A. (1995). An essential role for Rho, Rac, and Cdc42 GTPase in cell cycle progression through G1. Science 269, 1270-72.
74.Hu, W., Bellone, C. J., and Baldassare, J. J. (1999). RhoA stimulates p27(Kip) degradation through its regulation of cyclin E/CDK2 activity. J Biol Chem 274, 3396-401.
75.Lee, T. J. and Cotlieb, A. I. (2003). Microfilaments and microtubules maintain endothelial integrity. Microsc res tech 60,115-27.
76.Wittmann, T. and Waterman-Storer, C. M. (2001). Cell motility: can Rho GTPases and microtubules point the way? J Cell Sci 114, 3795-803.
77.Manser, E. (2002). Small GTPases take the stage. Devel Cell 3, 323-28.
78.Small, J. V. and Kaverina, I. (2003). Microtubules meet substrate adhesions to arrange cell polarity. Curr Opin Cell Biol 15, 40-47.
79.Burridge, K. and Wennerberg, K. (2004). Rho and Rac take center stage. Cell 116, 167-79.
80.Del Pozo, M. A., Kiosses, W. B., Alderson, N. B., Meller, N., Hahn, K. M., and Schwartz, M. A. (2002). Integrins regulate GTP-Rac localized effector interactions through dissociation of Rho-GDI. Nat Cell Biol 4, 232-239.
81.Bokoch, G. M. (2003). Biology of the p21-activated kinases. Annu Rev Biochem 72, 743-81.
82.Zuckerbraun, B. S., Shapiro, R. A., Billiar, T. R., and Tzeng, E. (2003). RhoA influences the nuclear localization of extracellular signal-regulated kinases to modulate p21Waf/Cip1 expression. Circulation 108, 876-81.
83.Bhowmick, N. A., Ghiassi, M., Aakre, M., Brown, K., Singh, V., and Moses, H. L. (2003). TGF-β-induced RhoA and p160ROCK activation is involved in the inhibition of Cdc25A with resultant cell-cycle arrest. Proc Natl Acad Sci U S A 100, 15548-53.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top